IRF IRFH8324TRPBF

PD - 97651C
IRFH8324PbF
VDS
Vgs
max
RDS(on) max
30
V
± 20
V
4.1
(@VGS = 10V)
(@VGS = 4.5V)
6.3
Qg typ.
14
ID
50
(@Tc(Bottom) = 25°C)
HEXFET® Power MOSFET
mΩ
nC
i
PQFN 5X6 mm
A
Applications
• Synchronous MOSFET for high frequency buck converters
Features and Benefits
Features
Low Thermal Resistance to PCB (< 2.3°C/W)
Low Profile (<1.2mm)
Benefits
Enable better thermal dissipation
results in Increased Power Density
⇒
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Consumer Qualification
Orderable part number
Package Type
IRFH8324TRPBF
IRFH8324TR2PBF
PQFN 5mm x 6mm
PQFN 5mm x 6mm
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
Note
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
30
VGS
± 20
ID @ TA = 25°C
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
ID @ TA = 70°C
Continuous Drain Current, VGS @ 10V
ID @ TC(Bottom) = 25°C
Continuous Drain Current, VGS @ 10V
18
90
ID @ TC(Bottom) = 100°C
Continuous Drain Current, VGS @ 10V
57
ID @ TC = 25°C
IDM
Continuous Drain Current, VGS @ 10V (Package Limited)
Pulsed Drain Current
PD @TA = 25°C
Power Dissipation
c
PD @TC(Bottom) = 25°C
g
Power Dissipation g
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
V
23
hi
hi
50i
A
200
3.6
g
Units
54
0.029
-55 to + 150
W
W/°C
°C
Notes  through † are on page 9
www.irf.com
1
03/30/12
IRFH8324PbF
Static @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Drain-to-Source Breakdown Voltage
Parameter
30
–––
–––
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
0.019
3.3
–––
4.1
VGS(th)
ΔVGS(th)
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
–––
1.35
–––
5.0
1.8
-6.2
6.3
2.35
–––
IDSS
Drain-to-Source Leakage Current
–––
–––
–––
–––
1.0
150
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
100
-100
gfs
Qg
Forward Transconductance
Total Gate Charge
Total Gate Charge
72
–––
–––
–––
31
14
–––
–––
–––
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
–––
–––
4.4
2.2
–––
–––
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
–––
3.5
3.9
5.7
–––
–––
–––
Output Charge
–––
13
–––
nC
Gate Resistance
Turn-On Delay Time
Rise Time
–––
–––
–––
1.1
13
26
–––
–––
–––
Ω
Turn-Off Delay Time
Fall Time
Input Capacitance
–––
–––
–––
14
8.5
–––
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
BVDSS
ΔΒVDSS/ΔTJ
RDS(on)
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
2380
500
205
Max. Units
–––
–––
Conditions
VGS = 0V, ID = 250μA
V
V/°C Reference to 25°C, ID = 1.0mA
VGS = 10V, ID = 20A
mΩ
VGS = 4.5V, ID = 16A
V
VDS = VGS, ID = 50μA
mV/°C
e
e
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
μA
nA
VGS = 20V
VGS = -20V
S
nC
VDS = 10V, ID = 20A
VGS = 10V, VDS = 15V, ID = 20A
VDS = 15V
VGS = 4.5V
nC
ID = 20A
VDS = 16V, VGS = 0V
VDD = 15V, VGS = 4.5V
ID = 20A
ns
RG=1.8Ω
VGS = 0V
pF
VDS = 10V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
Max.
94
20
Typ.
–––
–––
d
Units
mJ
A
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
VSD
trr
Qrr
Min.
–––
–––
c
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
–––
–––
Reverse Recovery Charge
Forward Turn-On Time
ton
Typ.
–––
–––
–––
16
Max. Units
50
i
D
A
showing the
integral reverse
V
ns
p-n junction diode.
TJ = 25°C, IS = 20A, VGS = 0V
TJ = 25°C, IF = 20A, VDD = 15V
di/dt = 360 A/μs
200
1.0
24
Conditions
MOSFET symbol
–––
25
38
nC
Time is dominated by parasitic Inductance
G
S
e
e
Thermal Resistance
RθJC (Bottom)
RθJC (Top)
RθJA
RθJA (<10s)
2
f
Junction-to-Case f
Junction-to-Case
g
Junction-to-Ambient g
Junction-to-Ambient
Parameter
Typ.
–––
–––
–––
–––
Max.
