SPW20N60S5 Cool MOS™ Power Transistor Feature • New revolutionary high voltage technology • Ultra low gate charge VDS 600 V RDS(on) 0.19 Ω ID 20 A P-TO247 • Periodic avalanche rated • Extreme dv/dt rated • Ultra low effective capacitances • Improved transconductance Type SPW20N60S5 Package P-TO247 Ordering Code Q67040-S4238 Marking 20N60S5 Maximum Ratings Parameter Symbol Continuous drain current ID Value Unit A TC = 25 °C 20 TC = 100 °C 13 Pulsed drain current, tp limited by Tjmax I D puls 40 Avalanche energy, single pulse EAS 690 mJ I D = 10 A, VDD = 50 V Avalanche energy, repetitive tAR limited by Tjmax1) EAR 1 I D = 20 A, VDD = 50 V Avalanche current, repetitive tAR limited by Tjmax I AR Gate source voltage VGS 20 A ±20 V Gate source voltage AC (f >1Hz) VGS ±30 Power dissipation, T C = 25°C Ptot 208 W Operating and storage temperature T j , T stg -55... +150 °C Rev. 2.1 Page 1 2004-03-30 SPW20N60S5 Maximum Ratings Parameter Symbol Drain Source voltage slope dv/dt Value Unit 20 V/ns Values Unit V DS = 480 V, ID = 20 A, Tj = 125 °C Thermal Characteristics Symbol Parameter min. typ. max. Thermal resistance, junction - case RthJC - - 0.6 Thermal resistance, junction - ambient, leaded RthJA - - 50 Soldering temperature, Tsold - - 260 K/W °C 1.6 mm (0.063 in.) from case for 10s Electrical Characteristics, at Tj=25°C unless otherwise specified Parameter Symbol Conditions Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA Drain-Source avalanche V(BR)DS VGS=0V, ID=20A Values Unit min. typ. max. 600 - - - 700 - 3.5 4.5 5.5 V breakdown voltage Gate threshold voltage VGS(th) ID=1000µΑ, VGS=VDS Zero gate voltage drain current IDSS VDS=600V, VGS=0V, Gate-source leakage current IGSS Drain-source on-state resistance RDS(on) Gate input resistance Rev. 2.1 RG µA Tj=25°C, - 0.5 5 Tj=150°C - - 250 VGS=20V, VDS=0V - - 100 Ω VGS=10V, ID=13A, Tj=25°C - 0.16 0.19 Tj=150°C - 0.43 - f=1MHz, open Drain - 12 - Page 2 nA 2004-03-30 SPW20N60S5 Electrical Characteristics , at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Values Unit min. typ. max. - 12 - S pF Characteristics Transconductance g fs V DS≥2*I D*RDS(on)max, ID=13A Input capacitance Ciss V GS=0V, V DS=25V, - 3000 - Output capacitance Coss f=1MHz - 1170 - Reverse transfer capacitance Crss - 28 - - 83 - - 160 - Effective output capacitance, 2) Co(er) energy related V GS=0V, V DS=0V to 480V Effective output capacitance, 3) Co(tr) time related Turn-on delay time t d(on) V DD=350V, V GS=0/10V, - 120 - Rise time tr ID=20A, R G=3.6Ω - 25 - Turn-off delay time t d(off) - 130 195 Fall time tf - 30 45 - 21 - - 47 - - 79 103 - 8 - Gate Charge Characteristics Gate to source charge Qgs Gate to drain charge Qgd Gate charge total Qg pF VDD=350V, ID=20A VDD=350V, ID=20A, ns nC VGS=0 to 10V Gate plateau voltage V(plateau) VDD=350V, ID=20A V 1Repetitve avalanche causes additional power losses that can be calculated as P =EAR*f. AV 2C o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V DSS. 3C o(tr) is a fixed capacitance that gives the same charging time as Coss while V DS is rising from 0 to 80% V DSS. Rev. 2.1 Page 3 2004-03-30 SPW20N60S5 Electrical Characteristics, at Tj = 25 °C, unless otherwise specified Symbol Parameter Inverse diode continuous IS Conditions TC=25°C Values Unit min. typ. max. - - 20 - - 40 A forward current Inverse diode direct current, ISM pulsed Inverse diode forward voltage VSD VGS=0V, IF=IS - 1 1.2 V Reverse recovery time trr VR=350V, IF =IS , - 610 - ns Reverse recovery