SKP15N60, SKB15N60 SKW15N60 Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability • Very soft, fast recovery anti-parallel EmCon diode C G P-TO-220-3-1 (TO-220AB) E P-TO-263-3-2 (D²-PAK) P-TO-247-3-1 (TO-263AB) (TO-247AC) • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type Package Ordering Code TO-220AB Q67040-S4251 SKB15N60 TO-263AB Q67040-S4252 SKW15N60 TO-247AC Q67040-S4243 SKP15N60 VCE IC VCE(sat) Tj 600V 15A 2.3V 150°C Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 31 TC = 100°C 15 Pulsed collector current, tp limited by Tjmax ICpul s 62 Turn off safe operating area - 62 VCE ≤ 600V, Tj ≤ 150°C IF Diode forward current TC = 25°C 31 TC = 100°C 15 Diode pulsed current, tp limited by Tjmax IFpul s 62 Gate-emitter voltage VGE ±20 V tSC 10 µs Ptot 139 W -55...+150 °C 1) Short circuit withstand time VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C Tj , Tstg Operating junction and storage temperature 1) Allowed number of short circuits: <1000; time between short circuits: >1s. 1 Jul-02 SKP15N60, SKB15N60 SKW15N60 Thermal Resistance Parameter Symbol Conditions Max. Value Unit RthJC 0.9 K/W RthJCD 1.7 Characteristic IGBT thermal resistance, junction – case Diode thermal resistance, junction – case RthJA Thermal resistance, junction – ambient 1) SMD version, device on PCB RthJA TO-220AB 62 TO-247AC 40 TO-263AB 40 Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2 2.4 - 2.3 2.8 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µA Collector-emitter saturation voltage VCE(sat) V G E = 15 V , I C = 15 A T j =2 5 °C T j =1 5 0° C VF Diode forward voltage V V G E = 0V , I F = 1 5 A T j =2 5 °C 1.2 1.4 1.8 T j =1 5 0° C - 1.25 1.65 3 4 5 Gate-emitter threshold voltage VGE(th) I C = 40 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V µA T j =2 5 °C - - 40 T j =1 5 0° C - - 2000 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 15 A 3 10.9 - S Input capacitance Ciss V C E = 25 V , - 800 960 pF Output capacitance Coss V G E = 0V , - 84 101 Reverse transfer capacitance Crss f= 1 MH z - 52 62 Gate charge QGate V C C = 48 0 V, I C =1 5 A - 76 99 nC T O - 22 0A B - 7 - nH T O - 24 7A C - 13 - V G E = 15 V ,t S C ≤ 10 µs V C C ≤ 6 0 0 V, T j ≤ 15 0° C - 150 - Dynamic Characteristic V G E = 15 V LE Internal emitter inductance measured 5mm (0.197 in.) from case 2) Short circuit collector current IC(SC) 1) A 2 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 2 Jul-02 SKP15N60, SKB15N60 SKW15N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 32 38 - 23 28 - 234 281 - 46 55 - 0.30 0.36 - 0.27 0.35 - 0.57 0.71 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 °C , V C C = 40 0 V, I C = 1 5 A, V G E = 0/ 15 V , R G = 21 Ω, 1) L σ = 18 0 nH , 1) C σ = 25 0 pF Energy losses include “tail” and diode reverse recovery. trr T j =2 5 °C , - 279 - tS V R = 2 00 V , I F = 1 5 A, - 28 - tF d i F / d t =2 0 0 A/ µs - 254 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 390 - nC Diode peak reverse recovery current Irrm - 5.0 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 180 - A/µs Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 31 38 - 23 28 - 261 313 - 54 65 - 0.45 0.54 - 0.41 0.53 - 0.86 1.07 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =1 5 0° C V C C = 40 0 V, I C = 1 5 A, V G E = 0/ 15 V , R G = 21 Ω, 1) L σ = 18 0 nH , 1) C σ = 25 0 pF Energy losses include “tail” and diode reverse recovery. trr T j =1 5 0° C - 360 - tS V R = 2 00 V , I F = 1 5 A, - 40 - tF d i F / d t =2 0 0 A/ µs - 320 - ns mJ Anti-Parallel Diode Characteristic Diode reverse recovery time ns Diode reverse recovery