INFINEON IKW08T120_08

IKW08T120
®
TrenchStop Series
Low Loss DuoPack : IGBT in TrenchStop® and Fieldstop technology
with soft, fast recovery anti-parallel EmCon HE diode
C
•
•
•
•
•
•
•
•
•
•
•
Approx. 1.0V reduced VCE(sat)
and 0.5V reduced VF compared to BUP305D
Short circuit withstand time – 10µs
Designed for :
- Frequency Converters
- Uninterrupted Power Supply
TrenchStop® and Fieldstop technology for 1200 V applications
offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
NPT technology offers easy parallel switching capability due to
positive temperature coefficient in VCE(sat)
Low EMI
Low Gate Charge
Very soft, fast recovery anti-parallel EmCon HE diode
Qualified according to JEDEC1 for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
E
PG-TO-247-3
VCE
IC
VCE(sat),Tj=25°C
Tj,max
Marking Code
Package
1200V
8A
1.7V
150°C
K08T120
PG-TO-247-3
Type
IKW08T120
G
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCE
1200
V
DC collector current
TC = 25°C
TC = 100°C
IC
Pulsed collector current, tp limited by Tjmax
ICpuls
24
Turn off safe operating area
-
24
A
16
8
VCE ≤ 1200V, Tj ≤ 150°C
Diode forward current
IF
TC = 25°C
16
TC = 100°C
8
Diode pulsed current, tp limited by Tjmax
IFpuls
24
Gate-emitter voltage
VGE
±20
V
tSC
10
µs
Ptot
70
W
°C
Short circuit withstand time
2)
VGE = 15V, VCC ≤ 1200V, Tj ≤ 150°C
Power dissipation
TC = 25°C
Operating junction temperature
Tj
-40...+150
Storage temperature
Tstg
-55...+150
1
2)
J-STD-020 and JESD-022
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
Power Semiconductors
2
-
260
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
1.7
K/W
RthJCD
2.3
RthJA
40
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
junction – case
Thermal resistance,
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
typ.
max.
1200
-
-
T j = 25°C
-
1.7
2.2
T j = 125 °C
-
2.0
-
T j = 150 °C
-
2.2
-
T j = 25°C
-
1.7
2.2
T j = 125 °C
-
1.7
-
T j = 150 °C
-
1.7
-
5.0
5.8
6.5
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0 V , I C =0.5mA
Collector-emitter saturation voltage
VCE(sat)
Diode forward voltage
VF
V
V G E = 15 V, I C = 8 A
VGE=0V, IF=8A
Gate-emitter threshold voltage
VGE(th)
I C =0.3mA,V C E =V G E
Zero gate voltage collector current
ICES
V C E = 12 00 V ,
VGE=0V
mA
T j = 25°C
-
-
0.2
T j = 150 °C
-
-
2.0
Gate-emitter leakage current
IGES
V C E = 0 V , V G E =20V
-
-
100
nA
Transconductance
gfs
V C E =20V, I C = 8 A
-
5
-
S
Integrated gate resistor
RGint
Power Semiconductors
none
3
Ω
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
Dynamic Characteristic
Input capacitance
Ciss
V C E =25V,
-
600
-
Output capacitance
Coss
VGE=0V,
-
36
-
Reverse transfer capacitance
Crss
f=1MHz
-
28
-
Gate charge
QGate
V C C = 96 0 V, I C = 8 A
-
53
-
nC
-
13
-
nH
-
48
-
A
pF
V G E =15V
Internal emitter inductance
LE
measured 5mm (0.197 in.) from case
Short circuit collector current1)
IC(SC)
V G E =15V,t S C ≤1 0 µs
V C C = 600 V,
T j = 2 5°C
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
40
-
-
23
-
-
450
-
-
70
-
-
0.67
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
ns
-
0.7
-
Ets
T j = 25°C ,
V C C = 60 0 V, I C = 8 A ,
V G E = 0 /1 5 V,
R G = 8 1Ω ,
L σ 2 ) =1 80nH,
C σ 2 ) =39pF
Energy losses include
“tail” and diode
reverse recovery.
-
1.37
-
Diode reverse recovery time
trr
T j = 25°C ,
-
80
-
ns
Diode reverse recovery charge
Qrr
V R = 60 0 V , I F = 8 A ,
-
1.0
-
µC
Diode peak reverse recovery current
Irrm
d i F /d t= 600A/µs
-
13
-
A
Diode peak rate of fall of reverse
recovery current during t b
dirr/dt
-
420
-
A/µs
mJ
Anti-Parallel Diode Characteristic
1)
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E.
Power Semiconductors
4
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
40
-
-
26
-
-
570
-
-
140
-
-
1.08
-
Unit
IGBT Characteristic
-
1.2
-
Ets
T j = 150 °C ,
V C C = 60 0 V, I C = 8 A ,
V G E = 0 /1 5 V,
R G = 8 1Ω ,
L σ 1 ) =1 80nH,
C σ 1 ) =39pF
Energy losses include
“tail” and diode
reverse recovery.
