V6209647 VID

REVISIONS
LTR
DESCRIPTION
DATE
APPROVED
Prepared in accordance with ASME Y14.24
Vendor item drawing
REV
PAGE
40
41
42
43
44
45
46
47
48
49
50
51
52
53
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
REV
PAGE
REV STATUS
OF PAGES
REV
PAGE
PMIC N/A
PREPARED BY
Phu H. Nguyen
Original date of drawing
CHECKED BY
Phu H. Nguyen
YY MM DD
10-06-22
APPROVED BY
Thomas M. Hess
SIZE
A
REV
AMSC N/A
CODE IDENT. NO.
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990
http://www.dscc.dla.mil
TITLE
MICROCIRCUIT, DIGITAL, FIXED POINT DIGITAL
SIGNAL PROCESSOR, MONOLITHIC SILICON
DWG NO.
V62/09647
16236
A
PAGE
1
OF
53
5962-V065-10
1. SCOPE
1.1 Scope. This drawing documents the general requirements of a high performance Fixed-Point Digital Signal Processor
microcircuit, with an operating temperature range of -55C to +85C.
1.2 Vendor Item Drawing Administrative Control Number. The manufacturers PIN is the item of identification. The vendor item
drawing establishes an administrative control number for identifying the item on the engineering documentation:
-
V62/09647
Drawing
number
01
X
A
Device type
(See 1.2.1)
Case outline
(See 1.2.2)
Lead finish
(See 1.2.3)
1.2.1 Device type(s). 1/
Generic
Device type
01
Circuit function
SM320VC5507-EP
Fixed Point Digital Signal Processor
1.2.2 Case outline(s). The case outline(s) are as specified herein.
Outline letter
Number of pins
Package style
X
144
Plastic ball grid array
1.2.3 Lead finishes. The lead finishes are as specified below or other lead finishes as provided by the device manufacturer:
Finish designator
A
B
C
D
E
Z
Material
Hot solder dip
Tin-lead plate
Gold plate
Palladium
Gold flash palladium
Other
1.3 Absolute maximum ratings. 2/ 3/
Supply voltage I/O range, (DVDD) .............................................................................................
Supply voltage core range, (CVDD) ...........................................................................................
Input voltage range, (VI) ...........................................................................................................
Output voltage range (VO) .......................................................................................................
Operating case temperature ranges, (TC): (Extended) .............................................................
Storage temperature range, (TSTG)............................................................................................
1/
2/
3/
4/
-0.3 V to +4.0 V
-0.3 V to +2.0 V
-0.3 V to +4.5 V
-0.3 V to +4.5 V
-55C to +85C
-55C to +150C
4/
4/
Users are cautioned to review the manufacturers data manual for additional user information relating to this device.
Stresses beyond those listed under “absolute maximum rating” may cause permanent damage to the device. These are stress
ratings only, and functional operation of the device at these or any other conditions beyond those indicated under
“recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may
affect device reliability.
Long term high temperature storage and/or extended use at maximum recommended operating conditions may result in a
reduction of overall device life. See manufacturer data for additional information on enhanced plastic packaging.
All voltage values are with respect to VSS.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
2
1.4 Recommended operating conditions. 5/
For CVDD = 1.2 V (108 MHz)
CORE
Device supply voltage (CVDD) ............................................................................ +1.14 V to +1.26 V
PERIPHERALS
RTC module supply voltage, core (RCVDD) ........................................................ +1.14 V to +1.26 V
RTC module supply voltage, I/O (RTCINX1 and RTCINX2), (RDVDD) ................ +1.14 V to +1.26 V
USBPLL supply voltage, (USBPLLVDD) .............................................................. +1.14 V to +1.26 V 6/
USB module supply voltage, I/O (DP, DN, and PU), (USBVDD) .......................... +3.0 V to +3.6 V
7/
Device supply voltage, I/O (except DP, DN, PU, SDA, SCL), (DVDD) .................. +2.7 V to +3.6 V
A/D module digital supply voltage, (ADVDD) ....................................................... +2.7 V to +3.6 V
A/D module analog supply voltage, (AVDD) ......................................................... +2.7 V to +3.6 V
GROUNDS
Supply voltage, GND, I/O, and core (VSS) .......................................................... 0 V
Supply voltage, GND, A/D module, digital (ADVSS) ............................................ 0 V
Supply voltage, GND, A/D module, analog (AVSS) ............................................. 0 V
Supply voltage, GND, USBPLL (USBPLLVSS) .................................................... 0 V
High level input voltage, I/O (VIH):
DN and DP .................................................................................................. +2 V minimum 8/
SDA and SCL: VDD related input level ......................................................... 0.7 x DVDD to DVDD (max) + 0.5 V 7/
All other inputs (including hysteresis inputs) ................................................ +2 V to DVDD +0.3 V
Low level input voltage, I/O (VIL):
DN and DP .................................................................................................. +0.8 V maximum 8/
SDA and SCL: VDD related input level ......................................................... -0.5 V to0.3 x DVDD 7/
All other inputs (including hysteresis inputs) ................................................ -0.3 V to +0.8 V
Hysteresis level, (Vhys) – Inputs with hysteresis only .............................................. 0.1 x DVDD
High level output current, (IOH):
DN and DP (VOH = 2.45 V) .......................................................................... -17 mA max 8/
All other outputs .......................................................................................... - 4 mA max
Low level output current, (IOL):
DN and DP (VOL = 0.36 V) ........................................................................... 17mA min 8/
SDA and SCL .............................................................................................. 3 mA max
All other outputs .......................................................................................... 4 mA max
Operating case temperature (TC) ........................................................................... -55C to +85C
__________
5/
6/
7/
8/
Use of this product beyond the manufacturers design rules or stated parameters is done at the user’s risk. The
manufacturer and/or distributor maintain no responsibility or liability for product used beyond the stated limits.
USB PLL is susceptible to power supply ripple. The maximum allowable supply ripple is 1% for 1 Hz to 5 kHz; 1.5% for 5
kHz to 10 MHz; 3% for 10 MHz to 100 MHz , and less than 5% for 100 MHz or greater.
The I2C pins SDA and SCL do not feature fail-safer I/O buffers. These pins could potentially draw current when the device
is powered down. Due to the fact that different voltage devices can be connected to the I2C bus, the level of logic 0 (low)
and logic 1 (high) are not fixed and depends on the associated VDD.
USB I/O pins DP and DN can tolerate a short circuit at D+ and D- to 0 V or 5 V, as long as the recommended series
resistors (see Figure 40) are connected between the D+ and DP (package), and the D- and DN (package). Do not apply a
short circuit to the USB I/O pins DP and DN in absence of the series resistors.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
3
1.4 Recommended operating conditions - Continued.
For CVDD = 1.35 V (144 MHz)
CORE
Device supply voltage (CVDD) ............................................................................ +1.28 V to +1.42 V
PERIPHERALS
RTC module supply voltage, core (RCVDD) ........................................................ +1.28 V to +1.42 V
RTC module supply voltage, I/O (RTCINX1 and RTCINX2), (RDVDD) ................ +1.28 V to +1.42 V
USBPLL supply voltage, (USBPLLVDD) .............................................................. +1.28 V to +1.42 V 6/
USB module supply voltage, I/O (DP, DN, and PU), (USBVDD) .......................... +3.0 V to +3.6 V
7/
Device supply voltage, I/O (except DP, DN, PU, SDA, SCL), (DVDD) .................. +2.7 V to +3.6 V
A/D module digital supply voltage, (ADVDD) ....................................................... +2.7 V to +3.6 V
A/D module analog supply voltage, (AVDD) ......................................................... +2.7 V to +3.6 V
GROUNDS
Supply voltage, GND, I/O, and core (VSS) .......................................................... 0 V
Supply voltage, GND, A/D module, digital (ADVSS) ............................................ 0 V
Supply voltage, GND, A/D module, analog (AVSS) ............................................. 0 V
Supply voltage, GND, USBPLL (USBPLLVSS) .................................................... 0 V
High level input voltage, I/O (VIH):
DN and DP .................................................................................................. +2 V minimum 8/
SDA and SCL: VDD related input level ......................................................... 0.7 x DVDD to DVDD (max) + 0.5 V 7/
All other inputs (including hysteresis inputs) ................................................ +2 V to DVDD +0.3 V
Low level input voltage, I/O (VIL):
DN and DP .................................................................................................. +0.8 V maximum 8/
SDA and SCL: VDD related input level ......................................................... -0.5 V to0.3 x DVDD 7/
All other inputs (including hysteresis inputs) ................................................ -0.3 V to +0.8 V
Hysteresis level, (Vhys) – Inputs with hysteresis only .............................................. 0.1 x DVDD
High level output current, (IOH):
DN and DP (VOH = 2.45 V) .......................................................................... -17 mA max 8/
All other outputs .......................................................................................... - 4 mA max
Low level output current, (IOL):
DN and DP (VOL = 0.36 V) ........................................................................... 17mA min 8/
SDA and SCL .............................................................................................. 3 mA max
All other outputs .......................................................................................... 4 mA max
Operating case temperature (TC) ........................................................................... -55C to +85C