charge Qrr - 1020 - nC Diode peak reverse recovery current Irrm - 7.5 - A Diode peak rate of fall of reverse recovery current during t b d i r r /d t - 200 - A/µs 1) Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E. 3 Jul-02 SKP15N60, SKB15N60 SKW15N60 100A 80A Ic tp=5µs 70A 15µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 60A 50A 40A TC=80°C 30A TC=110°C 20A 10A 0A 10Hz 10A 50µs 200µs 1A 1ms Ic DC 0.1A 100Hz 1kHz 10kHz 1V 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 21Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 35A 140W 30A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 120W 100W 80W 60W 40W 20A 15A 10A 5A 20W 0W 25°C 25A 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Jul-02 50A 50A 45A 45A 40A 40A 35A 30A 25A 20A 15A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SKP15N60, VGE=20V 15V 13V 11V 9V 7V 5V 10A 5A 0A 0V 1V 2V 3V 4V 30A 15V 13V 11V 9V 7V 5V 25A 20A 15A 10A 0A 0V 5V 45A Tj=+25°C -55°C +150°C 40A 35A 30A 25A 20A 15A 10A 5A 2V 4V 6V 8V 10V 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 50A IC, COLLECTOR CURRENT VGE=20V 5A VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 0A 0V 35A SKB15N60 SKW15N60 VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V 3.5V IC = 30A 3.0V 2.5V IC = 15A 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Jul-02 SKP15N60, SKB15N60 SKW15N60 td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 100ns tf td(on) tr 10ns 5A 10A tr 15A 20A 25A 10ns 0Ω 30A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 21Ω, Dynamic test circuit in Figure E) 20Ω 40Ω 60Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.5V t, SWITCHING TIMES td(off) 100ns tf tr td(on) 10ns 0°C 5.0V 4.5V 4.0V max. 3.5V typ. 3.0V 2.5V min. 2.0V 50°C 100°C 150°C -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 2 1Ω, Dynamic test circuit in Figure E) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.4mA) 6 Jul-02 SKP15N60, 1.8mJ 1.4mJ Ets* *) Eon and Ets include losses due to diode recovery. 1.4mJ 1.2mJ 1.0mJ Eon* 0.8mJ Eoff 0.6mJ 0.4mJ Ets* 1.0mJ 0.8mJ Eoff 0.6mJ Eon* 0.4mJ 0.2mJ 0.2mJ 0.0mJ 0A *) Eon and Ets include losses due to diode recovery. 1.2mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 1.6mJ SKB15N60 SKW15N60 5A 10A 15A 20A 25A 30A 0.0mJ 0Ω 35A IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 21Ω, Dynamic test circuit in Figure E) 20Ω 40Ω 60Ω 80Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 15A, Dynamic test circuit in Figure E) 1.0mJ 0 Ets* 0.8mJ 0.6mJ Eon* 0.4mJ Eoff 0.2mJ ZthJC, TRANSIENT THERMAL IMPEDANCE E, SWITCHING ENERGY LOSSES *) Eon and Ets include losses due to diode recovery. 10 K/W D=0.5 0.2 -1 10 K/W 0.1 0.05 0.02 R,(1/W) 0.5321 0.2047 0.1304 0.0027 -2 10 K/W 0.01 τ, (s)= 0.04968 2.58*10-3 2.54*10-4 3.06*10-4 -3 10 K/W R1 R2 single pulse C 1= τ1/R 1 C 2= τ2/R 2 -4 0.0mJ 0°C 50°C 100°C 10 K/W 1µs 150°C 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 15A, RG = 2 1Ω, Dynamic test circuit in Figure E) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Jul-02 SKP15N60, SKB15N60 SKW15N60 25V 1nF Ciss C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 15V 120V 480V 10V Crss 5V 0V 0nC 25nC 50nC 75nC 10pF 0V 100nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 15A) 20V 30V IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 250A 20 µ s 15 µ s 10 µ s 5µ s 0µ s 10V 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s tsc, SHORT CIRCUIT WITHSTAND TIME Coss 100pF 11V 12V 13V 14V 200A 150A 100A 50A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Jul-02 SKP15N60, 500ns trr, REVERSE RECOVERY TIME IF = 30A 300ns