-
2.28
-
Diode reverse recovery time
trr
T j = 150 °C
-
200
-
ns
Diode reverse recovery charge
Qrr
V R = 60 0 V , I F = 8 A ,
-
2.3
-
µC
Diode peak reverse recovery current
Irrm
d i F /d t= 600A/µs
-
20
-
A
Diode peak rate of fall of reverse
recovery current during t b
dirr/dt
-
320
-
A/µs
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
ns
mJ
Anti-Parallel Diode Characteristic
1)
Leakage inductance L σ a nd Stray capacity C σ due to dynamic test circuit in Figure E.
Power Semiconductors
5
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
tp=2µs
10A
TC=80°C
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
20A
15A
TC=110°C
10A
Ic
5A
0A
10Hz
150µs
500µs
0,1A
20ms
DC
100Hz
1kHz
10kHz
0,01A
1V
100kHz
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C,
Tj ≤150°C;VGE=15V)
15A
70W
60W
IC, COLLECTOR CURRENT
POWER DISSIPATION
50µs
1A
Ic
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 600V,
VGE = 0/+15V, RG = 81Ω)
Ptot,
10µs
50W
40W
30W
20W
10A
5A
10W
0W
25°C
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj ≤ 150°C)
Power Semiconductors
6
75°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≥ 15V, Tj ≤ 150°C)
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
20A
VGE=17V
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
20A
15V
15A
13V
11V
9V
10A
7V
5A
0A
15V
15A
13V
11V
9V
10A
7V
5A
0A
0V
1V
2V
3V
4V
5V
6V
0V
20A
15A
10A
5A
TJ=150°C
25°C
0A
0V
2V
4V
6V
8V
10V
12V
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristic
(VCE=20V)
Power Semiconductors
1V
2V
3V
4V
5V
6V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristic
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
IC, COLLECTOR CURRENT
VGE=17V
3,0V
IC=15A
2,5V
2,0V
IC=8A
1,5V
IC=5A
IC=2.5A
1,0V
0,5V
0,0V
-50°C
0°C
50°C
100°C
TJ, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
7
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
100ns
td(off)
tf
tf
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
td(on)
10ns
tr
1ns
5A
10A
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
t, SWITCHING TIMES
100ns
tf
td(on)
tr
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=8A, RG=81Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
10 ns
tr
5Ω
50Ω
100Ω
150Ω
200Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, IC=8A,
Dynamic test circuit in Figure E)
td(off)
0°C
td(on)
1 ns
15A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, RG=81Ω,
Dynamic test circuit in Figure E)
10ns
100 ns
7V
6V
max.
5V
typ.
4V
min.
3V
2V
1V
0V
-50°C
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 0.3mA)
8
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
Ets*
6,0mJ
4,0mJ
Eon*
2,0mJ
Eoff
*) Eon and Ets include losses
due to diode recovery
3,2 mJ
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
*) Eon and Etsinclude losses
due to diode recovery
Ets*
2,8 mJ
2,4 mJ
2,0 mJ
Eoff
1,6 mJ
Eon*
1,2 mJ
0,8 mJ
0,4 mJ
0,0mJ
5A
10A
0,0 mJ
15A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, RG=81Ω,
Dynamic test circuit in Figure E)
1.5mJ
Eoff
1.0mJ
Eon*
0.5mJ
100Ω
150Ω
200Ω
*) Eon and Ets include losses
due to diode recovery
E ts*
2.0mJ
50Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, IC=8A,
Dynamic test circuit in Figure E)
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
*) E on and E ts include losses
due to diode recovery
5Ω
3mJ
2mJ
Ets*
1mJ Eoff
Eon*
0.0mJ
25°C
50°C
75°C
100°C
0mJ
400V
125°C
TJ, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=8A, RG=81Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
500V
600V
700V
800V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ=150°C,
VGE=0/15V, IC=8A, RG=81Ω,
Dynamic test circuit in Figure E)
9
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
1nF
15V
240V
c, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
Ciss
960V
10V
100pF
Coss
5V
Crss
0V
0nC
25nC
10pF 0V
50nC
IC(sc), short circuit COLLECTOR CURRENT
15µs
10µs
5µs
0µs
12V
14V
75A
50A
25A
0A
16V
VGE, GATE-EMITTETR VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V, start at TJ=25°C)
Power Semiconductors
20V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
tSC,
SHORT CIRCUIT WITHSTAND TIME