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
4
1.4 Recommended operating conditions - Continued.
For CVDD = 1.6 V (200 MHz)
CORE
Device supply voltage (CVDD) ............................................................................ +1.55 V to +1.65 V
PERIPHERALS
RTC module supply voltage, core (RCVDD) ........................................................ +1.55 V to +1.65 V
RTC module supply voltage, I/O (RTCINX1 and RTCINX2), (RDVDD) ................ +1.55 V to +1.65 V
USBPLL supply voltage, (USBPLLVDD) .............................................................. +1.55 V to +1.65 V 6/
USB module supply voltage, I/O (DP, DN, and PU), (USBVDD) .......................... +3.0 V to +3.6 V
Device supply voltage, I/O (except DP, DN, PU, SDA, SCL), (DVDD) .................. +2.7 V to +3.6 V
7/
A/D module digital supply voltage, (ADVDD) ....................................................... +2.7 V to +3.6 V
A/D module analog supply voltage, (AVDD) ......................................................... +2.7 V to +3.6 V
GROUNDS
Supply voltage, GND, I/O, and core (VSS) .......................................................... 0 V
Supply voltage, GND, A/D module, digital (ADVSS) ............................................ 0 V
Supply voltage, GND, A/D module, analog (AVSS) ............................................. 0 V
Supply voltage, GND, USBPLL (USBPLLVSS) .................................................... 0 V
High level input voltage, I/O (VIH):
DN and DP .................................................................................................. +2 V minimum 8/
SDA and SCL: VDD related input level ......................................................... 0.7 x DVDD to DVDD (max) + 0.5 V 7/
All other inputs (including hysteresis inputs) ................................................ +2 V to DVDD +0.3 V
Low level input voltage, I/O (VIL):
DN and DP .................................................................................................. +0.8 V maximum 8/
SDA and SCL: VDD related input level ......................................................... -0.5 V to0.3 x DVDD 7/
All other inputs (including hysteresis inputs) ................................................ -0.3 V to +0.8 V
Hysteresis level, (Vhys) – Inputs with hysteresis only .............................................. 0.1 x DVDD
High level output current, (IOH):
DN and DP (VOH = 2.45 V) .......................................................................... -17 mA max 8/
All other outputs .......................................................................................... - 4 mA max
Low level output current, (IOL):
DN and DP (VOL = 0.36 V) ........................................................................... 17mA min 8/
SDA and SCL .............................................................................................. 3 mA max
All other outputs .......................................................................................... 4 mA max
Operating case temperature (TC) ........................................................................... -55C to +85C
Thermal resistance characteristics (ambient temperature)
Package RθJA(C/W)
71.2
61.8
Case outline X
58.9
54.8
103.6
84.2
77.8
69.4
Thermal resistance characteristics (Case temperature)
Package
RθJA(C/W)
Case outline X
13.8
9/
Board type 9/
High - K
High - K
High - K
High - K
Low - K
Low - K
Low - K
Low - K
Air flow (LFM)
0
150
250
500
0
150
250
500
Board type 9/
2s JEDEC test card
Board types are defined by JEDEC. Reference JEDEC standard JESD51-9. test board are array surface mount package.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
5
2. APPLICABLE DOCUMENTS
JEDEC PUB 95
–
Registered and Standard Outlines for Semiconductor Devices
(Applications for copies should be addressed to the Electronic Industries Alliance, 2500 Wilson Boulevard, Arlington, VA
22201-3834 or online at http://www.jedec.org)
3. REQUIREMENTS
3.1 Marking. Parts shall be permanently and legibly marked with the manufacturer’s part number as shown in 6.3 herein and as
follows:
A.
B.
C.
Manufacturer’s name, CAGE code, or logo
Pin 1 identifier
ESDS identification (optional)
3.2 Unit container. The unit container shall be marked with the manufacturer’s part number and with items A and C (if applicable)
above.
3.3 Electrical characteristics. The maximum and recommended operating conditions and electrical performance characteristics are
as specified in 1.3, 1.4, and table I herein.
3.4 Design, construction, and physical dimension. The design, construction, and physical dimensions are as specified herein.
3.5 Diagrams.
3.5.1
Case outline(s). The case outline(s) shall be as shown in 1.2.2 and figure 1.
3.5.2
Terminal connections. The terminal connections shall be as shown in figure 2
3.5.3
Functional block diagram. The functional block diagram shall be as specified in figure 3.
3.5.5
Timing waveforms. The timing waveforms shall be as shown in figure 4-40.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
6
TABLE I. Electrical performance characteristics.
Test
High level
output voltage
Low level
output voltage
Input current
for outputs in
highimpedance
Input current
DN and DP 3/
PU
SDA & SCL 4/
DN and DP 3/
All other outputs
Output-only or
I/O pins with bus
keepers
(enabled)
All other outputonly or I/O pins
Input pins with
internal pulldown
(enabled)
Input pins with
internal pullup
(enabled)
X2/CLKIN
All other inputonly pins
DVDD supply current, pins active
6/
DVDD supply
current,
standby
VOH
All other outputs
Input capacitance
Output capacitance
For CVDD = 1.2 V (108 MHz)
CVDD supply current, CPU +
internal memory access 5/
CVDD supply
current,
standby 7/
Symbol
Oscillator
disabled. All
domains in low –
power state
Oscillator
disabled. All
domains in low –
power state
VOL
IIZ
II
Test condition
2/
USBDVDD = 3.0 V to 3.6 V
IOH = -300 µA
DVDD = 2.7 V to 3.6 V
IOH = -300 µA
At 3 mA sink current
IOL = 3.0 mA
IOL = MAX
CVDD -= 1.2 V
(108 MHz)
Min
Max
2.8
USBVDD
0.9 x
USBVDD
USBVDD
0.75 x
DVDD
0
0.4
0.3
0.4
-300
300
1/
Unit
Limits
CVDD -= 1.35 V
CVDD -= 1.6 V
(144 MHz)
(200 MHz)
Min
Max
Min
Max
2.8
USBVDD
2.8
USBVDD
0.9 x USBVDD 0.9 x USBVDD
USBVDD
USBVDD
0.75 x
0.75 x
DVDD
DVDD
0
0.4
0
0.4
0.3
0.3
0.4
0.4
-300
300
-300
300
V
V
µA
DVDD = MAX,
VO = VSS to DVDD
DVDD = MAX,
VI = VSS to DVDD
CI
CO
-5
5
-5
5
-5
5
30
300
30
300
30
300
-300
-30
-300
-30
-300
-30
-50
-5
50
5
-50
-5
50
5
-50
-5
50
5
3 TYP
3 TYP
3 TYP
3 TYP
µA
3 TYP
3 TYP
pF
pF
IDDC
CVDD = 1.2 V, TC = 25C
CPU clock = 108 MHz
0.45 TYP
mA/
MHz
IDDP
DVDD = 3.3 V, TC = 25C
CPU clock = 108 MHz
5.5 TYP
mA
IDDC
CVDD = 1.2 V, TC = 25C
(Nominal process)
100 TYP
µA
IDDP
DVDD = 3.3 V, TC = 25C
No I/O activity
10 TYP
µA
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
7
TABLE I. Electrical performance characteristics - Continued.
Test
For CVDD = 1.35 V (144 MHz)
CVDD supply current, CPU +
internal memory access 5/
Symbol
Test condition
2/
CVDD -= 1.2 V
(108 MHz)
Min
Max
1/
Limits
CVDD -= 1.35 V
(144 MHz)
Min
Max
Unit
CVDD -= 1.6 V
(200 MHz)
Min
Max
IDDC
CVDD = 1.35 V, TC = 25C
CPU clock = 144 MHz
0.51 TYP
mA/
MHz
DVDD supply current, pins active
6/
IDDP
DVDD = 3.3 V, TC = 25C
CPU clock = 144 MHz
5.5 TYP
mA
Oscillator
disabled. All
domains in low –
power state
DVDD supply
Oscillator
current,
disabled. All
standby
domains in low –
power state
For CVDD = 1.6 V (200 MHz)
CVDD supply current, CPU +
internal memory access 5/
IDDC
CVDD = 1.35 V, TC = 25C
(Nominal process)
125 TYP
µA
IDDP
DVDD = 3.3 V, TC = 25C
No I/O activity
10 TYP
µA
IDDC
CVDD = 1.6 V, TC = 25C
CPU clock = 200 MHz
0.6 TYP
mA/
MHz
DVDD supply current, pins active
6/
IDDP
DVDD = 3.3 V, TC = 25C
CPU clock = 200 MHz
5.5 TYP
mA
IDDC
CVDD = 1.6 V, TC = 25C
(Nominal process)
150 TYP
µA
IDDP
DVDD = 3.3 V, TC = 25C
No I/O activity
10 TYP
µA
CVDD supply
current,
standby 7/
CVDD supply
current,
standby 7/
DVDD supply
current,
standby
Oscillator
disabled. All
domains in low –
power state
Oscillator
disabled. All
domains in low –
power state
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
8
TABLE I. Electrical performance characteristics - Continued.
