INFINEON SKP04N60

SKP04N60
SKB04N60
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode
• 75% lower Eoff compared to previous generation
combined with low conduction losses
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
- Inverter
• NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
• Very soft, fast recovery anti-parallel EmCon diode
C
G
E
P-TO-220-3-1
(TO-220AB)
P-TO-263-3-2 (D²-PAK)
(TO-263AB)
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
SKP04N60
VCE
IC
VCE(sat)
Tj
600V
4A
2.3V
150°C
SKB04N60
Package
Ordering Code
TO-220AB
Q67040-S4216
TO-263AB
Q67040-S4229
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current
IC
Value
600
Unit
V
A
TC = 25°C
9.4
TC = 100°C
4.9
Pulsed collector current, tp limited by Tjmax
ICpul s
19
Turn off safe operating area
-
19
VCE ≤ 600V, Tj ≤ 150°C
IF
Diode forward current
TC = 25°C
10
TC = 100°C
4
Diode pulsed current, tp limited by Tjmax
IFpul s
19
Gate-emitter voltage
VGE
±20
V
tSC
10
µs
Ptot
50
W
-55...+150
°C
1)
Short circuit withstand time
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
Power dissipation
TC = 25°C
Tj , Tstg
Operating junction and storage temperature
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
1
Jul-02
SKP04N60
SKB04N60
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
RthJC
2.5
K/W
RthJCD
4.5
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
junction – case
Thermal resistance,
RthJA
TO-220AB
62
RthJA
TO-263AB
40
junction – ambient
1)
SMD version, device on PCB
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
1.7
2.0
2.4
-
2.3
2.8
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V , I C = 5 00 µA
Collector-emitter saturation voltage
VCE(sat)
V G E = 15 V , I C = 4 A
T j =2 5 °C
T j =1 5 0° C
VF
Diode forward voltage
V
V G E = 0V , I F = 4 A
T j =2 5 °C
1.2
1.4
1.8
T j =1 5 0° C
-
1.25
1.65
3
4
5
Gate-emitter threshold voltage
VGE(th)
I C = 20 0 µA , V C E = V G E
Zero gate voltage collector current
ICES
V C E = 60 0 V, V G E = 0 V
µA
T j =2 5 °C
-
-
20
T j =1 5 0° C
-
-
500
-
-
100
nA
3.1
-
S
pF
Gate-emitter leakage current
IGES
V C E = 0V , V G E =2 0 V
Transconductance
gfs
V C E = 20 V , I C = 4 A
Input capacitance
Ciss
V C E = 25 V ,
-
264
317
Output capacitance
Coss
V G E = 0V ,
-
29
35
Reverse transfer capacitance
Crss
f= 1 MH z
-
17
20
Gate charge
QGate
V C C = 48 0 V, I C =4 A
-
24
31
nC
Dynamic Characteristic
V G E = 15 V
Internal emitter inductance
LE
T O - 22 0A B
-
7
-
nH
IC(SC)
V G E = 15 V ,t S C ≤ 10 µs
V C C ≤ 6 0 0 V,
T j ≤ 15 0° C
-
40
-
A
measured 5mm (0.197 in.) from case
2)
Short circuit collector current
1)
2
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for
collector connection. PCB is vertical without blown air.
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2
Jul-02
SKP04N60
SKB04N60
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
22
26
-
15
18
-
237
284
-
70
84
-
0.070
0.081
-
0.061
0.079
-
0.131
0.160
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =2 5 °C ,
V C C = 40 0 V, I C = 4 A,
V G E = 0/ 15 V ,
R G =67Ω ,
1)
L σ = 18 0 nH ,
1)
C σ = 18 0 pF
Energy losses include
“tail” and diode
reverse recovery.
trr
T j =2 5 °C ,
-
180
-
tS
V R = 2 00 V , I F = 4 A,
-
15
-
tF
d i F / d t =2 0 0 A/ µs
-
165
-
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
ns
Diode reverse recovery charge
Qrr
-
130
-
nC
Diode peak reverse recovery current
Irrm
-
2.5
-
A
Diode peak rate of fall of reverse
recovery current during t b
d i r r /d t
-
180
-
A/µs
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
22
26
-
16
19
-
264
317
-
104
125
-
0.115
0.132
-
0.111
0.144
-
0.226
0.277
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =1 5 0° C
V C C = 40 0 V, I C = 4 A,
V G E = 0/ 15 V ,
R G = 67 Ω,
1)
L σ = 18 0 nH ,
1)
C σ = 18 0 pF
Energy losses include
“tail” and diode
reverse recovery.
trr
T j =1 5 0° C
-
230
-
tS
V R = 2 00 V , I F = 4 A,
-
23
-
tF
d i F / d t =2 0 0 A/ µs
-
227
-
ns
mJ
Anti-Parallel Diode Characteristic
Diode reverse recovery time
ns
Diode reverse recovery charge
Qrr
-
300
-
nC
Diode peak reverse recovery current
Irrm
-
4
-
A
Diode peak rate of fall of reverse
recovery current during t b
d i r r /d t
-
200
-
A/µs
1)
Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E.
