IRF IRLHS6342TRPBF

PD - 96339A
IRLHS6342PbF
VDS
30
V
VGS
±12
V
RDS(on) max
15.5
mΩ
(@VGS = 4.5V)
Qg (typical)
ID
11
(@TC (Bottom) = 25°C)
12
nC
i
A
HEXFET® Power MOSFET
TOP VIEW
6 D
D 1
D 2
D
S
G 3
D
D
D
5 D
4 S
D
D
G
S
S
2mm x 2mm PQFN
Applications
• Charge and discharge switch for battery application
• System/Load Switch
Features and Benefits
Features
Low RDSon (≤ 15.5mΩ)
Low Thermal Resistance to PCB (≤ 13°C/W)
Low Profile (≤ 1.0 mm)
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Consumer Qualification
Orderable part number
Package Type
IRLHS6342TRPBF
IRLHS6342TR2PBF
PQFN 2mm x 2mm
PQFN 2mm x 2mm
Resulting Benefits
Lower Conduction Losses
Enable better thermal dissipation
results in Increased Power Density
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
400
Tape and Reel
Note
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
30
VGS
±12
ID @ TA = 25°C
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
ID @ TC(Bottom) = 25°C
Continuous Drain Current, VGS @ 10V
6.9
19
ID @ TC(Bottom)= 70°C
Continuous Drain Current, VGS @ 10V
15
ID @ TC(Bottom) = 25°C
IDM
Continuous Drain Current, VGS @ 10V (Wirebond Limited)
Pulsed Drain Current
PD @TA = 25°C
Power Dissipation
c
PD @TA = 70°C
g
Power Dissipation g
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
V
8.7
hi
hi
12i
A
76
2.1
g
Units
1.3
0.02
-55 to + 150
W
W/°C
°C
Notes  through ‡ are on page 2
www.irf.com
1
02/25/11
IRLHS6342PbF
Static @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Drain-to-Source Breakdown Voltage
Parameter
30
–––
–––
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
22
12.0
–––
15.5
VGS(th)
∆VGS(th)
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
–––
0.5
–––
15.0
–––
-4.2
19.5
1.1
–––
IDSS
Drain-to-Source Leakage Current
–––
–––
–––
–––
1.0
150
µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
100
-100
nA
VGS = 12V
VGS = -12V
gfs
Qg
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
39
–––
–––
–––
11
0.5
–––
–––
–––
Gate-to-Drain Charge
–––
4.6
–––
Gate Resistance
Turn-On Delay Time
Rise Time
–––
–––
–––
2.1
4.9
13
–––
–––
–––
Turn-Off Delay Time
Fall Time
Input Capacitance
–––
–––
–––
19
13
1019
–––
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
97
70
–––
–––
BVDSS
∆ΒVDSS/∆TJ
RDS(on)
Qgs
Qgd
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Max. Units
V
Conditions
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
VGS = 4.5V, ID = 8.5A
mΩ
VGS = 2.5V, ID = 8.5A
V
VDS = VGS, ID = 10µA
mV/°C
e
e
S
VDS = 10V, ID = 8.5A
VDS = 15V
nC
VGS = 4.5V
ID = 8.5A (See Fig. 6 & 17)
Ω
ns
pF
VDD = 15V, VGS = 4.5V
ID = 8.5A
RG=1.8Ω
See Fig.18
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
IAR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
c
d
Typ.
–––
Max.
14
Units
mJ
–––
8.5
A
Diode Characteristics
Parameter
Min.
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
Qrr
–––
c
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
ton
Typ.
–––
Max. Units
i
12
–––
–––
76
–––
–––
–––
11
1.2
17
Conditions
MOSFET symbol
D
A
showing the
integral reverse
V
ns
p-n junction diode.
TJ = 25°C, IS = 8.5A, VGS = 0V
TJ = 25°C, IF = 8.5A, VDD = 15V
di/dt = 300 A/µs
–––
13
20
nC
Time is dominated by parasitic Inductance
G
e
S
e
Thermal Resistance
RθJC (Bottom)
RθJC (Top)
RθJA
RθJA
Parameter
Junction-to-Case
Junction-to-Case
Junction-to-Ambient
Junction-to-Ambient (<10s)
g
g
f
f
Typ.
–––
–––
–––
–––
Max.
13
90
60
42
Units
°C/W
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.39mH, RG = 50Ω, IAS = 8.5A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
† Calculated continuous current based on maximum allowable junction temperature.
