SKP04N60 SKB04N60 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Very soft, fast recovery anti-parallel EmCon diode C G E P-TO-220-3-1 (TO-220AB) P-TO-263-3-2 (D²-PAK) (TO-263AB) • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type SKP04N60 VCE IC VCE(sat) Tj 600V 4A 2.3V 150°C SKB04N60 Package Ordering Code TO-220AB Q67040-S4216 TO-263AB Q67040-S4229 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 9.4 TC = 100°C 4.9 Pulsed collector current, tp limited by Tjmax ICpul s 19 Turn off safe operating area - 19 VCE ≤ 600V, Tj ≤ 150°C IF Diode forward current TC = 25°C 10 TC = 100°C 4 Diode pulsed current, tp limited by Tjmax IFpul s 19 Gate-emitter voltage VGE ±20 V tSC 10 µs Ptot 50 W -55...+150 °C 1) Short circuit withstand time VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C Tj , Tstg Operating junction and storage temperature 1) Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Jul-02 SKP04N60 SKB04N60 Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 2.5 K/W RthJCD 4.5 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case Thermal resistance, RthJA TO-220AB 62 RthJA TO-263AB 40 junction – ambient 1) SMD version, device on PCB Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2.0 2.4 - 2.3 2.8 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µA Collector-emitter saturation voltage VCE(sat) V G E = 15 V , I C = 4 A T j =2 5 °C T j =1 5 0° C VF Diode forward voltage V V G E = 0V , I F = 4 A T j =2 5 °C 1.2 1.4 1.8 T j =1 5 0° C - 1.25 1.65 3 4 5 Gate-emitter threshold voltage VGE(th) I C = 20 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V µA T j =2 5 °C - - 20 T j =1 5 0° C - - 500 - - 100 nA 3.1 - S pF Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V Transconductance gfs V C E = 20 V , I C = 4 A Input capacitance Ciss V C E = 25 V , - 264 317 Output capacitance Coss V G E = 0V , - 29 35 Reverse transfer capacitance Crss f= 1 MH z - 17 20 Gate charge QGate V C C = 48 0 V, I C =4 A - 24 31 nC Dynamic Characteristic V G E = 15 V Internal emitter inductance LE T O - 22 0A B - 7 - nH IC(SC) V G E = 15 V ,t S C ≤ 10 µs V C C ≤ 6 0 0 V, T j ≤ 15 0° C - 40 - A measured 5mm (0.197 in.) from case 2) Short circuit collector current 1) 2 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Jul-02 SKP04N60 SKB04N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 22 26 - 15 18 - 237 284 - 70 84 - 0.070 0.081 - 0.061 0.079 - 0.131 0.160 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 °C , V C C = 40 0 V, I C = 4 A, V G E = 0/ 15 V , R G =67Ω , 1) L σ = 18 0 nH , 1) C σ = 18 0 pF Energy losses include “tail” and diode reverse recovery. trr T j =2 5 °C , - 180 - tS V R = 2 00 V , I F = 4 A, - 15 - tF d i F / d t =2 0 0 A/ µs - 165 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 130 - nC Diode peak reverse recovery current Irrm - 2.5 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 180 - A/µs Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 22 26 - 16 19 - 264 317 - 104 125 - 0.115 0.132 - 0.111 0.144 - 0.226 0.277 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =1 5 0° C V C C = 40 0 V, I C = 4 A, V G E = 0/ 15 V , R G = 67 Ω, 1) L σ = 18 0 nH , 1) C σ = 18 0 pF Energy losses include “tail” and diode reverse recovery. trr T j =1 5 0° C - 230 - tS V R = 2 00 V , I F = 4 A, - 23 - tF d i F / d t =2 0 0 A/ µs - 227 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 300 - nC Diode peak reverse recovery current Irrm - 4 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 200 - A/µs 1) Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E. 3 Jul-02 SKP04N60 SKB04N60 Ic t p =2 µ s 10A 15 µ s IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 20A T C =80°C 10A T C =110°C 50 µ s 1A 200 µ s 1ms 0.1A DC Ic 0A 10Hz 0.01A 100Hz 1kHz 10kHz 1V 100kHz 60W 12A 50W 10A 40W 30W 20W 10W 0W 25°C 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 67Ω) 10V 8A 6A 4A 2A 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Jul-02 15A 15A 12A 12A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SKP04N60 SKB04N60 VGE=20V 9A 15V 13V 11V 9V 7V 5V 6A 1V 2V 3V 4V 0A 0V 5V 14A Tj=+25°C IC, COLLECTOR CURRENT 12A -55°C +150°C 10A 8A 6A 4A 2A 2V 4V 6V 8V 10V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 0A 0V 6A 15V 13V 11V 9V 7V 5V 3A 3A 0A 0V VGE=20V 9A VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V 3.5V IC = 8A 3.0V IC = 4A 2.5V 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Jul-02 SKP04N60 SKB04N60 td(off) t, SWITCHING TIMES t, SWITCHING TIMES t d(off) tf 100ns t d(on) 100ns tf t d(on) tr 10ns 0A 2A 4A 6A 8A tr 10ns 0Ω 10A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 