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC=8 A)
10V
10
12V
14V
16V
18V
VGE, GATE-EMITTETR VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gateemitter voltage
(VCE ≤ 600V, Tj ≤ 150°C)
Rev. 2.3 Sep 08
IKW08T120
®
600V
VCE
30A
400V
20A
10A
200V
0V
600V
20A
400V
IC
200V
10A
0A
0us
0.5us
1us
0
R,(K/W)
0.187
0.575
0.589
0.350
0.1
0.05
R1
10 K/W
0.02
0.01
τ, (s)
-1
1.73*10
-2
2.75*10
-3
2.57*10
-4
2.71*10
R2
C1=τ1/R1
C2=τ2/R2
single pulse
-2
10 K/W
10µs
0.5us
1us
1.5us
t, TIME
Figure 22. Typical turn off behavior
(VGE=15/0V, RG=81Ω, Tj = 150°C,
Dynamic test circuit in Figure E)
10 K/W D=0.5
0.2
0V
0A
0us
1.5us
ZthJC, TRANSIENT THERMAL RESISTANCE
ZthJC, TRANSIENT THERMAL RESISTANCE
30A
VCE
IC
t, TIME
Figure 21. Typical turn on behavior
(VGE=0/15V, RG=81Ω, Tj = 150°C,
Dynamic test circuit in Figure E)
-1
IC, COLLECTOR CURRENT
VCE, COLLECTOR-EMITTER VOLTAGE
TrenchStop Series
D=0.5
0
10 K/W
R,(K/W)
0.552
0.732
0.671
0.344
0.2
0.1
0.05
-1
10 K/W
R1
τ, (s)
-2
7.23*10
-3
8.13*10
-3
1.09*10
-4
1.55*10
R2
0.02
0.01
C1=τ1/R1
C2=τ2/R2
single pulse
-2
100µs
1ms
10ms
10 K/W
10µs
100ms
tP, PULSE WIDTH
Figure 23. IGBT transient thermal resistance
(D = tp / T)
Power Semiconductors
11
100µs
1ms
10ms
100ms
tP, PULSE WIDTH
Figure 24. Diode transient thermal
impedance as a function of pulse
width
(D=tP/T)
Rev. 2.3 Sep 08
IKW08T120
®
trr, REVERSE RECOVERY TIME
500ns
400ns
300ns
200ns
TJ=150°C
100ns
TJ=25°C
0ns
200A/µs
400A/µs
600A/µs
Qrr, REVERSE RECOVERY CHARGE
TrenchStop Series
1µC
TJ=25°C
0µC
200A/µs
800A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery time as
a function of diode current slope
(VR=600V, IF=8A,
Dynamic test circuit in Figure E)
TJ=150°C
2µC
400A/µs
600A/µs
800A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 24. Typical reverse recovery charge
as a function of diode current
slope
(VR=600V, IF=8A,
Dynamic test circuit in Figure E)
25A
TJ=25°C
20A
15A
10A
5A
0A
200A/µs
400A/µs
600A/µs
-600A/µs
-500A/µs
12
TJ=150°C
-400A/µs
-300A/µs
-200A/µs
-100A/µs
-0A/µs
200A/µs
800A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 25. Typical reverse recovery current
as a function of diode current
slope
(VR=600V, IF=8A,
Dynamic test circuit in Figure E)
Power Semiconductors
TJ=25°C
dirr/dt, DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY CURRENT
Irr,
REVERSE RECOVERY CURRENT
TJ=150°C
400A/µs
600A/µs
800A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 26. Typical diode peak rate of fall of
reverse recovery current as a
function of diode current slope
(VR=600V, IF=8A,
Dynamic test circuit in Figure E)
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
TJ=25°C
150°C
2,0V
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
20A
10A
IF=15A
1,5V
8A
5A
2,5A
1,0V
0,5V
0A
0V
1V
0,0V
2V
VF, FORWARD VOLTAGE
Figure 27. Typical diode forward current as
a function of forward voltage
Power Semiconductors
13
-50°C
0°C
50°C
100°C
TJ, JUNCTION TEMPERATURE
Figure 28. Typical diode forward voltage as a
function of junction temperature
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
PG-TO247-3
M
M
MAX
5.16
2.53
2.11
1.33
2.41
2.16
3.38
3.13
0.68
21.10
17.65
1.35
16.03
14.15
5.10
2.60
MIN
4.90
2.27
1.85
1.07
1.90
1.90
2.87
2.87
0.55
20.82
16.25
1.05
15.70
13.10
3.68
1.68
MIN
0.193
0.089
0.073
0.042
0.075
0.075
0.113
0.113
0.022
0.820
0.640
0.041
0.618
0.516
0.145
0.066
5.44
3
19.80
4.17
3.50
5.49
6.04
Power Semiconductors
MAX
0.203
0.099
0.083
0.052
0.095
0.085
0.133
0.123
0.027
0.831
0.695
0.053
0.631
0.557
0.201
0.102
Z8B00003327
0
0
5 5
7.5mm
0.214
3
0.780
0.164
0.138
0.216
0.238
20.31
4.47
3.70
6.00
6.30
14
0.799
0.176
0.146
0.236
0.248
17-12-2007
03
Rev. 2.3 Sep 08
IKW08T120
®
TrenchStop Series
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
IF
tS
QS
Ir r m
tr r
tF
QF
10% Ir r m
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH
a nd Stray capacity C σ =39pF.
Figure B. Definition of switching losses
Power Semiconductors
15
Rev. 2.3 Sep 08
®
IKW08T120
TrenchStop Series
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2008 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.
Power Semiconductors
16
Rev. 2.3 Sep 08