IKW08T120 ® TrenchStop Series Low Loss DuoPack : IGBT in TrenchStop® and Fieldstop technology with soft, fast recovery anti-parallel EmCon HE diode C • • • • • • • • • • • Approx. 1.0V reduced VCE(sat) and 0.5V reduced VF compared to BUP305D Short circuit withstand time – 10µs Designed for : - Frequency Converters - Uninterrupted Power Supply TrenchStop® and Fieldstop technology for 1200 V applications offers : - very tight parameter distribution - high ruggedness, temperature stable behavior NPT technology offers easy parallel switching capability due to positive temperature coefficient in VCE(sat) Low EMI Low Gate Charge Very soft, fast recovery anti-parallel EmCon HE diode Qualified according to JEDEC1 for target applications Pb-free lead plating; RoHS compliant Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ E PG-TO-247-3 VCE IC VCE(sat),Tj=25°C Tj,max Marking Code Package 1200V 8A 1.7V 150°C K08T120 PG-TO-247-3 Type IKW08T120 G Maximum Ratings Parameter Symbol Value Unit Collector-emitter voltage VCE 1200 V DC collector current TC = 25°C TC = 100°C IC Pulsed collector current, tp limited by Tjmax ICpuls 24 Turn off safe operating area - 24 A 16 8 VCE ≤ 1200V, Tj ≤ 150°C Diode forward current IF TC = 25°C 16 TC = 100°C 8 Diode pulsed current, tp limited by Tjmax IFpuls 24 Gate-emitter voltage VGE ±20 V tSC 10 µs Ptot 70 W °C Short circuit withstand time 2) VGE = 15V, VCC ≤ 1200V, Tj ≤ 150°C Power dissipation TC = 25°C Operating junction temperature Tj -40...+150 Storage temperature Tstg -55...+150 1 2) J-STD-020 and JESD-022 Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 1 Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series Soldering temperature, 1.6mm (0.063 in.) from case for 10s Power Semiconductors 2 - 260 Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 1.7 K/W RthJCD 2.3 RthJA 40 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, junction – ambient Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. typ. max. 1200 - - T j = 25°C - 1.7 2.2 T j = 125 °C - 2.0 - T j = 150 °C - 2.2 - T j = 25°C - 1.7 2.2 T j = 125 °C - 1.7 - T j = 150 °C - 1.7 - 5.0 5.8 6.5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0 V , I C =0.5mA Collector-emitter saturation voltage VCE(sat) Diode forward voltage VF V V G E = 15 V, I C = 8 A VGE=0V, IF=8A Gate-emitter threshold voltage VGE(th) I C =0.3mA,V C E =V G E Zero gate voltage collector current ICES V C E = 12 00 V , VGE=0V mA T j = 25°C - - 0.2 T j = 150 °C - - 2.0 Gate-emitter leakage current IGES V C E = 0 V , V G E =20V - - 100 nA Transconductance gfs V C E =20V, I C = 8 A - 5 - S Integrated gate resistor RGint Power Semiconductors none 3 Ω Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series Dynamic Characteristic Input capacitance Ciss V C E =25V, - 600 - Output capacitance Coss VGE=0V, - 36 - Reverse transfer capacitance Crss f=1MHz - 28 - Gate charge QGate V C C = 96 0 V, I C = 8 A - 53 - nC - 13 - nH - 48 - A pF V G E =15V Internal emitter inductance LE measured 5mm (0.197 in.) from case Short circuit collector current1) IC(SC) V G E =15V,t S C ≤1 0 µs V C C = 600 V, T j = 2 5°C Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 40 - - 23 - - 450 - - 70 - - 0.67 - Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy ns - 0.7 - Ets T j = 25°C , V C C = 60 0 V, I C = 8 A , V G E = 0 /1 5 V, R G = 8 1Ω , L σ 2 ) =1 80nH, C σ 2 ) =39pF Energy losses include “tail” and diode reverse recovery. - 1.37 - Diode reverse recovery time trr T j = 25°C , - 80 - ns Diode reverse recovery charge Qrr V R = 60 0 V , I F = 8 A , - 1.0 - µC Diode peak reverse recovery current Irrm d i F /d t= 600A/µs - 13 - A Diode peak rate of fall of reverse recovery current during t b dirr/dt - 420 - A/µs mJ Anti-Parallel Diode Characteristic 1) 2) Allowed number of short circuits: <1000; time between short circuits: >1s. Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. Power Semiconductors 4 Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 40 - - 26 - - 570 - - 140 - - 1.08 - Unit IGBT Characteristic - 1.2 - Ets T j = 150 °C , V C C = 60 0 V, I C = 8 A , V G E = 0 /1 5 V, R G = 8 1Ω , L σ 1 ) =1 80nH, C σ 1 ) =39pF Energy losses include “tail” and diode reverse recovery. - 2.28 - Diode reverse recovery time trr T j = 150 °C - 200 - ns Diode reverse recovery charge Qrr V R = 60 0 V , I F = 8 A , - 2.3 - µC Diode peak reverse recovery current Irrm d i F /d t= 600A/µs - 20 - A Diode peak rate of fall of reverse recovery current during t b dirr/dt - 320 - A/µs Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy ns mJ Anti-Parallel Diode Characteristic 1) Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E. Power Semiconductors 5 Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series tp=2µs 10A TC=80°C IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 20A 15A TC=110°C 10A Ic 5A 0A 10Hz 150µs 500µs 0,1A 20ms DC 100Hz 1kHz 10kHz 0,01A 1V 100kHz 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤150°C;VGE=15V) 15A 70W 60W IC, COLLECTOR CURRENT POWER DISSIPATION 50µs 1A Ic f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 600V, VGE = 0/+15V, RG = 81Ω) Ptot, 10µs 50W 40W 30W 20W 10A 5A 10W 0W 25°C 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 6 75°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≥ 15V, Tj ≤ 150°C) Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series 20A VGE=17V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 20A 15V 15A 13V 11V 9V 10A 7V 5A 0A 15V 15A 13V 11V 9V 10A 7V 5A 0A 0V 1V 2V 3V 4V 5V 6V 0V 20A 15A 10A 5A TJ=150°C 25°C 0A 0V 2V 4V 6V 8V 10V 12V VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=20V) Power Semiconductors 1V 2V 3V 4V 5V 6V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 150°C) VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) IC, COLLECTOR CURRENT VGE=17V 3,0V IC=15A 2,5V 2,0V IC=8A 1,5V IC=5A IC=2.5A 1,0V 0,5V 0,0V -50°C 0°C 50°C 100°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 7 Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series 100ns td(off) tf tf t, SWITCHING TIMES t, SWITCHING TIMES td(off) td(on) 10ns tr 1ns 5A 10A VGE(th), GATE-EMITT TRSHOLD VOLTAGE t, SWITCHING TIMES 100ns tf td(on) tr 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE=600V, VGE=0/15V, IC=8A, RG=81Ω, Dynamic test circuit in Figure E) Power Semiconductors 10 ns tr 5Ω 50Ω 100Ω 150Ω 200Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, IC=8A, Dynamic test circuit in Figure E) td(off) 0°C td(on) 1 ns 15A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, RG=81Ω, Dynamic test circuit in Figure E) 10ns 100 ns 7V 6V max. 5V typ. 4V min. 3V 2V 1V 0V -50°C 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.3mA) 8 Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series Ets* 6,0mJ 4,0mJ Eon* 2,0mJ Eoff *) Eon and Ets include losses due to diode recovery 3,2 mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES *) Eon and Etsinclude losses due to diode recovery Ets* 2,8 mJ 2,4 mJ 2,0 mJ Eoff 1,6 mJ Eon* 1,2 mJ 0,8 mJ 0,4 mJ 0,0mJ 5A 10A 0,0 mJ 15A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, RG=81Ω, Dynamic test circuit in Figure E) 1.5mJ Eoff 1.0mJ Eon* 0.5mJ 100Ω 150Ω 200Ω *) Eon and Ets include losses due to diode recovery E ts* 2.0mJ 50Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ=150°C, VCE=600V, VGE=0/15V, IC=8A, Dynamic test circuit in Figure E) E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES *) E on and E ts include losses due to diode recovery 5Ω 3mJ 2mJ Ets* 1mJ Eoff Eon* 0.0mJ 25°C 50°C 75°C 100°C 0mJ 400V 125°C TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE=600V, VGE=0/15V, IC=8A, RG=81Ω, Dynamic test circuit in Figure E) Power Semiconductors 500V 600V 700V 800V VCE, COLLECTOR-EMITTER VOLTAGE Figure 16. Typical switching energy losses as a function of collector emitter voltage (inductive load, TJ=150°C, VGE=0/15V, IC=8A, RG=81Ω, Dynamic test circuit in Figure E) 9 Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series 1nF 15V 240V c, CAPACITANCE VGE, GATE-EMITTER VOLTAGE Ciss 960V 10V 100pF Coss 5V Crss 0V 0nC 25nC 10pF 0V 50nC IC(sc), short circuit COLLECTOR CURRENT 15µs 10µs 5µs 0µs 12V 14V 75A 50A 25A 0A 16V VGE, GATE-EMITTETR VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE=600V, start