No
Test
Symbol
1/
Limits
Test condition
2/
CVDD= 1.2 V
CVDD = 1.35 V
Min
Max
CLOCK GENERATION IN BYPASS MODE (DPLL DISABLED)
CLKIN timing requirements
C1 Cycle time, X2/CLKIN
tc(CI)
See figure 4
20
400 8/
C2 Fall time, X2/CLKIN
tf(CI)
4
C3 Rise time, X2/CLKIN
tr(CI)
4
C10 Pulse duration CLKIN low
tw(CIL)
6
C11 Pulse duration CLKIN high
tw(CIH)
6
CLKOUT switching characteristics
C4 Cycle time, CLKOUT
tc(CO)
20 9/
1600 10/
C5 Delay time, X2/CLKIN high to
td(CI-CO)
5
25
CLKOUT high/low
C6 Fall time, CLKOUT
tf(CO)
1 TYP
C7 Rise time, CLKOUT
tr(CO)
1 TYP
C8 Pulse duration CLKOUT low
tw(COL)
H-1
H+1
C9 Pulse duration CLKOUT high
tw(COH)
H-1
H+1
CLOCK GENERATION IN LOCK MODE (DPLL SYNTHESIS ENABLED)
CLKIN timing requirements
C1 Cycle time, X2/CLKIN
tc(CI)
DPLL synthesis enabled
20
400 8/
C2 Fall time, X2/CLKIN
tf(CI)
4
C3 Rise time, X2/CLKIN
tr(CI)
4
C10 Pulse duration CLKIN low
tw(CIL)
6
C11 Pulse duration CLKIN high
tw(CIH)
6
Multiply by N clock operation switching characteristics See figure 5
C4 Cycle time, CLKOUT
tc(CO)
for CVDD = 1.2 V
9.26
1600
C4 Cycle time, CLKOUT
tc(CO)
for CVDD = 1.35 V
6.95
1600
C6 Fall time, CLKOUT
tf(CO)
1 TYP
C7 Rise time, CLKOUT
tr(CO)
1 TYP
C8 Pulse duration CLKOUT low
tw(COL)
H-1
H+1
C9 Pulse duration CLKOUT high
tw(COH)
H-1
H+1
C12 Delay time, X2/CLKIN high to
td(CI-CO)
5
25
CLKOUT high/low
No
Test
Symbol
Test condition
2/
REAL TIME CLOCK OSCILLATOR WITH EXTERNAL CRYSTAL
Recommended RTC crystal parameters
Frequency of oscillation 11/
fo
See figure 6
Series resistance 11/
ESR
Load capacitance
CL
Crystal drive level
DL
Unit
CVDD = 1.6 V
Min
Max
20
400 8/
4
4
ns
1600 8/
25
ns
6
6
20 9/
5
1 TYP
1 TYP
H-1
H+1
H-1
H+1
20
400 8/
4
4
ns
6
6
5
5
1600
1600
1 TYP
1 TYP
H-1
H+1
H-1
H+1
5
25
Limits
Min
ns
Unit
Max
32.768
30
60
12.5 TYP
1
kHz
kΩ
pF
µW
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
9
TABLE I. Electrical performance characteristics - Continued.
No
Test
Symbol
Test condition
2/
ASYNCHRONUOS MEMORY TIMINGS
Asynchronous memory cycle timing requirements
M1
Setup time, read data valid before CLKOUT high 12/
tsu(DV-COH)
See figure 7
and
8
M2
Hold time, read data after CLKOUT high
th(COH-DV)
M3
Setup time, ARDY valid before CLKOUT high 12/
tsu(ARDY-COH)
M4
Hold time, ARDY after CLKOUT high
th(COH-ARDY)
Asynchronous memory cycle switching characteristics
M5
See figure 7
td(COH-CEV)
Delay time, CLKOUT high to CEx valid
and
8
M6
td(COH-CEIV)
Delay time, CLKOUT high to CEx invalid
td(COHM7
Delay time, CLKOUT high to BEx valid
td(COHM8
Delay time, CLKOUT high to BEx invalid
M9
Delay time, CLKOUT high to address valid
td(COHM10 Delay time, CLKOUT high to address invalid
td(COHM11 Delay time, CLKOUT high to AOE valid
td(COHM12 Delay time, CLKOUT high to AOE invalid
td(COHM13 Delay time, CLKOUT high to ARE valid
td(COHM14 Delay time, CLKOUT high to ARE invalid
td(COHM15 Delay time, CLKOUT high to data valid
td(COHM16 Delay time, CLKOUT high to data invalid
td(COHM17 Delay time, CLKOUT high to AWE valid
td(COHM18 Delay time, CLKOUT high to AWE invalid
td(COH-
1/
Limits
CVDD= 1.2 V
CVDD = 1.6 V
CVDD = 1.35 V
Min
Max
Min
Max
6
0
10
0
-2
-2
5
0
7
0
4
4
4
-2
ns
-2
-2
4
4
4
-2
-2
-2
ns
-2
4
-2
-2
-2
-2
-2
Unit
4
4
4
4
4
4
4
4
-2
-2
-2
-2
-2
4
4
4
4
4
-2
-2
-2
4
4
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
10
TABLE I. Electrical performance characteristics - Continued.
No
Symbol
Test
Test condition
2/
SYNCHRONOUS DRAM (SDRAM) TIMINGS
Synchronous DRAM cycle timing requirements
M19 Setup time, read data valid before CLKMEN high
tsu(DV-CLKMENH)
See figure 9-15
M20 Hold time, read data valid after CLKMEN high
th(CLKMENH-DV)
M21 Cycle time, CLKMEN
tc(CLKMEN)
Synchronous DRAM cycle switching characteristics
M22 Delay time, CLKMEM high to CEx low
M23 Delay time, CLKMEM high to CEx high
M24 Delay time, CLKMEM high to BEx valid
M25 Delay time, CLKMEM high to HBEx invalid
M26 Delay time, CLKMEM high to address valid
M27 Delay time, CLKMEM high to address invalid
M28 Delay time, CLKMEM high to SDCAS low
M29 Delay time, CLKMEM high to SDCAS high
M30 Delay time, CLKMEM high to data valid
M31 Delay time, CLKMEM high to data invalid
M32 Delay time, CLKMEM high to SDWE low
M33 Delay time, CLKMEM high to SDWE high
M34 Delay time, CLKMEM high to SDA10 valid
M35 Delay time, CLKMEM high to SDA10 invalid
M36 Delay time, CLKMEM high to SDRAS low
M37 Delay time, CLKMEM high to SDRAS high
M38 Delay time, CLKMEM high to CKE low
M39 Delay time, CLKMEM high to CKE high
td(CLKMEMH-CEL)
td(CLKMEMH-CEH)
td(CLKMEMH-BEV)
td(CLKMEMH-BEIV)
td(CLKMEMH-AV)
td(CLKMEMH-AIV)
See figure 9-15
td(CLKMEMH-SDCASL)
td(CLKMEMH-SDCAH)
td(CLKMEMH-DV)
td(CLKMEMH-DIV)
td(CLKMEMH-SDWEL)
td(CLKMEMH-SDWEH)
td(CLKMEMH-SDA10V)
td(CLKMEMH-SDA10IV)
td(CLKMEMH-SDRASL)
td(CLKMEMH-SDRASH)
td(CLKMEMH-CKEL)
td(CLKMEMH-CKEH)
1/
Limits
CVDD= 1.2 V
CVDD = 1.6
CVDD = 1.35 V
V
Min
Max
Min
Max
3
2
9.26
13/
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
Unit
3
2
7.52
13/
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
ns
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
ns
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
11
TABLE I. Electrical performance characteristics - Continued.
No
Test
Symbol
Test condition
2/
1/
Limits
CVDD= 1.2 V
CVDD = 1.35 V
Min
Max
POWER UP RESET (ON CHIP OSCILLATOR ACTIVE)
Timing requirements
th(SUPSTBL-RSTL)
R1 Hold time, RESET low after oscillator stable
See figure 16
3P 15/
16/
POWER UP RESET (ON CHIP OSCILLATOR INACTIVE)
Timing requirements
R2 Hold time, CLKOUT valid to RESET low
See figure 16
3P 15/
th(CLKOUTV-RSTL)
Switching characteristics
R3 Delay time, CLKIN valid to CLKOUT valid
td(CLKINV-CLKOUTV) See figure 16
30
WARM RESET
Reset timing requirements
R4 Pulse width, reset low
tw(RSL)
See figure 53P 15/
Reset switching characteristics 15/
R5 Delay time, reset high to BK group valid 17/
td(RSTH-BKV)
See figure 18
38P+15
R6 Delay time, reset high to High group valid 18/
td(RSTH-HIGHV)
38P+15
R7 Delay time, reset low to Z group valid 19/
td(RSTL-ZIV)
1P+15
R8 Delay time, reset high to Z group valid 19/
td(RSTH-ZV)
38P+15
EXTERNAL INTERRUP TIMING
External interrupt timing requirements 15/
I1
Pulse width, interrupt high, CPU active
tw(INTH)A
See figure 19
2P
I2
Pulse width, interrupt low, CPU active
tw(INTL)A
3P
WAKE UP FROM IDLE
Wake up from IDLE switching characteristics 15/
td(WKPEVTL-CLKGEN) See figure 20
ID1 Delay time, wake up event low to clock
1.25 TYP
generation enable
20/
(CPU and clock domain idle)
ID2 Hold time, clock generation enable to wake up
td(CLKGEN-WKPEVTL)
3P
event low
21/
(CPU and clock domain in idle)
ID3 Pulse width, wake up event low
tw(WKPEVTL)
3P
(for CPU idle only)
Unit
CVDD = 1.6 V
Min
Max
3P 15/
ns
3P 15/
30
ns
3P 15/
ns
38P+15
38P+15
1P+15
38P+15
2P
3P
ns
ns
1.25 TYP
20/
ns
3P
21/
3P
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
12
TABLE I. Electrical performance characteristics – Continued.
