INFINEON BG5130R

BG5130R
DUAL - N-Channel MOSFET Tetrode
• Low noise gain controlled input
4
5
6
stages of UHF-and VHF - tuners
1
with 3V up to 5V supply voltage
2
3
• Integrated gate protection diodes
• Low noise figure
• High gain, high forward transadmittance
• Improved cross modulation at gain reduction
• Biasing network partially integrated
BG5130R
6
5
4
Drain
B
AGC
RF
Input RG1
A
1
2
3
G2
G1
RF Output
+ DC
GND
VGG
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
Package
BG5130R
SOT363
Pin Configuration
1=G1* 2=S
3=D*
4=D**
Marking
5=G2
6=G1** KYs
* For amp. A; ** for amp. B
Maximum Ratings
Parameter
Symbol
Value
Drain-source voltage
VDS
Continuous drain current
ID
Gate 1/ gate 2-source current
±IG1/2SM
1
Gate 1/ gate 2-source voltage
±V G1/G2S
6
Total power dissipation
Ptot
200
Storage temperature
Tstg
-55 ... 150
Channel temperature
Tch
150
8
25
Unit
V
mA
V
mW
TS ≤ 78 °C
1
°C
2006-04-13
BG5130R
Thermal Resistance
Parameter
Symbol
Value
Unit
Channel - soldering point 1)
Rthchs
≤ 280
K/W
Values
Unit
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
min.
typ.
max.
V(BR)DS
12
-
-
+V(BR)G1SS
6
-
15
+V(BR)G2SS
6
-
15
+IG1SS
-
-
50
+IG2SS
-
-
50
IDSS
-
-
100
IDSX
-
10
-
mA
VG1S(p)
-
0.6
-
V
VG2S(p)
-
0.7
-
DC Characteristics
Drain-source breakdown voltage
V
ID = 1 µA, VG1S = 0 , VG2S = 0
Gate1-source breakdown voltage
+IG1S = 10 mA, V G2S = 0 , VDS = 0
Gate2-source breakdown voltage
+IG2S = 10 mA, V G1S = 0 , VDS = 0
Gate1-source leakage current
nA
VG1S = 6 V, VG2S = 0
Gate2-source leakage current
VG2S = 6 V, VG1S = 0 , VDS = 0
Drain current
VDS = 3 V, VG1S = 0 , VG2S = 3 V
Drain-source current
VDS = 3 V, VG2S = 3 V, RG1 = 100 kΩ
Gate1-source pinch-off voltage
VDS = 3 V, VG2S = 3 V, ID = 20 µA
Gate2-source pinch-off voltage
VDS = 3 V, VG1S = 3 V, ID = 20 µA
1For calculation of R
thJA please refer to Application Note Thermal Resistance
2
2006-04-13
BG5130R
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
g fs
-
41
-
mS
Cg1ss
-
2.7
-
pF
Cdss
-
1.6
-
AC Characteristics - (verified by random sampling)
Forward transconductance
VDS = 3 V, V G2S = 3 V
Gate1 input capacitance
VDS = 3 V, V G2S = 3 V, f = 10 MHz
Output capacitance
VDS = 3 V, V G2S = 3 V, f = 10 MHz
Power gain
Gp
dB
VDS = 3 V, I D = 10 mA, VG2S = 3 V,
f = 800 MHz
-
24
-
-
35
-
VDS = 3 V, I D = 10 mA, VG2S = 3 V,
f = 45 MHz
Noise figure
dB
F
VDS = 3 V, I D = 10 mA, VG2S = 3 V,
f = 800 MHz
-
1.3
-
-
1
-
45
-
-
VDS = 3 V, I D = 10 mA, VG2S = 3 V,
f = 45 MHz
∆G p
Gain control range
VDS = 3 V, V G2S = 3...0 V, f = 800 MHz
Cross-modulation k=1%, fw=50MHz, funw=60MHz Xmod