at TJ=25°C) Power Semiconductors 20V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) tSC, SHORT CIRCUIT WITHSTAND TIME QGE, GATE CHARGE Figure 17. Typical gate charge (IC=8 A) 10V 10 12V 14V 16V 18V VGE, GATE-EMITTETR VOLTAGE Figure 20. Typical short circuit collector current as a function of gateemitter voltage (VCE ≤ 600V, Tj ≤ 150°C) Rev. 2.3 Sep 08 IKW08T120 ® 600V VCE 30A 400V 20A 10A 200V 0V 600V 20A 400V IC 200V 10A 0A 0us 0.5us 1us 0 R,(K/W) 0.187 0.575 0.589 0.350 0.1 0.05 R1 10 K/W 0.02 0.01 τ, (s) -1 1.73*10 -2 2.75*10 -3 2.57*10 -4 2.71*10 R2 C1=τ1/R1 C2=τ2/R2 single pulse -2 10 K/W 10µs 0.5us 1us 1.5us t, TIME Figure 22. Typical turn off behavior (VGE=15/0V, RG=81Ω, Tj = 150°C, Dynamic test circuit in Figure E) 10 K/W D=0.5 0.2 0V 0A 0us 1.5us ZthJC, TRANSIENT THERMAL RESISTANCE ZthJC, TRANSIENT THERMAL RESISTANCE 30A VCE IC t, TIME Figure 21. Typical turn on behavior (VGE=0/15V, RG=81Ω, Tj = 150°C, Dynamic test circuit in Figure E) -1 IC, COLLECTOR CURRENT VCE, COLLECTOR-EMITTER VOLTAGE TrenchStop Series D=0.5 0 10 K/W R,(K/W) 0.552 0.732 0.671 0.344 0.2 0.1 0.05 -1 10 K/W R1 τ, (s) -2 7.23*10 -3 8.13*10 -3 1.09*10 -4 1.55*10 R2 0.02 0.01 C1=τ1/R1 C2=τ2/R2 single pulse -2 100µs 1ms 10ms 10 K/W 10µs 100ms tP, PULSE WIDTH Figure 23. IGBT transient thermal resistance (D = tp / T) Power Semiconductors 11 100µs 1ms 10ms 100ms tP, PULSE WIDTH Figure 24. Diode transient thermal impedance as a function of pulse width (D=tP/T) Rev. 2.3 Sep 08 IKW08T120 ® trr, REVERSE RECOVERY TIME 500ns 400ns 300ns 200ns TJ=150°C 100ns TJ=25°C 0ns 200A/µs 400A/µs 600A/µs Qrr, REVERSE RECOVERY CHARGE TrenchStop Series 1µC TJ=25°C 0µC 200A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery time as a function of diode current slope (VR=600V, IF=8A, Dynamic test circuit in Figure E) TJ=150°C 2µC 400A/µs 600A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical reverse recovery charge as a function of diode current slope (VR=600V, IF=8A, Dynamic test circuit in Figure E) 25A TJ=25°C 20A 15A 10A 5A 0A 200A/µs 400A/µs 600A/µs -600A/µs -500A/µs 12 TJ=150°C -400A/µs -300A/µs -200A/µs -100A/µs -0A/µs 200A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 25. Typical reverse recovery current as a function of diode current slope (VR=600V, IF=8A, Dynamic test circuit in Figure E) Power Semiconductors TJ=25°C dirr/dt, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT Irr, REVERSE RECOVERY CURRENT TJ=150°C 400A/µs 600A/µs 800A/µs diF/dt, DIODE CURRENT SLOPE Figure 26. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR=600V, IF=8A, Dynamic test circuit in Figure E) Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series TJ=25°C 150°C 2,0V VF, FORWARD VOLTAGE IF, FORWARD CURRENT 20A 10A IF=15A 1,5V 8A 5A 2,5A 1,0V 0,5V 0A 0V 1V 0,0V 2V VF, FORWARD VOLTAGE Figure 27. Typical diode forward current as a function of forward voltage Power Semiconductors 13 -50°C 0°C 50°C 100°C TJ, JUNCTION TEMPERATURE Figure 28. Typical diode forward voltage as a function of junction temperature Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series PG-TO247-3 M M MAX 5.16 2.53 2.11 1.33 2.41 2.16 3.38 3.13 0.68 21.10 17.65 1.35 16.03 14.15 5.10 2.60 MIN 4.90 2.27 1.85 1.07 1.90 1.90 2.87 2.87 0.55 20.82 16.25 1.05 15.70 13.10 3.68 1.68 MIN 0.193 0.089 0.073 0.042 0.075 0.075 0.113 0.113 0.022 0.820 0.640 0.041 0.618 0.516 0.145 0.066 5.44 3 19.80 4.17 3.50 5.49 6.04 Power Semiconductors MAX 0.203 0.099 0.083 0.052 0.095 0.085 0.133 0.123 0.027 0.831 0.695 0.053 0.631 0.557 0.201 0.102 Z8B00003327 0 0 5 5 7.5mm 0.214 3 0.780 0.164 0.138 0.216 0.238 20.31 4.47 3.70 6.00 6.30 14 0.799 0.176 0.146 0.236 0.248 17-12-2007 03 Rev. 2.3 Sep 08 IKW08T120 ® TrenchStop Series i,v tr r =tS +tF diF /dt Qr r =QS +QF IF tS QS Ir r m tr r tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance Lσ =180nH a nd Stray capacity C σ =39pF. Figure B. Definition of switching losses Power Semiconductors 15 Rev. 2.3 Sep 08 ® IKW08T120 TrenchStop Series Published by Infineon Technologies AG 81726 Munich, Germany © 2008 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 16 Rev. 2.3 Sep 08