No
Test
Symbol
Test condition
2/
1/
Limits
CVDD= 1.2 V
CVDD = 1.6
CVDD = 1.35 V
V
Min
Max
Min
Max
XF TIMINGS
XF switching characteristics
X1
Delay time, CLKOUT high to XF high
td(XF)
See figure 21
-1
Delay time, CLKOUT high to XF high
-1
GENERAL PURPOSE INPUT/OUTPUT (GPIOx) TIMINGS
GPIO pins configured as Inputs timing requirements
See figure 22
4
G1 Setup time, IOx input valid GPIO
tsu(GPIO-COH)
AGPIO
22/
8
before CLKOUT high
EHPIGPIO 23/
8
0
GPIO
G2 Hold time, IOx input valid
th(COH-GPIO)
AGPIO 22/
0
after CLKOUT high
EHPIGPIO 23/
0
GPIO configured as outputs switching characteristics
See figure 22
0
G3 Delay time, CLKOUT high GPIO
td(COH-GPIO)
AGPIO 22/
0
to IOx output change
EHPIGPIO 23/
0
TIN/TOUT TIMINGS (TIMER0 ONLY)
TIN/TOUT pins configured as inputs timing requirements 15/ 24/
T4
Pulse width, TIN/TOUT low
tw(TIN/TOUTL)
See figure 23
2P+1
T5
Pulse width, TIN/TOUT high
tw(TIN/TOUTH)
2P+1
TIN/TOUT pins configured as outputs switching characteristics 15/ 24/ 25/
T1
Delay time, CLKOUT high to TIN/TOUT high
td(COH-TIN/TOUTH)
See figure 23
-1
T2
Delay time, CLKOUT high to TIN/TOUT low
td(COH-TIN/TOUTL)
-1
T3
Pulse duration, TIN/TOUT (output)
tw(TIN/TOUT)
P-1
3
3
-1
-1
3
3
4
8
8
0
0
0
6
11
13
ns
ns
0
0
0
6
11
13
2P+1
2P+1
3
3
Unit
-1
-1
P-1
ns
ns
3
3
ns
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
13
TABLE I. Electrical performance characteristics – Continued.
No
Test
Symbol
Test condition
2/
McBSP0 TIMINGS
McBSP0 timing requirements 26/ See figure 24 and 25
MC1
Cycle time, CLKR/X
tc(CKRX)
CLKR/X ext
MC2
Pulse duration, CLKR/X high or CLKR/X
tw(CKRX)
CLKR/X ext
low
MC3
Rise time, CLKR/X
tr(CKRX)
CLKR/X ext
MC4
Fall time CLKR/X
tf(CKRX)
CLKR/X ext
MC5
Setup time, external FSR high before
tsu(FRH-CKRL)
CLKR int
CLKR low
CLKR ext
MC6
Hold time, external FSR high after CLKR
th(CKRL-FRH)
CLKR int
low
CLKR ext
MC7
Setup time, DR valid before CLKR low
tsu(DRV-CKRL)
CLKR int
CLKR ext
MC8
Hold time, DR valid after CLKR low
th(CKRL-DRV)
CLKR int
CLKR ext
MC9
Setup time, external FSX high before
tsu(FXH-CKXL)
CLKR int
CLKX low
CLKR ext
MC10 Hold time, external FSX high after CLKX
th(CKXL-FXH)
CLKR int
low
CLKR ext
1/
Limits
CVDD= 1.2 V
CVDD = 1.35 V
Min
Max
2P 15/
P-1 15/
Unit
CVDD = 1.6 V
Min
Max
2P 15/
P-1 15/
ns
6
6
10
2
-3
1
10
2
-2
3
13
3
-3
1
6
6
7
2
-3
1
7
2
-2
3
8
2
-3
1
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
14
TABLE I. Electrical performance characteristics - Continued.
No
Test
Symbol
Test condition
2/
McBSP0 TIMINGS - Continued
McPSP0 switching characteristics 15/ 26/ See figure 24 and 25
MC1
Cycle time, CLKR/X
tc(CKRX)
CLKR/X int
MC3
Rise time, CLKR/X
tr(CKRX)
CLKR/X int
MC4
Fall time CLKR/X
tf(CKRX)
CLKR/X int
MC11 Pulse duration, CLKR/X high
tw(CKRXH)
CLKR/X int
MC12 Pulse duration, CLKR/X low
tw(CKRXL)
CLKR/X int
MC13 Delay time, CLKR high to internal FSR valid
td(CKRHCLKR int
FRV)
CLKR ext
MC14 Delay time, CLKR high to internal FSX valid
td(CKXHCLKR int
FXV)
CLKR ext
CLKR int
MC15 Disable time, DX high impedance from CLKX
tdis(CKXHhigh following last data bit
DXHZ)
CLKR ext
CLKR int
Delay time, CLKX high to DX valid. This
MC16 applies to all bits except the first bit transmitted.
td(CKXHCLKR ext
DXV)
Delay time, CLKX high to DX
DXENA = 0
CLKR int
valid 28/
CLKR ext
Only applies to first bit
CLKR int
transmitted when in Data Delay DXENA = 1
CLKR ext
1 or 2 (XDATDLY = 01b or 10b)
modes
CLKR int
Enable time, DX driven from
DXENA = 0
MC17 CLKX high 28/
ten(CKXHCLKR ext
DX)
Only applies to first bit
CLKR int
transmitted when in Data Delay DXENA = 1
CLKR ext
1 or 2 (XDATDLY = 01b or 10b)
modes
Delay time, FSX high to DX
DXENA = 0
CLKR int
MC18 valid 28/
td(FXH-DXV) CLKR ext
CLKR int
Only applies to first bit
transmitted when in Data Delay DXENA = 1
CLKR ext
0 (XDATDLY = 00b) mode
Enable time, DX driven from
DXENA = 0
CLKR int
MC19 FSX high 28/
ten(FXH-DX) CLKR ext
Only applies to first bit
CLKR int
transmitted when in Data Delay DXENA = 1
CLKR ext
0 (XDATDLY = 00b) mode
1/
Limits
Unit
CVDD= 1.2 V
CVDD = 1.35 V
Min
Max
Min
2P
2P
D-2 27/
C-2 27/
-2
4
-2
4
0
10
1
1
D+2 27/
C+2 27/
1
13
2
15
5
18
5
15
4
13
2P+1
2P+4
CVDD = 1.6 V
Max
ns
D-1 27/
C-1 27/
-2
4
-2
4
-5
3
-1
6
P-1
P+6
1
1
1
D+1 27/
C+1 27/
1
8
2
9
1
11
4
9
2
7
2P+1
2P+3
-3
3
P-3
P+3
2
13
2P+1
2P+10
0
8
P-3
P+8
2
8
2P+1
2P+10
0
3
P-3
P+4
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
15
TABLE I. Electrical performance characteristics – Continued.
No
Test
Symbol
Test condition
2/
1/
Limits
CVDD= 1.2 V
CVDD = 1.35 V
Min
Max
McBSP1 AND McBSP2 TIMINGS
McBSP1 and McBSP2 timing requirements 26/
See figure 24 and 25
MC1
Cycle time, CLKR/X
tc(CKRX)
CLKR/X ext
2P 15/
MC2
Pulse duration, CLKR/X high or CLKR/X
tw(CKRX)
CLKR/X ext
P-1 15/
low
MC3
Rise time, CLKR/X
tr(CKRX)
CLKR/X ext
MC4
Fall time CLKR/X
tf(CKRX)
CLKR/X ext
MC5
Setup time, external FSR high before
tsu(FRH-CKRL)
CLKR int
11
CLKR low
CLKR ext
3
MC6
Hold time, external FSR high after CLKR
th(CKRL-FRH)
CLKR int
-3
low
CLKR ext
1
MC7
Setup time, DR valid before CLKR low
tsu(DRV-CKRL)
CLKR int
11
CLKR ext
3
MC8
Hold time, DR valid after CLKR low
th(CKRL-DRV)
CLKR int
-2
CLKR ext
3
MC9
Setup time, external FSX high before
tsu(FXH-CKXL)
CLKR int
14
CLKX low
CLKR ext
4
MC10 Hold time, external FSX high after CLKX
th(CKXL-FXH)
CLKR int
-3
low
CLKR ext
1
Unit
CVDD = 1.6 V
Min
Max
2P 15/
P-1 15/
ns
6
6
6
6
7
3
-3
1
7
3
-2
3
9
3
-3
1
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
16
TABLE I. Electrical performance characteristics - Continued.