AGC = 0
dB
90
94
-
AGC = 10 dB
-
92
-
AGC = 40 dB
96
98
-
3
2006-04-13
BG5130R
Total power dissipation Ptot = ƒ(TS)
Drain current ID = ƒ(IG1)
VG2S = 3V
300
30
mA
200
20
ID
P tot
mW
150
15
100
10
50
5
0
0
20
40
60
80
100
120 °C
0
0
150
10
20
30
µA
40
60
IG1
TS
Output characteristics ID = ƒ(V DS)
Gate 1 current IG1 = ƒ(V G1S)
VDS = 3V
VG2S = Parameter
200
22
mA
1.4V
18
4V
µA
IG1
ID
16
1.3V
14
3.5v
12
100
10
1.2V
3V
8
1.1V
6
4
2.5V
50
2V
1V
2
0
0
2
4
6
8
V
0
0
12
VDS
0.5
1
1.5
2
V
3
VG1S
4
2006-04-13
BG5130R
Drain current ID = ƒ(V G1S)
VDS = 3V
Gate 1 forward transconductance
g fs = ƒ(ID)
VDS = 3V, VG2S = Parameter
VG2S = Parameter
60
mS
28
mA
3V
50
3V
2.5V
24
2.5V
22
45
2V
40
ID
G fs
20
35
18
16
30
14
10
20
8
15
6
10
1.5V
4
5
0
0
1.5V
12
2V
25
1V
2
5
10
15
20
mA
0
0
30
0.2
0.4
0.6
0.8
1
1.2
1.4
V
1.8
VG1S
ID
Drain current ID = ƒ(VGG )
Drain current ID = ƒ(VGG)
VDS = 3V, VG2S = 3V, RG1 = 68kΩ
VG2S = 3V
(connected to VGG, VGG =gate1 supply voltage)
RG1 = Parameter in kΩ
14
28
mA
47K
mA
56K
10
20
ID
ID
68K
8
16
6
12
4
8
2
4
82K
100K
0
0
1
V
0
0
3
VGG
1
2
3
V
5
VGG=VDS
5
2006-04-13
BG5130R
Power gain Gps = ƒ (VG2S)
Noise figure F = ƒ (VG2S)
f = 45 MHz
f = 45 MHz
8
40
dB
20
F
G ps
dB
4
10
0
2
-10
-20
0
1
V
0
0
3
1
V
VG2S
3
VG2S
Noise figure F = ƒ (VG2S)
Power gain Gps = ƒ (VG2S)
f = 800 MHz
f = 800 GHz
7
30
dB
dB
F
Gps
5
10
4
0
3
-10
2
1
0
1
V
-20
0
3
VG2S
1
V
3
VG2S
6
2006-04-13
BG5130R
Crossmodulation Vunw = (AGC)
VDS = 3 V, Rg1 = 68 kΩ
115
V unw
dBµV
105
100
95
90
85
0
5
10
15
20
25
30
35
40 dB
50
AGC
7
2006-04-13
BG5130R
Crossmodulation test circuit
VAGC
VDS
4n7
R1
10kΩ
2.2 uH
4n7
4n7
RL
50Ω
RGEN
50Ω
4n7
50 Ω
RG1
VGG
Semibiased
8
2006-04-13
Package SOT363
BG5130R
Package Outline
2 ±0.2
0.9 ±0.1
+0.1
6x
0.2 -0.05
0.1
0.1 MAX.
M
0.1
Pin 1
marking
1
2
3
A
1.25 ±0.1
4
0.1 MIN.
5
2.1 ±0.1
6
0.15 +0.1
-0.05
0.65 0.65
0.2
M
A
Foot Print
1.6
0.9 0.7
0.3
0.65
0.65
Marking Layout (Example)
Small variations in positioning of
Date code, Type code and Manufacture are possible.
Manufacturer
2005, June
Date code (Year/Month)
Pin 1 marking
Laser marking
BCR108S
Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.
0.2
2.3
8
4
Pin 1
marking
1.1
2.15
9
2006-04-13
BG5130R
Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2006.
All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any
examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Infineon Technologies hereby disclaims any
and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office ( www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons
may be endangered.
10
2006-04-13