‡ Package is limited to 12A by die-source to lead-frame bonding technology
2
www.irf.com
IRLHS6342PbF
100
100
10
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
4.5V
3.0V
2.5V
2.0V
1.8V
1.5V
1.4V
1
1.4V
BOTTOM
10
1.4V
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
0.1
0.1
1
10
0.1
100
10
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
100
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
TJ = 150°C
TJ = 25°C
10
VDS = 15V
≤60µs PULSE WIDTH
1.0
ID = 8.5A
VGS = 4.5V
1.8
1.6
1.4
1.2
1.0
0.8
0.6
1.0
1.5
2.0
2.5
3.0
3.5
-60 -40 -20 0
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
10000
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 8.5A
C oss = C ds + C gd
Ciss
1000
Coss
Crss
100
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
VGS
10V
4.5V
3.0V
2.5V
2.0V
1.8V
1.5V
1.4V
10
12.0
VDS= 24V
VDS= 15V
VDS= 6.0V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
5
10
15
20
25
30
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRLHS6342PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
T J = 150°C
T J = 25°C
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100µsec
1msec
10
Limited by
Wire Bond
1
0.1
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
0
1
VSD, Source-to-Drain Voltage (V)
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
20
VGS(th) , Gate threshold Voltage (V)
1.6
18
Limited By Package
16
ID, Drain Current (A)
DC
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
1.0
10msec
14
12
10
8
6
4
2
0
1.4
1.2
1.0
0.8
ID = 10µA
ID = 25µA
0.6
ID = 250µA
0.4
ID = 1.0mA
0.2
ID = 1.0A
0.0
25
50
75
100
125
150
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs.
Case (Bottom) Temperature
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC ) °C/W
100
10
D = 0.50
0.20
0.10
0.05
1
0.02
0.01
0.1
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com
30
RDS(on), Drain-to -Source On Resistance ( mΩ)
RDS(on) , Drain-to -Source On Resistance (mΩ)
IRLHS6342PbF
ID = 8.5A
25
20
T J = 125°C
15
10
T J = 25°C
5
0
2
4
6
8
10
12
28
26
24
22
20
Vgs = 2.5V
18
16
14
Vgs = 4.5V
12
10
14
5
15
25
35
45
55
65
75
ID, Drain Current (A)
VGS, Gate -to -Source Voltage (V)
Fig 13. Typical On-Resistance vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
600
60
ID
TOP
1.9A
3.4A
BOTTOM 8.5A
50
500
Single Pulse Power (W)
EAS , Single Pulse Avalanche Energy (mJ)
30
40
30
20
400
300
200
100
10
0
1E-5
0
25
50
75
100
125
150
1E-4
Starting T J , Junction Temperature (°C)
Driver Gate Drive
-
‚
-
P.W.
+
• dv/dt controlled by RG
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
P.W.
Period
D.U.T. ISD Waveform
Reverse
Recovery
Current
V DD
D=
Period
*

RG
1E+0
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
„
-
1E-1
Fig 15. Typical Power vs. Time
+
ƒ
+
1E-2
Time (sec)
Fig 14. Maximum Avalanche Energy vs. Drain Current
D.U.T
1E-3
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
www.irf.com
5
IRLHS6342PbF
Id
Vds
Vgs
L
VCC
DUT
0
1K
Vgs(th)
S
Qgs1 Qgs2
Qgd
Qgodr
Fig 17b. Gate Charge Waveform
Fig 17a. Gate Charge Test Circuit
V(BR)DSS
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
tp
Fig 18a. Unclamped Inductive Test Circuit
V DS
V GS
RG
RD
VDS
90%
D.U.T.
+
-V DD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
Fig 19a. Switching Time Test Circuit
6
Fig 18b. Unclamped Inductive Waveforms
10%
VGS
td(on)
tr
td(off)
tf
Fig 19b. Switching Time Waveforms
www.irf.com
IRLHS6342PbF
PQFN 2x2 Outline Package Details
For footprint and stencil design recommendations, please refer to application note AN-1154 at
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN 2x2 Outline Part Marking
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
www.irf.com
7
IRLHS6342PbF
PQFN 2x2 Outline Tape and Reel
8
www.irf.com
IRLHS6342PbF
Qualification information†
Qualification level
Moisture Sensitivity Level
RoHS compliant
†
††
†††
Cons umer
(per JE DE C JE S D47F
PQFN 2mm x 2mm
††
†††
guidelines )
MS L1
†††
(per JE DE C J-S T D-020D
Yes
)
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/2011
www.irf.com
9