PD - 97493C IRFH6200PbF HEXFET® Power MOSFET V DS 20 V R DS(on) max 1.20 m Qg (typical) 155 nC R G (typical) 1.3 (@VGS = 4.5V) ID (@Tmb = 25°C) 100 h PQFN 5X6 mm A Applications Charge and discharge switch for battery application Load switch for 12V (typical) bus Features and Benefits Features Low RDSon ( 1.20m Low Thermal Resistance to PCB (0.8°C/W) Low Profile ( 0.9 mm) Benefits Lower Conduction Losses Enable better thermal dissipation results in Increased Power Density Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen Orderable part number Package Type IRFH6200TRPBF IRFH6200TR2PBF PQFN 5mm x 6mm PQFN 5mm x 6mm Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 400 Note Absolute Maximum Ratings Parameter Max. VDS Drain-to-Source Voltage 20 VGS Gate-to-Source Voltage ±12 ID @ TA = 25°C Continuous Drain Current, VGS @ 4.5V 45 ID @ TA = 70°C Continuous Drain Current, VGS @ 4.5V ID @ Tmb = 25°C Continuous Drain Current, VGS @ 4.5V 36 100 ID @ Tmb = 100°C IDM Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current PD @TA = 25°C Power Dissipation c PD @Tmb = 25°C g Power Dissipation g TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range h h V A 100 400 3.6 g Units 156 0.029 -55 to + 150 W W/°C °C Notes through are on page 8 www.irf.com 1 October 12, 2012 IRFH6200PbF Static @ TJ = 25°C (unless otherwise specified) Min. Typ. BVDSS VDSS/TJ Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Parameter 20 ––– ––– 6.4 ––– ––– RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.80 1.10 1.20 1.50 VGS(th) VGS(th) Gate Threshold Voltage Gate Threshold Voltage Coefficient 0.5 ––– 0.8 -6.6 1.1 ––– IDSS Drain-to-Source Leakage Current ––– ––– 1.0 Gate-to-Source Forward Leakage ––– ––– ––– ––– 150 100 Gate-to-Source Reverse Leakage Forward Transconductance ––– 260 ––– ––– -100 ––– Total Gate Charge Gate-to-Source Charge ––– ––– 155 22 230 ––– Gate-to-Drain Charge ––– 53 ––– Gate Resistance Turn-On Delay Time Rise Time ––– ––– ––– 1.3 14 74 ––– ––– ––– Turn-Off Delay Time ––– 140 ––– Fall Time Input Capacitance ––– ––– 160 10890 ––– ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 2890 2180 ––– ––– IGSS gfs Qg Qgs Qgd RG td(on) tr td(off) tf Ciss Coss Crss Max. Units Conditions V VGS = 0V, ID = 250μA mV/°C Reference to 25°C, ID = 1mA m VGS = 4.5V, ID = 50A VGS = 2.5V, ID = 50A e e V VDS = VGS, ID = 150μA mV/°C μA nA S nC VDS = 16V, VGS = 0V VDS = 16V, VGS = 0V, TJ = 125°C VGS = 12V VGS = -12V VDS = 10V, ID = 50A VDS = 10V VGS = 4.5V ID = 50A (See Fig.17 & 18) ns VDD = 10V, VGS = 4.5V ID = 50A RG=1.0 See Fig.15 VGS = 0V pF VDS = 10V ƒ = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current c d Typ. ––– Max. 780 Units mJ ––– 30 A Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD trr Qrr ton Min. ––– Typ. ––– Max. Units 100 A ––– c ––– Conditions MOSFET symbol 400 showing the integral reverse D G (Body Diode) Diode Forward Voltage ––– ––– 1.2 V p-n junction diode. TJ = 25°C, IS = 50A, VGS = 0V Reverse Recovery Time Reverse Recovery Charge ––– ––– 86 350 130 525 ns nC TJ = 25°C, IF = 50A, VDD = 10V di/dt = 260A/μs Forward Turn-On Time S e e Time is dominated by parasitic Inductance Thermal Resistance Parameter RJC-mb Typ. Max. 0.5 0.8 RJC (Top) Junction-to-Mounting Base Junction-to-Case f ––– 15 RJA Junction-to-Ambient ––– 35 ––– 22 RJA (<10s) 2 October 12, 2012 g Junction-to-Ambient g Units °C/W www.irf.com IRFH6200PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 4.5V 3.5V 2.5V 2.0V 1.8V 1.5V 1.3V BOTTOM 100 10 1.3V 1.3V 60μs PULSE WIDTH 60μs PULSE WIDTH Tj = 150°C Tj = 25°C 10 1 0.1 1 10 0.1 100 10 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1000 1.6 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) 100 T J = 175°C T J = 25°C 10 VDS = 10V 60μs PULSE WIDTH 1.0 ID = 50A VGS = 4.5V 1.4 1.2 1.0 0.8 0.6 0.5 1.0 1.5 2.0 2.5 -60 -40 -20 0 Fig 4. Normalized On-Resistance vs. Temperature Fig 3. Typical Transfer Characteristics 100000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 50A C oss = C ds + C gd C, Capacitance (pF) VGS 10V 4.5V 3.5V 2.5V 2.0V 1.8V 1.5V 1.3V Ciss 10000 Coss Crss 12.0 VDS= 16V VDS= 10V 10.0 8.0 6.0 4.0 2.0 0.0 1000 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 100 200 300 400 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 October 12, 2012 IRFH6200PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 150°C 100 T J = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 100μsec 100 10msec DC 10 Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 1.0 1 0.0 0.2 0.4 0.6 0.8 1.0 0.1 1.2 1 10 100 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 1.6 300 VGS(th) , Gate threshold Voltage (V) Limited By Package 250 ID, Drain Current (A) 1msec 200 150 100 50 1.4 1.2 1.0 0.8 ID = 150μA 0.6 ID = 500μA 0.4 ID = 1.0mA ID = 1.0A 0.2 0.0 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 0.001 0.0001 1E-006 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Mounting Base 4 October 12, 2012 www.irf.com 4 3500 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m ) IRFH6200PbF ID = 50A ID TOP 19A 21A BOTTOM 30A 3000 3 2500 2000 2 1500 T J = 125°C 1000 1 T J = 25°C 500 0 0 0 2 4 6 8 10 12 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage 1000 Avalanche Current (A) Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs. Pulsewidth www.irf.com 5 October 12, 2012 IRFH6200PbF D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer + D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A I AS 0.01 tp Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit VGS VDS RD V DS 90% D.U.T. RG + -V DD 10% VGS V10V GS Pulse Width µs Duty Factor td(on) tr td(off) tf Fig 17b. Switching Time Waveforms Fig 17a. Switching Time Test Circuit Id Vds Vgs L DUT 0 1K VCC Vgs(th) S Qgs1 Qgs2 Fig 18a. Gate Charge Test Circuit 6 October 12, 2012 Qgd Qgodr Fig 18b. Gate Charge Waveform www.irf.com IRFH6200PbF PQFN 5x6 Outline "B" Package Details For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Outline "B" Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 October 12, 2012 IRFH6200PbF PQFN 5x6 Outline "B" Tape and Reel Qualification information† Qualification level Moisture Sensitivity Level RoHS compliant Indus trial (per JE DE C JE S D47F PQFN 5mm x 6mm †† ††† guidelines ) MS L1 ††† (per JE DE C J-S T D-020D Yes ) Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.7mH, RG = 25, IAS = 30A. Pulse width 400μs; duty cycle 2%. Ris measured at TJ of approximately 90°C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production test capability. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 10/2012 8 October 12, 2012 www.irf.com