3
Jul-02
SKP04N60
SKB04N60
Ic
t p =2 µ s
10A
15 µ s
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
20A
T C =80°C
10A
T C =110°C
50 µ s
1A
200 µ s
1ms
0.1A
DC
Ic
0A
10Hz
0.01A
100Hz
1kHz
10kHz
1V
100kHz
60W
12A
50W
10A
40W
30W
20W
10W
0W
25°C
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 67Ω)
10V
8A
6A
4A
2A
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Jul-02
15A
15A
12A
12A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
SKP04N60
SKB04N60
VGE=20V
9A
15V
13V
11V
9V
7V
5V
6A
1V
2V
3V
4V
0A
0V
5V
14A
Tj=+25°C
IC, COLLECTOR CURRENT
12A
-55°C
+150°C
10A
8A
6A
4A
2A
2V
4V
6V
8V
10V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
0A
0V
6A
15V
13V
11V
9V
7V
5V
3A
3A
0A
0V
VGE=20V
9A
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 10V)
4.0V
3.5V
IC = 8A
3.0V
IC = 4A
2.5V
2.0V
1.5V
1.0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Jul-02
SKP04N60
SKB04N60
td(off)
t, SWITCHING TIMES
t, SWITCHING TIMES
t d(off)
tf
100ns
t d(on)
100ns
tf
t d(on)
tr
10ns
0A
2A
4A
6A
8A
tr
10ns
0Ω
10A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 67Ω,
Dynamic test circuit in Figure E)
50 Ω
100 Ω
150 Ω
200 Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 4A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.5V
t, SWITCHING TIMES
td(off)
100ns
tf
td(on)
tr
10ns
0°C
50°C
100°C
5.0V
4.5V
4.0V
max.
3.5V
typ.
3.0V
2.5V
min.
2.0V
150°C
-50°C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 4A, RG = 67Ω,
Dynamic test circuit in Figure E)
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.2mA)
6
Jul-02
SKP04N60
SKB04N60
0.6mJ
0.4mJ
*) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
0.5mJ
E ts *
0.4mJ
0.3mJ
E on *
0.2mJ
E off
0.1mJ
0.0mJ
0A
2A
4A
6A
8A
0.3mJ
E ts *
0.2mJ
E off
0.1mJ
E on *
0.0mJ
0Ω
10A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 67Ω,
Dynamic test circuit in Figure E)
50 Ω
100 Ω
150 Ω
200 Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 4A,
Dynamic test circuit in Figure E)
0.3mJ
D=0.5
0
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
*) Eon and Ets include losses
due to diode recovery.
0.2mJ
E ts *
0.1mJ
E on *
E off
10 K/W
0.2
0.1
0.05
-1
10 K/W 0.02
R,(K/W)
0.815
0.698
0.941
0.046
0.01
-2
10 K/W
R1
single pulse
0.0mJ
0°C
-3
50°C
100°C
10 K/W
1µs
150°C
10µs 100µs
τ, (s)
0.0407
5.24*10-3
4.97*10-4
4.31*10-5
R2
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
1m s
10m s 100m s
1s
tp, PULSE WIDTH
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 4A, RG = 67Ω,
Dynamic test circuit in Figure E)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
7
Jul-02
SKP04N60
SKB04N60
25V
C iss
15V
120V
C, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
20V
480V
10V
100pF
C oss
5V
C rss
10pF
0V
0nC
10nC
20nC
30nC
0V
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 4A)
20V
30V
70A
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
tsc, SHORT CIRCUIT WITHSTAND TIME
25 µ s
20 µ s
15 µ s
10 µ s
5µ s
0µ s
10V
10V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
11V
12V
13V
14V
60A
50A
40A
30A
20A
10A
0A
10V
15V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 600V, start at Tj = 25°C)
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(VCE ≤ 600V, Tj = 150°C)
8
Jul-02
SKP04N60
SKB04N60
500ns
560nC
trr, REVERSE RECOVERY TIME
IF = 8A
300ns
200ns
IF = 4A
IF = 2A
100ns