Units
2.3
32
°C/W
35
23
www.irf.com
IRFH8324PbF
1000
1000
VGS
10V
7.0V
5.0V
4.5V
3.5V
3.0V
2.8V
2.5V
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
100
10
2.5V
1
BOTTOM
10
2.5V
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
1
0.1
1
10
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
10
100
1000
Fig 2. Typical Output Characteristics
1000
1.8
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
T J = 150°C
100
10
T J = 25°C
VDS = 15V
≤60μs PULSE WIDTH
1.0
ID = 20A
VGS = 10V
1.6
1.4
1.2
1.0
0.8
0.6
1
2
3
4
5
6
7
8
-60 -40 -20 0
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
10000
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 20A
C oss = C ds + C gd
Ciss
1000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
VGS
10V
7.0V
5.0V
4.5V
3.5V
3.0V
2.8V
2.5V
Coss
Crss
100
12.0
VDS= 24V
VDS= 15V
VDS= 6.0V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
www.irf.com
0
5
10
15
20
25
30
35
40
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
3
IRFH8324PbF
10000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 150°C
TJ = 25°C
10
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
Limited by
Source Bonding
Technology
10msec
10
i
1
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
1.0
DC
0.1
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
0
1
VSD, Source-to-Drain Voltage (V)
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
90
2.6
i
VGS(th) , Gate threshold Voltage (V)
Limited By Source
Bonding Technology
80
70
ID, Drain Current (A)
100μsec
1msec
100
60
50
40
30
20
10
2.4
2.2
2.0
1.8
1.6
ID = 50μA
1.4
ID = 1.0mA
ID = 250μA
ID = 1.0A
1.2
1.0
0.8
0
25
50
75
100
125
150
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs.
Case (Bottom) Temperature
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com
12
400
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRFH8324PbF
ID = 20A
11
10
9
8
7
6
T J = 125°C
5
4
3
T J = 25°C
2
ID
4.9A
9.4A
BOTTOM 20A
350
TOP
300
250
200
150
100
50
0
0
5
10
15
20
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
A
Fig 14a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
Fig 14b. Unclamped Inductive Waveforms
VDS
90%
D.U.T.
+
-VDD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
Fig 15a. Switching Time Test Circuit
www.irf.com
I AS
0.01Ω
tp
10%
VGS
td(on)
tr
td(off)
tf
Fig 15b. Switching Time Waveforms
5
IRFH8324PbF
D.U.T
Driver Gate Drive
ƒ
+
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
L
DUT
0
1K
S
VCC
Vgs(th)
Qgs1 Qgs2
Fig 17. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 18. Gate Charge Waveform
www.irf.com
IRFH8324PbF
PQFN 5x6 Outline "E" Package Details
For footprint and stencil design recommendations, please refer to application note AN-1154 at
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN 5x6 Outline "E" Part Marking
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
PIN 1
IDENTIFIER
XXXX
XYWWX
XXXXX
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
www.irf.com
7
IRFH8324PbF
PQFN 5x6 Outline "E" Tape and Reel
NOTE: Controlling dimensions in mm Std reel quantity is 4000 parts.
REEL DIMENSIONS
TR2 OPTION (QTY 400)
STANDARD OPTION (QTY 4000)
TR1
METRIC
METRIC
IMPERIAL
IMPERIAL
MIN
MIN
MAX
CODE
MIN
MIN
MAX
MAX
MAX
A
6.988
12.972
7.028
329.5 330.5
178.5
13.011 177.5
B
0.823
0.823
0.846
20.9
20.9
0.846
21.5
21.5
C
0.520
0.504
0.543
12.8
13.8
13.5
13.2
0.532
D
0.075
0.067
0.091
0.091
1.7
2.3
2.3
1.9
E
2.350
3.819
2.598
97
66
99
65
3.898
F
Ref
12
17.4
Ref
0.512
G
0.512
0.571
13
13
0.571
14.5
14.5
8
www.irf.com
IRFH8324PbF
Qualification information†
Qualification level
Moisture Sensitivity Level
RoHS compliant
†
††
†††
Cons umer††
(per JE DE C JE S D47F
PQFN 5mm x 6mm
†††
guidelines )
MS L1
(per JE DE C J-S TD-020D††† )
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.47mH, RG = 50Ω, IAS = 20A.
ƒ Pulse width ≤ 400μs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
† Calculated continuous current based on maximum allowable junction temperature.
‡ Current is limited to 50A by source bonding technology.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 03/2012
www.irf.com
9