No
Test
Symbol
1/
Limits
Test condition
2/
CVDD= 1.2 V
CVDD = 1.35 V
Min
Max
McBSP1 AND McBSP2 TIMINGS - Continued
McPSP1 and McBSP2 switching characteristics 15/ 26/ See figure 24 and 25
MC1
Cycle time, CLKR/X
tc(CKRX)
CLKR/X int
2P
MC3
Rise time, CLKR/X
tr(CKRX)
CLKR/X int
2
MC4
Fall time CLKR/X
tf(CKRX)
CLKR/X int
2
MC11 Pulse duration, CLKR/X high
tw(CKRXH)
CLKR/X int
D-2 27/
D+2 27/
MC12 Pulse duration, CLKR/X low
tw(CKRXL)
CLKR/X int
C-2 27/
C+2 27/
MC13 Delay time, CLKR high to internal FSR valid
td(CKRHCLKR int
-3
2
FRV)
CLKR ext
3
14
MC14 Delay time, CLKR high to internal FSX valid
td(CKXHCLKR int
-3
2
FXV)
CLKR ext
4
15
CLKR int
-3
3
MC15 Disable time, DX high impedance from CLKX
tdis(CKXHhigh following last data bit
DXHZ)
CLKR ext
10
19
CLKR int
5
Delay time, CLKX high to DX valid. This
MC16 applies to all bits except the first bit transmitted.
td(CKXHCLKR ext
15
DXV)
Delay time, CLKX high to DX
DXENA = 0
CLKR int
4
valid 28/
CLKR ext
15
Only applies to first bit
CLKR int
2P+1
transmitted when in Data Delay DXENA = 1
CLKR ext
2P+5
1 or 2 (XDATDLY = 01b or 10b)
modes
CLKR int
-2
Enable time, DX driven from
DXENA = 0
MC17 CLKX high 28/
ten(CKXHCLKR ext
9
DX)
Only applies to first bit
CLKR int
P-2
transmitted when in Data Delay DXENA = 1
CLKR ext
P+9
1 or 2 (XDATDLY = 01b or 10b)
modes
Delay time, FSX high to DX
DXENA = 0
CLKR int
3
MC18 valid 28/
td(FXH-DXV) CLKR ext
13
CLKR int
2P+1
Only applies to first bit
transmitted when in Data Delay DXENA = 1
CLKR ext
2P+12
0 (XDATDLY = 00b) mode
Enable time, DX driven from
DXENA = 0
CLKR int
1
MC19 FSX high 28/
ten(FXH-DX) CLKR ext
8
Only applies to first bit
CLKR int
P-1
transmitted when in Data Delay DXENA = 1
CLKR ext
P+8
0 (XDATDLY = 00b) mode
Unit
CVDD = 1.6 V
Min
Max
2P
ns
D-2 27/
C-2 27/
-3
3
-3
4
-5
3
2
2
D+2 27/
C+2 27/
2
9
2
9
1
12
3
9
2
9
2P+1
2P+3
-4
4
P-4
P+4
2
8
2P+1
2P+7
0
4
P-3
P+5
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
17
TABLE I. Electrical performance characteristics – Continued.
No
Test
Symbol
1/
Limits
Test
condition
2/
Unit
CVDD= 1.2 V
CVDD = 1.6 V
CVDD = 1.35 V
Master
Slave
Master
Slave
Min
Max
Min
Max
Min
Max
Min
Max
McBSP AS SPI MASTER OR SLAVE TIMINGS
McBSP as SPI Master or Slave timing requirements (CLKSTP = 10b, CLKXP = 0) 15/ 29/ See figure 26-29
MC23 Setup time, DR valid before CLKX high tsu(DRV-CKXL)
15
3-6P
10
3-6P
MC24 Hold time, DR valid after CLKX high
th(CKXL-DRV)
MC25 Setup time, FSX low before CLKX low
tsu(FXL-CKXH)
MC26 Cycle time, CLKX
tc(CKX)
0
3+6P
2P
16P
0
3+6P
2P
16P
5
5
McBSP as SPI Master or Slave switching characteristics (CLKSTP = 10b, CLKXP =0) 15/ 29/ See figure 26-29
MC27 Delay time, CLKX low to FSX low 31/
T-5
T+5
T-5
T+5
td(CKXL-FXL)
MC28 Delay time, FSX low to CLKX high 32/
td(FXL-CKXH)
MC29 Delay time, CLKX high to DX valid
C-5
C+5
td(CKXH-DXV)
-4
6
MC30 Disable time, DX high impedance
following last data bit from CLKX low
tdis(CKXL-
C-4
C+4
MC31 Disable time, DX high impedance
following last data bit from FSX high
tdis(FXH-
MC32 Delay time, FSX low to DX valid
C-5
3P+3
ns
5P+15
ns
C+5
-3
3
C-3
C+1
3P+3
5P+8
DXHZ)
3P+4
3P+19
3P+3 3P+11
3P+4
3P+18
3P+4 3P+10
DXHZ)
td(FXL-DXV)
McBSP as SPI Master or Slave timing requirements (CLKSTP = 11b, CLKXP = 0) 15/ 29/
15
3-6P
MC33 Setup time, DR valid before CLKX high
tsu(DRV-
See figure 26-29
10
3-6P
ns
CKXH)
MC34 Hold time, DR valid after CLKX high
th(cKXH-DRV)
MC25 Setup time, FSX low before CLKX high
tsu(FXL-CKXH)
MC26 Cycle time, CLKX
tc(CKX)
0
3+6P
0
3+6P
5
2P
5
16P
2P
16P
McBSP as SPI Master or Slave switching characteristics (CLKSTP = 11b, CLKXP =0) 15/ 29/ See figure 26-29
MC27 Delay time, CLKX low to FSX low 31/
C-5
C+5
C-4
C+4
td(CKXL-FXL)
MC28 Delay time, FSX low to CLKX high 32/
td(FXL-CKXH)
T-5
T+5
MC35 Delay time, CLKX high to DX valid
td(CKXL-DXV)
-4
6
3P+3
MC30 Disable time, DX high impedance
following last data bit from CLKX low
tdis(CKXL-
-4
4
MC32 Delay time, FSX low to DX valid
td(FXL-DXV)
D-4
D+4
ns
T-4
T+4
5P+15
-3
3
3P+3
3P+4
3P+19
-3
1
3P+3 3P+12
3P+4
3P+18
D-3
D+3
3P+4 3P+10
5P+8
DXHZ)
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
18
TABLE I. Electrical performance characteristics – Continued.
No
Test
Symbol
1/
Limits
Test
condition
2/
Unit
CVDD= 1.2 V
CVDD = 1.6 V
CVDD = 1.35 V
Master
Slave
Master
Slave
Min
Max
Min
Max
Min
Max
Min
Max
McBSP AS SPI MASTER OR SLAVE TIMINGS - Continued
McBSP as SPI Master or Slave timing requirements (CLKSTP = 10b, CLKXP = 1) 15/ 29/ See figure 26-29
15
3-6P
10
3-6P
MC33 Setup time, DR valid before CLKX high
tsu(DRV-
ns
CKXH)
MC34 Hold time, DR valid after CLKX high
th(CKXH-DRV)
MC35 Setup time, FSX low before CLKX low
tsu(FXL-CKXL)
MC26 Cycle time, CLKX
tc(CKX)
0
3+6P
0
3+6P
5
2P
5
16P
2P
16P
McBSP as SPI Master or Slave switching characteristics (CLKSTP = 10b, CLKXP =1) 15/ 29/ See figure 26-29
MC37 Delay time, CLKX high to FSX low 31/
T-5
T+5
T-4
T+4
td(CKXH-FXL)
MC38 Delay time, FSX low to CLKX low 32/
MC39 Delay time, CLKX low to DX valid
td(FXL-CKXL)
D-5
D+5
td(CKXL-DXV)
-4
6
MC30 Disable time, DX high impedance
following last data bit from CLKX high
tdis(CKXH-
D-4
D+4
MC31 Disable time, DX high impedance
following last data bit from FSX high
tdis(FXH-
MC32 Delay time, FSX low to DX valid
3P+3
5P+15
D-4
D+4
-3
3
D-3
D+1
ns
3P+3
DXHZ)
3P+4
3P+19
3P+3 3P+11
3P+4
3P+18
3P+4 3P+10
DXHZ)
td(FXL-DXV)
McBSP as SPI Master or Slave timing requirements (CLKSTP = 11b, CLKXP = 1) 15/ 29/ See figure 26-29
MC23 Setup time, DR valid before CLKX high tsu(DRV-CKXL)
15
3-6P
10
3-6P
MC24 Hold time, DR valid after CLKX high
th(CKXL-DRV)
3+6P
MC36 Setup time, FSX low before CLKX high
tsu(FXL-CKXL)
MC26 Cycle time, CLKX
5P+8
tc(CKX)
0
3+6P
0
5
2P
5
16P
2P
McBSP as SPI Master or Slave switching characteristics (CLKSTP = 11b, CLKXP =1) 15/ 29/
MC37 Delay time, CLKX low to FSX low 31/
D-5
D+5
td(CKXL-FXL)
MC38 Delay time, FSX low to CLKX high 32/
td(FXL-CKXH)
T-5
T+5
MC29 Delay time, CLKX high to DX valid
td(CKXH-DXV)
-4
6
3P+3
MC39 Disable time, DX high impedance
following last data bit from CLKX low
tdis(CKXL-
-4
4
MC32 Delay time, FSX low to DX valid
td(FXL-DXV)
C-4
C+4
ns
16P
See figure 26-29
D-4
D+4
ns
T-4
T+4
5P+15
-3
3
3P+3
3P+4
3P+19
-3
1
3P+3 3P+12
3P+4
3P+18
C-3
C+3
3P+4 3P+10
5P+8
DXHZ)
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
19
TABLE I. Electrical performance characteristics – Continued.