0ns
40A/µs
120A/µs
200A/µs
280A/µs
Qrr, REVERSE RECOVERY CHARGE
480nC
400ns
d i F / d t, DIODE CURRENT SLOPE
Figure 21. Typical reverse recovery time as
a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
IF = 8A
IF = 4A
IF = 2A
2A
120A/µs
200A/µs
280A/µs
OF REVERSE RECOVERY CURRENT
d i r r /d t, DIODE PEAK RATE OF FALL
Irr, REVERSE RECOVERY CURRENT
240nC
IF = 2A
160nC
80nC
120A/µs
200A/µs
280A/µs
360A/µs
400A/µs
6A
0A
40A/µs
IF = 4A
d i F / d t, DIODE CURRENT SLOPE
Figure 22. Typical reverse recovery charge
as a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
8A
4A
320nC
0nC
40A/µs
360A/µs
IF = 8A
400nC
320A/µs
240A/µs
160A/µs
80A/µs
0A/µs
40A/µs
360A/µs
d i F / d t, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery current
as a function of diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
120A/µs
200A/µs
280A/µs
360A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 24. Typical diode peak rate of fall of
reverse recovery current as a function of
diode current slope
(VR = 200V, Tj = 125°C,
Dynamic test circuit in Figure E)
9
Jul-02
SKP04N60
SKB04N60
8A
2.0V
I F = 8A
VF, FORWARD VOLTAGE
IF, FORWARD CURRENT
6A
4A
150°C
100°C
25°C
2A
I F = 4A
1.5V
-55°C
0A
0.0V
0.5V
1.0V
1.5V
1.0V
2.0V
ZthJCD, TRANSIENT THERMAL IMPEDANCE
VF, FORWARD VOLTAGE
Figure 25. Typical diode forward current as
a function of forward voltage
-40°C
0°C
40°C
80°C
120°C
Tj, JUNCTION TEMPERATURE
Figure 26. Typical diode forward voltage as
a function of junction temperature
D=0.5
0
10 K/W
0.2
0.1
0.05
R,(K/W)
0.128
0.387
0.346
1.360
2.280
0.02
-1
10 K/W
0.01
single pulse
R2
C 1 = τ 1 / R 1 C 2 = τ 2 /R 2
-2
10 K/W
1µs
R1
τ, (s)=
0.085
7.30*10-3
4.69*10-3
7.34*10-4
5.96*10-5
10µs
100µs
1ms
10ms 100ms
1s
tp, PULSE WIDTH
Figure 27. Diode transient thermal
impedance as a function of pulse width
(D = tp / T)
10
Jul-02
SKP04N60
SKB04N60
dimensions
TO-220AB
symbol
[mm]
[inch]
min
max
min
max
A
9.70
10.30
0.3819
0.4055
B
14.88
15.95
0.5858
0.6280
C
0.65
0.86
0.0256
0.0339
D
3.55
3.89
0.1398
0.1531
E
2.60
3.00
0.1024
0.1181
F
6.00
6.80
0.2362
0.2677
G
13.00
14.00
0.5118
0.5512
H
4.35
4.75
0.1713
0.1870
K
0.38
0.65
0.0150
0.0256
L
0.95
1.32
0.0374
0.0520
M
2.54 typ.
0.1 typ.
N
4.30
4.50
0.1693
0.1772
P
1.17
1.40
0.0461
0.0551
T
2.30
2.72
0.0906
0.1071
dimensions
TO-263AB (D2Pak)
symbol
[inch]
max
min
max
A
9.80
10.20
0.3858
0.4016
B
0.70
1.30
0.0276
0.0512
C
1.00
1.60
0.0394
0.0630
D
1.03
1.07
0.0406
0.0421
E
F
G
H
2.54 typ.
0.65
0.85
5.08 typ.
4.30
4.50
0.1 typ.
0.0256
0.0335
0.2 typ.
0.1693
0.1772
K
1.17
1.37
0.0461
0.0539
L
9.05
9.45
0.3563
0.3720
M
2.30
2.50
0.0906
0.0984
N
15 typ.
0.5906 typ.
P
0.00
0.20
0.0000
0.0079
Q
4.20
5.20
0.1654
0.2047
R
11
[mm]
min
8° max
8° max
S
2.40
3.00
0.0945
0.1181
T
0.40
0.60
0.0157
0.0236
U
10.80
0.4252
V
1.15
0.0453
W
6.23
0.2453
X
4.60
0.1811
Y
9.40
0.3701
Z
16.15
0.6358
Jul-02
SKP04N60
SKB04N60
i,v
tr r =tS +tF
diF /dt
Qr r =QS +QF
tr r
IF
tS
QS
Ir r m
tF
QF
10% Ir r m
dir r /dt
90% Ir r m
t
VR
Figure C. Definition of diodes
switching characteristics
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH
an d Stray capacity C σ =180pF.
Figure B. Definition of switching losses
12
Jul-02
SKP04N60
SKB04N60
Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2000
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
13
Jul-02