IRF IRFP460AS

PD-94011A
IRFP460AS
SMPS MOSFET
Applications
l SMPS, UPS, Welding and High Speed
VDSS
Power Switching
500V
Benefits
l Dynamic dv/dt Rating
l Repetitive Avalanche Rated
l Isolated Central Mounting Hole
l Fast Switching
l Ease of Paralleling
l Simple Drive Requirements
l Solder plated and leadformed for surface mounting
Description
HEXFET® Power MOSFET
Rds(on) max
ID
0.27Ω
20A
Third Generation HEXFET®s from International Rectifier provide the
designer with the best combination of fast switching, ruggedized
device design, low on-resistance and cost-effectiveness.
SMD-247
The TO-247 package is preferred for commercial-industrial
applications where higher power levels preclude the use of TO-220
devices. The TO-247 is similar but superior to the earlier TO-218
package because of its isolated mounting hole. It also provides
greater creepage distance between pins to meet the requirements of
most safety specifications.
This plated and leadformed version of the TO-247 package allows
the package to be surface mounted in an application.
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Mounting torqe, 6-32 or M3 screw
Maximum Reflow Temperature
Max.
20
13
80
280
2.2
± 30
3.8
-55 to + 150
Units
A
W
W/°C
V
V/ns
°C
10 lbf•in (1.1N•m)
230 (Time above 183 °C
should not exceed 100s)
°C
Typical SMPS Topologies:
l Full Bridge
l PFC Boost
Notes  through … are on page 8
www.irf.com
1
01/17/01
IRFP460AS
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
Conditions
500 ––– –––
V
VGS = 0V, ID = 250µA
––– 0.61 –––
V/°C Reference to 25°C, ID = 1mA
––– ––– 0.27
Ω
VGS = 10V, ID = 12A „
2.0
––– 4.0
V
VDS = VGS , ID = 250µA
––– ––– 25
VDS = 500V, VGS = 0V
µA
––– ––– 250
VDS = 400V, VGS = 0V, TJ = 125°C
––– ––– 100
VGS = 30V
nA
––– ––– -100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
11
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
–––
–––
18
55
45
39
3100
480
18
4430
130
140
Max. Units
Conditions
–––
S
VDS = 50V, ID = 12A
105
ID = 20A
26
nC
VDS = 400V
42
VGS = 10V, See Fig. 6 and 13 „
–––
VDD = 250V
–––
ID = 20A
ns
–––
RG = 4.3Ω
–––
RD = 13Ω, See Fig. 10 „
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 400V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 400V …
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
960
20
28
mJ
A
mJ
Typ.
Max.
Units
–––
0.24
–––
0.45
–––
40
°C/W
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Diode Characteristics
IS
ISM
VSD
trr
Qrr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
20
––– –––
showing the
A
G
integral reverse
––– –––
80
S
p-n junction diode.
––– ––– 1.8
V
TJ = 25°C, IS = 20A, VGS = 0V „
––– 480 710
ns
TJ = 25°C, IF = 20A
––– 5.0 7.5
µC
di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFP460AS
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
10
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
1
4.5V
20µs PULSE WIDTH
TJ = 25 °C
0.1
0.1
1
10
10
4.5V
20µs PULSE WIDTH
TJ = 150 °C
1
1
100
Fig 1. Typical Output Characteristics
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
3.0
TJ = 150 ° C
10
TJ = 25 ° C
1
V DS = 50V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
100
Fig 2. Typical Output Characteristics
100
0.1
4.0
10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
9.0
20A
ID = 19A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFP460AS
100000
VGS , Gate-to-Source Voltage (V)
10000
C, Capacitance (pF)
20
V G S = 0V,
f = 1M Hz
C is s = C g s + C g d , Cd s SHO RTED
C rs s = C g d
C oss = C ds + C gd
C iss
1000
C o ss
100
C rss
10
1
10
100
VDS = 400V
VDS = 250V
VDS = 100V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
A
1
20A
ID = 19A
0
1000
20
40
60
80
100
Q G , Total Gate Charge (nC)
V D S , D ra in-to-S ource V oltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
1000
TJ = 150 ° C
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
10
100
TJ = 25 ° C
1
100us
10
1ms
0.1
0.2
V GS = 0 V
0.4
0.6
0.8
1.0
1.2
1.4
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
10us
1.6
1
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
10ms
100
1000
10000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFP460AS
20
VGS
D.U.T.
RG
15
I D , Drain Current (A)
RD
VDS
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
10
Fig 10a. Switching Time Test Circuit
5
VDS
90%
0
25
50
75
100
TC , Case Temperature
125
150
( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
P DM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
0.001
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFP460AS
EAS , Single Pulse Avalanche Energy (mJ)
2400
1 5V
TOP
2000
D R IV E R
L
VDS
BOTTOM
ID
8.9A
13A
20A
1600
D .U .T
RG
+
V
- DD
IA S
20V
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
tp
A
1200
800
400
0
25
50
75
100
125
150
Starting TJ , Junction Temperature( ° C)
IAS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
620
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
V D Sa v , A valanche V oltage (V )
QGS
600
580
560
.3µF
D.U.T.
+
V
- DS
540
A
0
VGS
4
8
12
16
20
I av , A v alanche C urrent (A)
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
www.irf.com
IRFP460AS
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRFP460AS
SMD-247 Package Outline
0.25 [.010]
A
5.30 [.208]
4.70 [.186]
3.65 [.143]
Ø 3.55 [.140]
15.90 [.625]
15.30 [.603]
B
0.25 [.010]
2.50 [.099]
1.50 [.060]
D B
5.70 [.224]
5.30 [.209]
5.50 [.217]
20.30 [.799]
19.70 [.776]
2X R
D B
13.70 [.539]
13.50 [.532]
4
2.75 [.108]
2.25 [.089]
D
0.95 [.037]
0.35 [.014]
16.20 [.637]
16.00 [.630]
4
3.0 [.118]
MAX.
C
1
2
3
5.65 [.222]
4.65 [.183]
0.20 [.225] D
5.45 [.215]
2X
1.40 [.055]
1.00 [.040]
0.25 [.010]
D C A
2X
2.65 [.104]
2.15 [.085]
LEAD AS SIGNMENT S
NOT E S:
MOSF ET
1.
2.
3.
4.
1 - GAT E
2 - DRAIN
3 - SOURCE
4 - DRAIN
DIMENSIONING & T OLERANCING PER ASME Y14.5M-1994.
CONT ROLLING DIMENSION: MILLIMET ER.
DIMENS IONS ARE SHOWN IN MILLIMET E RS [INCHE S].
T O-247 S MD IS A MODIF IE D T O-247AC.
2X
0.80 [.031]
0.40 [.016]
IGBT
1 - GAT E
2 - COLLECT OR
3 - EMIT T ER
4 - COLLECT OR
SMD-247 Part Marking Information
EXAMPLE: T HIS IS AN IRF P450S WITH
AS S EMBLY LOT CODE 3A1Q
PART NUMBER
INTERNAT IONAL
RECT IF IER
LOGO
IRFP450S
3A1Q 9906
AS S EMBLY
LOT CODE
DATE CODE
(YYWW)
YY = YEAR
WW = WEEK
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 4.3mH
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
R G = 25Ω, IAS = 20A. (See Figure 12)
ƒ ISD ≤ 20A, di/dt ≤ 125A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/00
8
www.irf.com