No
Test
Symbol
Test
condition
2/
McBSP GENERAL PURPOSE I/O TIMINGS
McBSP general purpose I/O timing requirements See figure 30
MC20 Setup time, MGPIOx input mode before CLKOUT
tsu(MGPIO-COH)
high 33/
1/
Limits
CVDD= 1.2 V
CVDD = 1.35 V
Min
Max
Unit
CVDD = 1.6 V
Min
7
7
0
0
ENHANCED HOST PORT INTERFACE (EHPI) TIMINGS
EHPI timing requirements See figure 31-36
E11
4
tsu(HASL-HDSL)
Setup time, HAS low before HDS low
4
MC21
Hold time, MGPIOx input mode after CLKOUT high
33/
th(COH-MGPIO)
Max
ns
ns
th(HDSL-HASL)
3
3
Setup time, (HR/W, HA[13:0], HBE 1: 0 ,
HCNTL[1:0]) valid before HDS low
tsu(HCNTLV-HDSL)
2
2
Hold time, (HR/W, HA[13:0], HBE 1: 0 , HCNTL[1:0])
invalid after HDS low
Pulse duration, HDS low
Pulse duration, HDS high
Setup time, HD bus write data valid before HDS high
Hold time, HD bus write data invalid after HDS high
th(HDSL-HCTNLIV)
4
4
tw(HDSL)
tw(HDSH)
Setup time, (HR/W, HBE 1: 0 , HCTNL[1:0]) valid
before HAS low
tsu(HCTNLV-HASL)
4P 15/
4P 15/
3
4
3
4P 15/
4P 15/
3
4
3
Hold time, (HR/W, HBE 1: 0 , HCTNL[1:0]) valid
before HAS low
EHPI switching characteristics See figure 31-36
E1
Enable time, HDS low to HD bus enable (memory
access)
E2
Delay time, HDS low to HD bus read data valid
(memory access)
th(HASL-HCTNLIV)
4
4
ten(HDSL-HDD)M
6
td(HDSL-HDV)M
14P 15/
35/
6
E12
Hold time, HAS low after HDS low
E13
E14
E15
E16
E17
E18
E19
E20
E4
E9
E10
Enable time, HDS low to HD enabled (register
access)
Delay time, HDS low to HD bus read data valid
(register access)
Disable time, HDS high to HD bus read data invalid
Delay time, HDS low to HRDY low (during reads)
Delay time, HD bus valid to HRDY high (during
reads)
Delay time, HDS high to HRDY low (during writes)
Delay time, HDS high to HRDY high (during writes)
E21
Delay time, CLKOUT high to HINT high/low
E5
E6
E7
E8
tsu(HDV-HDSH)
th(HDSH-HDIV)
ten(HDSL-HDD)R
td(HDSL-HDV)R
26
6
19
26
14P 15/
35/
6
19
26
tdis(HDSH-HDIV)
td(HDSL-HRDYL)
td(HDV-HRDYH)
6
26
18
2
td(HDSH-HRDYL)
td(HDSH-HRDYH)
19
6
19
15
2
18
14P 15/
35/
0
td(COH-HINT)
ns
11
15
14P 15/
35/
0
8
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
20
TABLE I. Electrical performance characteristics - Continued.
No
Test
Symbol
Test
condition
2/
1/
Limits
Unit
CVDD= 1.2 V
CVDD = 1.35 V
Standard
Fast
Mode
Mode
Min
Max
Min
Max
CVDD = 1.6 V
Standard
Mode
Min
Max
10
4.7
2.5
0.6
10
4.7
2.5
0.6
4
0.6
4
0.6
4.7
4
250
4.7
4
250
0
37/
1.3
0.6
100
36/
0
37/
4.7
1.3
Fast
Mode
Min
Max
I2C TIMINGS
See figure 37-38
2
I C signals (SDA and SCL) timing requirements
IC1
Cycle time, SCL
tc(SCL)
IC2
Setup time, SCL high before SDA low
tsu(SCLH-SDAL)
for a repeated START condition
th(SCLL-SDAL)
IC3
Hold time, SCL low after SDA low for a
START and a repeated START
condition
IC4
Pulse duration, SCL low
tw(SCLL)
IC5
Pulse duration, SCL high
tw(SCLH)
IC6
Setup time, SDA valid before SCL high
tsu(SDA-SCLH)
IC7
Hold time, SDA valid after SCL low
th(SDA-SCLL)
0
37/
1.3
0.6
100
36/
0
37/
IC8
tw(SDAH)
4.7
1.3
IC9
Pulse duration, SDA high between
STOP and START conditions
Rise time, SDA
IC10
tr(SDA)
1000
Rise time, SCL
tr(SCL)
1000
IC11
Fall time, SDA
tf(SDA)
300
IC12
Fall time, SCL
tf(SCL)
300
IC13
Setup time, SCL high before SDA high
(for STOP condition)
Pulse duration, spike (must be
suppressed)
Capacitive load for each bus line
IC14
IC15
tsu(SCLH-SDAH)
4
tw(SP)
Cb 40/
400
0.9
38/
39/
40/
39/
40/
39/
40/
39/
40/
0.6
300
1000
300
1000
300
300
300
300
0
50
4
400
µs
ns
0.9
38/
µs
39/
40/
39/
40/
39/
40/
39/
40/
0.6
300
ns
0
50
ns
400
pF
400
300
300
300
µs
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
21
TABLE I. Electrical performance characteristics - Continued.
No
Test
Symbol
Test
condition
2/
1/
Limits
CVDD= 1.2 V
CVDD = 1.35 V
Standard
Fast
Mode
Mode
Min
Max
Min
Max
I2C TIMINGS
I C signals (SDA and SCL) timing requirements- Continued See figure 37-38
IC16 Cycle time, SCL
tc(SCL)
10
IC17 Delay time, SCL high before SDA low
td(SCLH-SDAL)
4.7
for a repeated START condition
th(SDAL-CLLL)
IC18 Delay time, SDA low to SCL low for a
4
START and a repeated START
condition
IC19 Pulse duration, SCL low
tw(SCLL)
4.7
IC20 Pulse duration, SCL high
tw(SCLH)
4
IC21 Delay time, SDA valid to SCL high
td(SDA-SCLH)
250
IC22 Valid time, SDA valid after SCL low
th(SCLL-=SDAV)
0
IC23 Pulse duration, SDA high between
tw(SDAH)
4.7
STOP and START conditions
IC24 Rise time, SDA
tr(SDA)
1000
IC25
Rise time, SCL
tr(SCL)
1000
IC26
Fall time, SDA
tf(SDA)
300
IC27
Fall time, SCL
tf(SCL)
300
IC28
Delay time, SCL high before SDA high
(for STOP condition)
Capacitive load for each bus line
Unit
CVDD = 1.6 V
Standard
Mode
Min
Max
Fast
Mode
Min
Max
2
IC29
td(SCLH-SDAH)
4
Cb 40/
400
2.5
0.6
10
4.7
2.5
0.6
0.6
4
0.6
1.3
0.6
100
0
1.3
4.7
4
250
0
4.7
1.3
0.6
100
0
1.3
39/
40/
39/
40/
39/
40/
39/
40/
0.6
0.9
300
1000
300
1000
300
300
300
300
4
400
39/
40/
39/
40/
39/
40/
39/
40/
0.6
400
µs
0.9
ns
µs
300
ns
300
300
300
µs
400
pF
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
22
TABLE I. Electrical performance characteristics - Continued.
No
Test
Symbol
Test condition
2/
UNIVERSAL SERIAL BUS (USB) TIMINGS
Universal serial bus (ISB) characteristics See figure 39 and 40
U1 Rise time of DP and DN signal 41/
tr
U2 Fall time of DP and DN signal 41/
tf
Rise/Fall time matching 42/
tRFM
Output signal cross over voltage 41/
VCRS
Differential propagation jitter 43/ 44/
tjr
Operating frequency (full speed mode)
fop
U3 Series resistor
Rs(DP)
U4 Series resistor
Rs(DN)
U5 Edge rate control capacitor
Cedge(DP)
U6 Edge rate control capacitor
Cedge(DN)
ADC TIMINGS
ADC characteristics
A1
Cycle time, ADC internal conversion clock
tc(SCLC)
A2
Delay time, ADC sample and hold acquisition time
td(AQ)
A3
Delay time, ADC conversion time
td(CONV)
A4
Static differential non-linearity error
SDNL
Static integral non-linearity error
A5
Zero scale offset error
Zset
A6
Full scale offset error
Fset
A7
Analog input impendance
1/
Limits
CVDD= 1.2 V
CVDD = 1.6 V
CVDD = 1.35 V
Full speed
Full speed
12Mbps
12Mbps
Min
Max
Min
Max
4
4
90
1.3
-2
12
24
24
22
22
20
20
111.11
2
2
TYP
TYP
TYP
TYP
TYP
500
4
4
90
1.3
-2
12
24
24
22
22
20
20
111.11
2
2
TYP
TYP
TYP
TYP
TYP
500
40
45/
2
3
9
9
1
40
45/
2
3
9
9
1
Unit
ns
%
V
ns
Mb/s
W
W
pF
ns
µs
ns
LSB
LSB
LSB
MW
See footnote at end of table
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
23
TABLE I. Electrical performance characteristics - Continued.
