BG5130R DUAL - N-Channel MOSFET Tetrode • Low noise gain controlled input 4 5 6 stages of UHF-and VHF - tuners 1 with 3V up to 5V supply voltage 2 3 • Integrated gate protection diodes • Low noise figure • High gain, high forward transadmittance • Improved cross modulation at gain reduction • Biasing network partially integrated BG5130R 6 5 4 Drain B AGC RF Input RG1 A 1 2 3 G2 G1 RF Output + DC GND VGG ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Package BG5130R SOT363 Pin Configuration 1=G1* 2=S 3=D* 4=D** Marking 5=G2 6=G1** KYs * For amp. A; ** for amp. B Maximum Ratings Parameter Symbol Value Drain-source voltage VDS Continuous drain current ID Gate 1/ gate 2-source current ±IG1/2SM 1 Gate 1/ gate 2-source voltage ±V G1/G2S 6 Total power dissipation Ptot 200 Storage temperature Tstg -55 ... 150 Channel temperature Tch 150 8 25 Unit V mA V mW TS ≤ 78 °C 1 °C 2006-04-13 BG5130R Thermal Resistance Parameter Symbol Value Unit Channel - soldering point 1) Rthchs ≤ 280 K/W Values Unit Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter Symbol min. typ. max. V(BR)DS 12 - - +V(BR)G1SS 6 - 15 +V(BR)G2SS 6 - 15 +IG1SS - - 50 +IG2SS - - 50 IDSS - - 100 IDSX - 10 - mA VG1S(p) - 0.6 - V VG2S(p) - 0.7 - DC Characteristics Drain-source breakdown voltage V ID = 1 µA, VG1S = 0 , VG2S = 0 Gate1-source breakdown voltage +IG1S = 10 mA, V G2S = 0 , VDS = 0 Gate2-source breakdown voltage +IG2S = 10 mA, V G1S = 0 , VDS = 0 Gate1-source leakage current nA VG1S = 6 V, VG2S = 0 Gate2-source leakage current VG2S = 6 V, VG1S = 0 , VDS = 0 Drain current VDS = 3 V, VG1S = 0 , VG2S = 3 V Drain-source current VDS = 3 V, VG2S = 3 V, RG1 = 100 kΩ Gate1-source pinch-off voltage VDS = 3 V, VG2S = 3 V, ID = 20 µA Gate2-source pinch-off voltage VDS = 3 V, VG1S = 3 V, ID = 20 µA 1For calculation of R thJA please refer to Application Note Thermal Resistance 2 2006-04-13 BG5130R Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter Symbol Values Unit min. typ. max. g fs - 41 - mS Cg1ss - 2.7 - pF Cdss - 1.6 - AC Characteristics - (verified by random sampling) Forward transconductance VDS = 3 V, V G2S = 3 V Gate1 input capacitance VDS = 3 V, V G2S = 3 V, f = 10 MHz Output capacitance VDS = 3 V, V G2S = 3 V, f = 10 MHz Power gain Gp dB VDS = 3 V, I D = 10 mA, VG2S = 3 V, f = 800 MHz - 24 - - 35 - VDS = 3 V, I D = 10 mA, VG2S = 3 V, f = 45 MHz Noise figure dB F VDS = 3 V, I D = 10 mA, VG2S = 3 V, f = 800 MHz - 1.3 - - 1 - 45 - - VDS = 3 V, I D = 10 mA, VG2S = 3 V, f = 45 MHz ∆G p Gain control range VDS = 3 V, V G2S = 3...0 V, f = 800 MHz Cross-modulation k=1%, fw=50MHz, funw=60MHz Xmod AGC = 0 dB 90 94 - AGC = 10 dB - 92 - AGC = 40 dB 96 98 - 3 2006-04-13 BG5130R Total power dissipation Ptot = ƒ(TS) Drain current ID = ƒ(IG1) VG2S = 3V 300 30 mA 200 20 ID P tot mW 150 15 100 10 50 5 0 0 20 40 60 80 100 120 °C 0 0 150 10 20 30 µA 40 60 IG1 TS Output characteristics ID = ƒ(V DS) Gate 1 current IG1 = ƒ(V G1S) VDS = 3V VG2S = Parameter 200 22 mA 1.4V 18 4V µA IG1 ID 16 1.3V 14 3.5v 12 100 10 1.2V 3V 8 1.1V 6 4 2.5V 50 2V 1V 2 0 0 2 4 6 8 V 0 0 12 VDS 0.5 1 1.5 2 V 3 VG1S 4 2006-04-13 BG5130R Drain current ID = ƒ(V G1S) VDS = 3V Gate 1 forward transconductance g fs = ƒ(ID) VDS = 3V, VG2S = Parameter VG2S = Parameter 60 mS 28 mA 3V 50 3V 2.5V 24 2.5V 22 45 2V 40 ID G fs 20 35 18 16 30 14 10 20 8 15 6 10 1.5V 4 5 0 0 1.5V 12 2V 25 1V 2 5 10 15 20 mA 0 0 30 0.2 0.4 0.6 0.8 1 1.2 1.4 V 1.8 VG1S ID Drain current ID = ƒ(VGG ) Drain current ID = ƒ(VGG) VDS = 3V, VG2S = 3V, RG1 = 68kΩ VG2S = 3V (connected to VGG, VGG =gate1 supply voltage) RG1 = Parameter in kΩ 14 28 mA 47K mA 56K 10 20 ID ID 68K 8 16 6 12 4 8 2 4 82K 100K 0 0 1 V 0 0 3 VGG 1 2 3 V 5 VGG=VDS 5 2006-04-13 BG5130R Power gain Gps = ƒ (VG2S) Noise figure F = ƒ (VG2S) f = 45 MHz f = 45 MHz 8 40 dB 20 F G ps dB 4 10 0 2 -10 -20 0 1 V 0 0 3 1 V VG2S 3 VG2S Noise figure F = ƒ (VG2S) Power gain Gps = ƒ (VG2S) f = 800 MHz f = 800 GHz 7 30 dB dB F Gps 5 10 4 0 3 -10 2 1 0 1 V -20 0 3 VG2S 1 V 3 VG2S 6 2006-04-13 BG5130R Crossmodulation Vunw = (AGC) VDS = 3 V, Rg1 = 68 kΩ 115 V unw dBµV 105 100 95 90 85 0 5 10 15 20 25 30 35 40 dB 50 AGC 7 2006-04-13 BG5130R Crossmodulation test circuit VAGC VDS 4n7 R1 10kΩ 2.2 uH 4n7 4n7 RL 50Ω RGEN 50Ω 4n7 50 Ω RG1 VGG Semibiased 8 2006-04-13 Package SOT363 BG5130R Package Outline 2 ±0.2 0.9 ±0.1 +0.1 6x 0.2 -0.05 0.1 0.1 MAX. M 0.1 Pin 1 marking 1 2 3 A 1.25 ±0.1 4 0.1 MIN. 5 2.1 ±0.1 6 0.15 +0.1 -0.05 0.65 0.65 0.2 M A Foot Print 1.6 0.9 0.7 0.3 0.65 0.65 Marking Layout (Example) Small variations in positioning of Date code, Type code and Manufacture are possible. Manufacturer 2005, June Date code (Year/Month) Pin 1 marking Laser marking BCR108S Type code Standard Packing Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel For symmetric types no defined Pin 1 orientation in reel. 0.2 2.3 8 4 Pin 1 marking 1.1 2.15 9 2006-04-13 BG5130R Edition 2006-02-01 Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2006. All Rights Reserved. Attention please! The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office ( www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 10 2006-04-13