67Ω, Dynamic test circuit in Figure E) 50 Ω 100 Ω 150 Ω 200 Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 4A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.5V t, SWITCHING TIMES td(off) 100ns tf td(on) tr 10ns 0°C 50°C 100°C 5.0V 4.5V 4.0V max. 3.5V typ. 3.0V 2.5V min. 2.0V 150°C -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 4A, RG = 67Ω, Dynamic test circuit in Figure E) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.2mA) 6 Jul-02 SKP04N60 SKB04N60 0.6mJ 0.4mJ *) Eon and Ets include losses due to diode recovery. *) Eon and Ets include losses due to diode recovery. E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 0.5mJ E ts * 0.4mJ 0.3mJ E on * 0.2mJ E off 0.1mJ 0.0mJ 0A 2A 4A 6A 8A 0.3mJ E ts * 0.2mJ E off 0.1mJ E on * 0.0mJ 0Ω 10A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 67Ω, Dynamic test circuit in Figure E) 50 Ω 100 Ω 150 Ω 200 Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 4A, Dynamic test circuit in Figure E) 0.3mJ D=0.5 0 ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery. 0.2mJ E ts * 0.1mJ E on * E off 10 K/W 0.2 0.1 0.05 -1 10 K/W 0.02 R,(K/W) 0.815 0.698 0.941 0.046 0.01 -2 10 K/W R1 single pulse 0.0mJ 0°C -3 50°C 100°C 10 K/W 1µs 150°C 10µs 100µs τ, (s) 0.0407 5.24*10-3 4.97*10-4 4.31*10-5 R2 C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 1m s 10m s 100m s 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 4A, RG = 67Ω, Dynamic test circuit in Figure E) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Jul-02 SKP04N60 SKB04N60 25V C iss 15V 120V C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 480V 10V 100pF C oss 5V C rss 10pF 0V 0nC 10nC 20nC 30nC 0V QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 4A) 20V 30V 70A IC(sc), SHORT CIRCUIT COLLECTOR CURRENT tsc, SHORT CIRCUIT WITHSTAND TIME 25 µ s 20 µ s 15 µ s 10 µ s 5µ s 0µ s 10V 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 11V 12V 13V 14V 60A 50A 40A 30A 20A 10A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Jul-02 SKP04N60 SKB04N60 500ns 560nC trr, REVERSE RECOVERY TIME IF = 8A 300ns 200ns IF = 4A IF = 2A 100ns 0ns 40A/µs 120A/µs 200A/µs 280A/µs Qrr, REVERSE RECOVERY CHARGE 480nC 400ns d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) IF = 8A IF = 4A IF = 2A 2A 120A/µs 200A/µs 280A/µs OF REVERSE RECOVERY CURRENT d i r r /d t, DIODE PEAK RATE OF FALL Irr, REVERSE RECOVERY CURRENT 240nC IF = 2A 160nC 80nC 120A/µs 200A/µs 280A/µs 360A/µs 400A/µs 6A 0A 40A/µs IF = 4A d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 8A 4A 320nC 0nC 40A/µs 360A/µs IF = 8A 400nC 320A/µs 240A/µs 160A/µs 80A/µs 0A/µs 40A/µs 360A/µs d i F / d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 120A/µs 200A/µs 280A/µs 360A/µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 9 Jul-02 SKP04N60 SKB04N60 8A 2.0V I F = 8A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 6A 4A 150°C 100°C 25°C 2A I F = 4A 1.5V -55°C 0A 0.0V 0.5V 1.0V 1.5V 1.0V 2.0V ZthJCD, TRANSIENT THERMAL IMPEDANCE VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage -40°C 0°C 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature D=0.5 0 10 K/W 0.2 0.1 0.05 R,(K/W) 0.128 0.387 0.346 1.360 2.280 0.02 -1 10 K/W 0.01 single pulse R2 C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 -2 10 K/W 1µs R1 τ, (s)= 0.085 7.30*10-3 4.69*10-3 7.34*10-4 5.96*10-5 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Jul-02 SKP04N60 SKB04N60 dimensions TO-220AB symbol [mm] [inch] min max min max A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.89 0.1398 0.1531 E 2.60 3.00 0.1024 0.1181 F 6.00 6.80 0.2362 0.2677 G 13.00 14.00 0.5118 0.5512 H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520 M 2.54 typ. 0.1 typ. N 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071 dimensions TO-263AB (D2Pak) symbol [inch] max min max A 9.80 10.20 0.3858 0.4016 B 0.70 1.30 0.0276 0.0512 C 1.00 1.60 0.0394 0.0630 D 1.03 1.07 0.0406 0.0421 E F G H 2.54 typ. 0.65 0.85 5.08 typ. 4.30 4.50 0.1 typ. 0.0256 0.0335 0.2 typ. 0.1693 0.1772 K 1.17 1.37 0.0461 0.0539 L 9.05 9.45 0.3563 0.3720 M 2.30 2.50 0.0906 0.0984 N 15 typ. 0.5906 typ. P 0.00 0.20 0.0000 0.0079 Q 4.20 5.20 0.1654 0.2047 R 11 [mm] min 8° max 8° max S 2.40 3.00 0.0945 0.1181 T 0.40 0.60 0.0157 0.0236 U 10.80 0.4252 V 1.15 0.0453 W 6.23 0.2453 X 4.60 0.1811 Y 9.40 0.3701 Z 16.15 0.6358 Jul-02 SKP04N60 SKB04N60 i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance Lσ =180nH an d Stray capacity C σ =180pF. Figure B. Definition of switching losses 12 Jul-02 SKP04N60 SKB04N60 Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 13 Jul-02