1/
2/
3/
4/
5/
6/
7/
8/
9/
10/
11/
12/
13/
14/
15/
16/
17/
18/
19/
20/
21/
22/
23/
1/
Testing and other quality control techniques are used to the extent deemed necessary to assure product performance over
the specified temperature range. Product may not necessarily be tested across the full temperature range and all parameters
may not necessarily be tested. In the absence of specific parametric testing, product performance is assured by
characterization and/or design.
Over recommended operating case temperature range; unless otherwise noted.
USB I/O pins DP and DN can tolerate a short circuit at D+ and D- to 0 V or 5 V, as long as the recommended series resistors
( see Figure 40) are connected between the D+ and DP (package), and the D- and DN (package. Do not apply a short circuit
to the USB I/O pins DP and DN in absence of the series resistors.
The I2C pins SDA and SCL do not feature fail-safe I/O buffers, These pins could potentially draw current when the device is
powered down.
CPU executing 75% dual MAC + 25% ADD with moderate data bus activity (table of sine values). CPU and CLKGEN (DPLL)
domain are active. All other domain are idled.
One world of a table of a 16-bit sine value is writtern to the EMIF every 250 ns (64 Mbps). Each EMIF output pin is connected
to a 10 pF load.
In CLKGEN domain idle mode, X2/CLKIN becomes output and is driven low to stop external crystals (if used) from oscillating.
Standby current will be higher if an external clock source tries to drive the X2/CLKIN pin during this time.
This device utilizes a fully static design and therefore can operate with tc(CI) approaching . If an external crystal is used, the
X2/CLKIN cycle time is limited by the crystal frequency range listed in manufacturer data.
It is recommended that the DPLL synthesized clocking option be used to obtain maximum operating frequency.
N = Clock frequency synthesis factor.
ESR must be 200 kΩ or greater at frequency other than 32.768 kHz. Otherwise, oscillations at overtone frequency may
occur.
To ensure data setup time, simply program the strobe width wide enough. ARDY is internally synchronized. If ARDY does
meet setup or hold time, it may be recognized in the current cycle or the next cycle. Thus ARDY can be asynchronous input.
Maximum SDRAM operating frequency = 108 MHz. Actual attainable maximum operating frequency will depend on the
quality of the PC board design and the memory chip timing requirement.
Maximum SDRAM operating frequency = 133 MHz. Actual attainable maximum operating frequency will depend on the
quality of the PC board design and the memory chip timing requirement.
P = 1/(input clock frequency) in ns. For example, when running parts at 12 MHz, P = 83.33 ns.
Oscillator stable time depends on the crystal characteristics (i.e., frequency, ESR, etc.) which varies from one crystal
manufacturer to another. Based on the crystal characteristics, the oscillator stable time can be in the range of a few to 10 s
of ms. A reset circuit with 100 ms or more dealy time will ensure the oscillator before the RESET goes high.
BK group: Pins with bus keepers, hold previous state during reset. Following low-to-high transition of RESET, these pins go to
their post reset logic state.
BK group pins: A’[0], A[15:0], D[15:0], C[14:2], c0, GPIO5, DX1, and DX2.
High group: Following low to high transition of RESET, these pins go to logic high state.
High group pins: C1[HPI.HINT], XF
Z group: Bidirectional pins which became input or output pins. Following low to high transition of RESET, these pins go to
high impedance state.
Z group pins: C1[EMIF.AOE], GPIO[7:6, 4:0], TIN/TOUT0, SDA, SCL, CLKR0, FSR0, CLKX0, DX0, FSX0, FSX2, CLKX2,
FSR2, DR2, CLKR2, FSX1, CLKX1, FSR1, DR1, CLKR1, A[20:16].
Estimated data based on 12 MHz crystal used with on-chip oscillator at 25C. This number will vary based on the actual
crystal characteristics operating condition and the PC board layout and the parasitic.
Following the clock generation domain idle, the INTx becomes level sensitive and stay that way until the low to high
transaction of INTx following the CPU wake up. Holding the INTx low longer than minimum requirement will send more than
one interrupt to the CPU. The number of interrupts sent to the CPU depends on the INTx low time following the CPU wake
up from IDLE.
AGPIO pins: A[15:0]
EHPIGPIO pins: C13, C10, C7, C5, C4 , and C0
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
24
TABLE I. Electrical performance characteristics - Continued.
24/
25/
26/
27/
28/
29/
30/
31/
32/
33/
34/
35/
36/
37/
38/
39/
40/
41/
42/
43/
44/
45/
1/
Only the Timer0 signal is externally available. The Timer1 signal is internally terminated and is not available for external use.
For proper operation of the TIN/TOUT pin configured as an output, the timer period must be configured for at least 4 cycles.
Polarity bits CLKRP = CLKXP = FSRP = FSXP = 0. If the polarity of any signals is inverted, then the timing references of that
signal are also inverted.
T = CLKRX period = (1 + CLKGDV) * P
C = CLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * P when CLKGDV is even
D = CLKRX high pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2 + 1) * P when CLKGDV is even.
See manufacturer data for a description of the DX enable (DXENA) and data delay features of the McBSP.
For all SPI slave modes, CLKG is programmed as ½ of the CPU clock by setting CLKSM = CLKGDV = 1.
T = CLKRX period = (1 + CLKGDV) * 2P
C = CLKRX low pulse width = T/2 when CLKGDV is odd or zero and = (CLKGDV/2) * 2P when CLKGDV is even
FSRP = FSXP = 1. As a SPI master, BFSX is inverted to provide active low slave enable output. As a slave, the active low
signal input on BFSX and BFSR is inverted before being used internally.
CLKXM = FSXM = 1, CLKRM = FSRM = 0 for master McBSP
CLKXM = CLKRM = FSXM = FSRM = 0 for slave McBSP.
FSX should be low before the rising edge of clock to enable slave devices and then begin a SPI transfer at the rising edge of
the master clock (CLKX).
MGPIOx refers to CLKRx, FSRx, DRx, CLKXx, or FSXx when configured as a general purpose input.
MGPIOx refers to CLKRx, FSRx, DRx, CLKXx, or FSXx when configured as a general purpose output.
EHPI latency is dependent on the number of DMA channels active, their priorities and their source/destination ports. The
latency shown assumes no competing CPU or DMA activity to the memory resource being accessed by the EHPI.
A fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must
then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a
device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-ASCLH) =
1000 + 250 = 1250 ns (according to the Standard mode I2C Bus specification) before the SCL line is released.
A device must internally provide a hold time for at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to
bridge the undefined region of the falling edge of SCL.
The maximum th(SDA-SCLL) has only to bet met if the device does not stretch the LOW period [tw(SCLL)] of the SCL signal.
20 + 0.1Cb
Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall times are allowed.
CL = 50 pF
(tr/tf) x 100
tpx(1) x tpx(0)
USB PLL is susceptible to power supply ripple, refer to recommended operating conditions for allowable supply ripple to meet
the USB pea to peak jitter specification.
13*tc(SCLC)
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
25
Case X
Symbol
A
A1
A2
A3
b
c
Dimensions
Millimeters
Symbol
Min
Max
1.35
1.45
1.60
0.25 TYP
0.05
0.17
0.27
0.13 NOM
D/E
D1/E1
D2/E2
e
L
Millimeters
Min
Max
21.80
22.20
19.80
20.20
17.50 TYP
0.50 BSC
0.45
0.75
NOTES:
1. All linear dimensions are in millimeters.
2. This drawing is subject to change without notice.
FIGURE 1. Case outlines.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
26
Case X
Pin No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Signal Name
VSS
PU
DP
DN
USBVDD
GPIO7
VSS
DVDD
GPIO2
GPIO1
VSS
GPIO0
X2/CLKIN
X1
CLKOUT
C0
C1
CVDD
C2
C3
C4
C5
C6
DVDD
C7
C8
C9
C11
CVDD
CVDD
C14
C12
VSS
C10
C13
VSS
Pin No.
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
Signal Name
VSS
A13
A12
A11
CVDD
A10
A9
A8
VSS
A7
A6
A5
DVDD
A4
A3
A2
CVDD
A1
A0
DVDD
D0
D1
D2
VSS
D3
D4
D5
VSS
D6
D7
D8
CVDD
D9
D10
D11
DVDD
Pin No.