IF = 15A IF = 7.5A 100ns 0ns 100A/µs 300A/µs 500A/µs 700A/µs Qrr, REVERSE RECOVERY CHARGE 2000nC 400ns 200ns 500nC 800A/µs IF = 7.5A 8A 4A 300A/µs 500A/µs 700A/µs OF REVERSE RECOVERY CURRENT 16A IF = 15A 300A/µs 500A/µs 700A/µs 900A/µs d i F / d t, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery charge as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) d i r r /d t, DIODE PEAK RATE OF FALL Irr, REVERSE RECOVERY CURRENT IF = 7.5A 1000A/µs IF = 30A IF = 15A 1000nC 20A 12A IF = 30A 1500nC 0nC 100A/µs 900A/µs d i F / d t, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery time as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 0A 100A/µs SKB15N60 SKW15N60 600A/µs 400A/µs 200A/µs 0A/µs 100A/µs 900A/µs d i F / d t, DIODE CURRENT SLOPE Figure 23. Typical reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 300A/µs 500A/µs 700A/µs 900A/ µs diF/dt, DIODE CURRENT SLOPE Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (VR = 200V, Tj = 125°C, Dynamic test circuit in Figure E) 9 Jul-02 SKP15N60, 30A SKB15N60 SKW15N60 2.0V I F = 30A VF, FORWARD VOLTAGE IF, FORWARD CURRENT 25A 20A 150°C 15A 100°C 10A 25°C 5A 0.5V 1.0V 1.5V 1.0V 2.0V ZthJCD, TRANSIENT THERMAL IMPEDANCE VF, FORWARD VOLTAGE Figure 25. Typical diode forward current as a function of forward voltage 0 I F = 15A -55°C 0A 0.0V 10 K/W 1.5V -40°C 0°C 40°C 80°C 120°C Tj, JUNCTION TEMPERATURE Figure 26. Typical diode forward voltage as a function of junction temperature D=0.5 0.2 0.1 R,(1/W) 0.311 0.271 0.221 0.584 0.314 0.05 -1 10 K/W 0.02 R1 0.01 τ, (s)= 7.83*10-2 1.21*10-2 1.36*10-3 1.53*10-4 2.50*10-5 R2 single pulse C1= τ1/R1 C 2 = τ 2 /R 2 -2 10 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = tp / T) 10 Jul-02 SKP15N60, SKB15N60 SKW15N60 dimensions TO-220AB symbol [mm] [inch] min max min max A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.89 0.1398 0.1531 E 2.60 3.00 0.1024 0.1181 F 6.00 6.80 0.2362 0.2677 G 13.00 14.00 0.5118 0.5512 H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520 M 2.54 typ. 0.1 typ. N 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071 dimensions TO-263AB (D2Pak) symbol [inch] max min max A 9.80 10.20 0.3858 0.4016 B 0.70 1.30 0.0276 0.0512 C 1.00 1.60 0.0394 0.0630 D 1.03 1.07 0.0406 0.0421 E F G H 2.54 typ. 0.65 0.85 5.08 typ. 4.30 4.50 0.1 typ. 0.0256 0.0335 0.2 typ. 0.1693 0.1772 K 1.17 1.37 0.0461 0.0539 L 9.05 9.45 0.3563 0.3720 M 2.30 2.50 0.0906 0.0984 N 15 typ. 0.5906 typ. P 0.00 0.20 0.0000 0.0079 Q 4.20 5.20 0.1654 0.2047 R 11 [mm] min 8° max 8° max S 2.40 3.00 0.0945 0.1181 T 0.40 0.60 0.0157 0.0236 U 10.80 0.4252 V 1.15 0.0453 W 6.23 0.2453 X 4.60 0.1811 Y 9.40 0.3701 Z 16.15 0.6358 Jul-02 SKP15N60, SKB15N60 SKW15N60 dimensions TO-247AC symbol [mm] min max min max A 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 G 0.76 max 0.0299 max H 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358 L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941 ∅P Q 12 [inch] 3.61 6.12 0.1421 6.22 0.2409 0.2449 Jul-02 SKP15N60, SKB15N60 SKW15N60 i,v tr r =tS +tF diF /dt Qr r =QS +QF tr r IF tS QS Ir r m tF QF 10% Ir r m dir r /dt 90% Ir r m t VR Figure C. Definition of diodes switching characteristics τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn Figure A. Definition of switching times TC Figure D. Thermal equivalent circuit Figure E. Dynamic test circuit Leakage inductance Lσ =180nH an d Stray capacity C σ =250pF. Figure B. Definition of switching losses Published by Infineon Technologies AG, 13 Jul-02 SKP15N60, SKB15N60 SKW15N60 Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 14 Jul-02