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
Signal Name
VSS
D12
D13
D14
D15
CVDD
EMU0
EMU1/OFF
TDO
TDI
CVDD
TRST
TCK
TMS
CVDD
DVDD
SDA
SCL
RESET
USBPLLVSS
INT0
INT1
USBPLLVDD
INT2
INT3
DVDD
INT4
VSS
XF
VSS
ADVSS
ADVDD
AIN0
AIN1
AVDD
AVSS
Pin No.
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
Signal Name
RDVDD
RCVDD
RTCINX2
RTCINX1
VSS
VSS
VSS
DX2
FSX2
CVDD
CLKX2
DR2
FSR2
VSS
CLKR2
DX1
FSX1
DVDD
CLKX1
DR1
FSR1
CLKR1
DX09
CVDD
FSX0
CLKX0
DR0
FSR0
CLKR0
VSS
DVDD
TIN/TOUT0
GPIO6
GPIO4
GPIO3
VSS
FIGURE 2. Terminal connections.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
27
NOTE:
1. Number of pins determined by package type.
FIGURE 3. Functional block diagram.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
28
NOTE:
1. The relationship of X2/CLKIN to CLKOUT depends on the PLL bypass divide factor chosen for the CLKMD register. The
waveform relationship shown in this figure is intended to illustrate the timing parameters based on CLKOUT = ½(CLKIN)
configuration.
FIGURE 4. Timing waveforms.
NOTE:
1. The relationship of X2/CLKIN to CLKOUT depends on the PLL multiply and divide factor chosen for the CLKMD register. The
waveform relationship shown in this figure is intended to illustrate the timing parameters based on CLKOUT = 1xCLKIN
configuration.
FIGURE 5. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
29
FIGURE 6. Timing waveforms.
NOTES:
1. CLKOUT is equal to CPU clock.
2. CEx becomes active depending on the memory address space being accessed.
3. A[13:0] for LQFP
FIGURE 7. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
30
NOTES:
1. CLKOUT is equal to CPU clock.
2. CEx becomes active depending on the memory address space being accessed.
3. A[13:0] for LQFP
FIGURE 8. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
31
NOTES:
1. The chip enable that becomes active depends on the address being accessed.
2. All BE 1: 0 signals are driven low (active) during reads. Byte manipulation of the read data is performed inside EMIF.
These signals remain active until the next access that is not an SDRAM read occurs
FIGURE 9. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
32
NOTES:
1. The chip enable that becomes active depends on the address being accessed.
2. All BE 1: 0 signals are driven low (active) during reads. Byte manipulation of the read data is performed inside EMIF.
These signals remain active until the next access that is not an SDRAM read occurs
FIGURE 10. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
33
NOTES:
1. The chip enable that becomes active depends on the address being accessed.
2. All BE 1: 0 signals are driven low (active) during reads. Byte manipulation of the read data is performed inside EMIF.
These signals remain active until the next access that is not an SDRAM read occurs
FIGURE 11. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
34
NOTES:
1. The chip enable that becomes active depends on the address being accessed.
2. All BE 1: 0 signals are driven low (active) during reads. Byte manipulation of the read data is performed inside EMIF.
These signals remain active until the next access that is not an SDRAM read occurs
FIGURE 12. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
35
NOTES:
1. The chip enable that becomes active depends on the address being accessed.
2. All BE 1: 0 signals are driven low (active) during reads. Byte manipulation of the read data is performed inside EMIF.
These signals remain active until the next access that is not an SDRAM read occurs
FIGURE 13 Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
36
NOTES:
1. The chip enable that becomes active depends on the address being accessed.
2. All BE 1: 0 signals are driven low (active) during reads. Byte manipulation of the read data is performed inside EMIF.
These signals remain active until the next access that is not an SDRAM read occurs.
3. Write burst length = 1
Read latency = 3
Burst type = 0 (serial)
Burst length = 1
FIGURE 14 Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
37
FIGURE 15 Timing waveforms.
FIGURE 16 Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
38
FIGURE 17 Timing waveforms.
NOTES:
1. BK group pins: A’[0], A[15:0], D[15:0], C[14:2], C0, GPIO5, DX1, and DX2.
2. High group pins: C1[HPI.HINT], XF.
3. Z group pins: c1[EMIF.AOE], GPIO[7:6, 4:0], TIN/TOUT0, SDA, SCL, CLKR0, FSR0, CLKX0, DFX0, FDSX0, FSX2,
CLKX2, FSR2, DR2, CLKR2, FSX1, CLKX1, FSR1, DR1, CLKR1, a[20:16].
FIGURE 18 Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
39
FIGURE 19 Timing waveforms.
FIGURE 20 Timing waveforms.
NOTES:
1. CLKOUT reflects the CPU clock.
FIGURE 21 Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
40
NOTES:
1. CLKOUT reflects the CPU clock.
FIGURE 22 Timing waveforms.
FIGURE 23 Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
41
FIGURE 24. Timing waveforms.
FIGURE 25. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
42
FIGURE 26. Timing waveforms.
FIGURE 27. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
43
FIGURE 28. Timing waveforms.
FIGURE 29. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
44
NOTES:
1. CLKOUT reflects the CPU clock.
2. MGPIOx refers to CLKRx, FSRx, DRx, CLKXx, or FSXx when configured as a general purpose input.
3. MGPIOx refers to CLKRx, FSRx, CLKXx, FSXx, or DXx when configured as a general purpose output
FIGURE 30. Timing waveforms.
FIGURE 31. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
45
NOTES:
1. Any non-multiplexed access with HCNTL0 low will result in HPIC register access. For data read or write, HCNTL0 must
stay high during the EHPI access.
2. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur
concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied permanently active and HCS is used as a
strobe, the timing requirements shown for HDS apply to HCS. HRDY is always driven to the same value as its internal
state.
FIGURE 32. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
46
NOTES:
1. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur
concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied permanently active and HCS is used as a
strobe, the timing requirements shown for HDS apply to HCS. HRDY is always driven to the same value as its internal
state.
FIGURE 33. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
47
NOTES:
1. During autoincrement mode, although the EHPI internally increments the memory address, reads of the HPIA register by
the host will always indicate the base address.
2. In autoincrement mode, if HBE 1: 0 are used to access the data as 8 bit wide units, the HPIA increments only following
each high byte (HBE1 low) access.
3. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur
concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied permanently active and HCS is used as a
strobe, the timing requirements shown for HDS apply to HCS. HRDY is always driven to the same value as its internal
state.
FIGURE 34. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
48
NOTES:
1. During autoincrement mode, although the EHPI internally increments the memory address, reads of the HPIA register by
the host will always indicate the base address.
2. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur
concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied permanently active and HCS is used as a
strobe, the timing requirements shown for HDS apply to HCS. HRDY is always driven to the same value as its internal
state.
FIGURE 35. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
49
NOTES:
1. During autoincrement mode, although the EHPI internally increments the memory address, reads of the HPIA register by
the host will always indicate the base address.
2. The falling edge of HCS must occur concurrent with or before the falling edge of HDS. The rising edge of HCS must occur
concurrent with or after the rising edge of HDS. If HDS1 and/or HDS2 are tied permanently active and HCS is used as a
strobe, the timing requirements shown for HDS apply to HCS. HRDY is always driven to the same value as its internal
state.
FIGURE 36. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
50
FIGURE 37. Timing waveforms.
FIGURE 38. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
51
FIGURE 39. Timing waveforms.
NOTES:
1. A full speed buffer is measured with the load shown.
2. CL = 50 pF
FIGURE 40. Timing waveforms.
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
52
4. VERIFICATION
4.1 Product assurance requirements. The manufacturer is responsible for performing all inspection and test requirements as
indicated in their internal documentation. Such procedures should include proper handling of electrostatic sensitive devices,
classification, packaging, and labeling of moisture sensitive devices, as applicable.
5. PREPARATION FOR DELIVERY
5.1 Packaging. Preservation, packaging, labeling, and marking shall be in accordance with the manufacturer’s standard commercial
practices for electrostatic discharge sensitive devices.
6. NOTES
6.1 ESDS. Devices are electrostatic discharge sensitive and are classified as ESDS class 1 minimum.
6.2 Configuration control. The data contained herein is based on the salient characteristics of the device manufacturer’s data book.
The device manufacturer reserves the right to make changes without notice. This drawing will be modified as changes are provided.
6.3 Suggested source(s) of supply. Identification of the suggested source(s) of supply herein is not to be construed as a guarantee
of present or continued availability as a source of supply for the item.
1/
Vendor item drawing administrative
control number 1/
Device manufacturer
CAGE code
Vendor part number
V62/09647-01XA
01295
SM320VC5507PGESEP
The vendor item drawing establishes an administrative control number for identifying the item on
the engineering documentation.
CAGE code
01295
DEFENSE SUPPLY CENTER, COLUMBUS
COLUMBUS, OHIO
Source of supply
Texas Instruments, Inc.
Semiconductor Group
8505 Forest Lane
P.O. Box 660199
Dallas, TX 75243
Point of contact: U.S. Highway 75 South
P.O. Box 84, M/S 853
Sherman, TX 75090-9493
SIZE
A
CODE IDENT NO.
16236
REV
DWG NO.
V62/09647
PAGE
53