charge Qrr diF/dt=100A/µs - 12 - µC Typical Transient Thermal Characteristics Symbol Value Unit Symbol Value typ. Unit typ. Thermal resistance Thermal capacitance R th1 0.00769 R th2 Cth1 0.0003763 0.015 Cth2 0.001411 R th3 0.029 Cth3 0.001931 R th4 0.114 Cth4 0.005297 R th5 0.136 Cth5 0.012 R th6 0.059 Cth6 0.091 Tj K/W R th1 R th,n T case Ws/K E xternal H eatsink P tot (t) C th1 C th2 C th,n T am b Rev. 2.1 Page 4 2004-03-30 SPW20N60S5 1 Power dissipation 2 Safe operating area Ptot = f (TC) ID = f ( V DS ) parameter : D = 0 , T C=25°C 240 10 2 SPW20N60S5 W A 200 10 1 160 ID Ptot 180 140 10 0 120 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC 100 80 10 -1 60 40 20 0 0 20 40 60 80 100 120 °C 10 -2 0 10 160 10 1 10 2 10 V VDS TC 3 Transient thermal impedance 4 Typ. output characteristic ZthJC = f (t p) ID = f (VDS); Tj=25°C parameter: D = tp/T parameter: tp = 10 µs, VGS 0 10 75 A K/W 60 10 -1 ID ZthJC 55 10 -2 10 20V 15V 12V 11V 10V 45 40 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse -3 50 35 9V 30 25 20 8V 15 10 7V 5 10 -4 -7 10 Rev. 2.1 10 -6 10 -5 10 -4 10 -3 10 -2 s tp 10 0 0 0 5 10 15 20 V 30 VDS Page 5 2004-03-30 3 SPW20N60S5 5 Typ. output characteristic 6 Typ. drain-source on resistance ID = f (VDS); Tj=150°C RDS(on)=f(ID) parameter: tp = 10 µs, VGS parameter: Tj=150°C, V GS 35 1.5 mΩ 20V 12V 10V 6V 6.5V 7V 7.5V 8V 8.5V 9V 10V 12V 20V 1.3 9V RDS(on) A 25 ID 8.5V 1.2 1.1 1 20 8V 0.9 15 0.8 7.5V 0.7 10 7V 0.6 6.5V 5 0.5 6V 0.4 0 0 5 10 V 15 0.3 0 25 5 10 15 20 25 30 VDS A ID 7 Drain-source on-state resistance 8 Typ. transfer characteristics RDS(on) = f (Tj) ID= f ( VGS ); V DS≥ 2 x ID x RDS(on)max parameter : ID = 13 A, VGS = 10 V parameter: tp = 10 µs 1.1 SPW20N60S5 70 A Ω 60 0.9 55 0.8 50 0.7 45 ID RDS(on) 40 25°C 150°C 40 0.6 35 0.5 30 0.4 25 20 0.3 98% 0.2 15 typ 10 0.1 0 -60 5 -20 20 60 100 °C 180 5 10 V 20 VGS Tj Rev. 2.1 0 0 Page 6 2004-03-30 SPW20N60S5 9 Typ. gate charge 10 Forward characteristics of body diode VGS = f (QGate) IF = f (VSD) parameter: ID = 20 A pulsed parameter: Tj , tp = 10 µs 16 10 2 SPW20N60S5 V SPW20N60S5 A 0.2 VDS max 10 1 10 IF VGS 12 0.8 VDS max 8 6 10 0 Tj = 25 °C typ 4 Tj = 150 °C typ Tj = 25 °C (98%) 2 Tj = 150 °C (98%) 0 0 20 40 60 nC 80 10 -1 0 120 0.4 0.8 1.2 1.6 2.4 V 2 QGate 3 VSD 11 Avalanche SOA 12 Avalanche energy IAR = f (tAR) EAS = f (Tj) par.: Tj ≤ 150 °C par.: ID = 10 A, VDD = 50 V 20 750 mJ 600 A IAR EAS 550 500 450 400 10 350 Tj(START)=25°C 300 250 200 5 150 Tj(START)=125°C 100 50 0 -3 10 Rev. 2.1 10 -2 10 -1 10 0 10 1 10 2 4 µs 10 tAR Page 7 0 20 40 60 80 100 120 °C 160 Tj 2004-03-30 SPW20N60S5 13 Drain-source breakdown voltage 14 Avalanche power losses V(BR)DSS = f (Tj) PAR = f (f ) parameter: E AR=1mJ 720 SPW20N60S5 500 V 680 PAR V(BR)DSS W 660 300 640 620 200 600 580 100 560 540 -60 -20 20 60 100 °C 0 4 10 180 10 5 Hz Tj 10 f 15 Typ. capacitances 16 Typ. Coss stored energy C = f (VDS) Eoss=f(VDS) parameter: V GS=0V, f=1 MHz 10 5 14 pF µJ 12 10 4 11 Eoss C Ciss 10 3 10 9 8 7 Coss 10 2 6 5 4 10 1 Crss 3 2 1 10 0 0 100 200 300 400 V 600 VDS Rev. 2.1 0 0 100 200 300 400 V 600 VDS Page 8 2004-03-30 6 SPW20N60S5 Definition of diodes switching characteristics Rev. 2.1 Page 9 2004-03-30 SPW20N60S5 P-TO-247-3-1 15.9 5.03 20˚ 5˚ D 5.94 4.37 2.03 6.17 20.9 9.91 6.35 ø3.61 7 1.75 41.22 2.97 x 0.127 16 D 1.14 0.243 1.2 0.762 MAX. 2 2.4 +0.05 2.92 5.46 General tolerance unless otherwise specified: Leadframe parts: ±0.05 Package parts: ±0.12 Rev. 2.1 Page 10 2004-03-30 SPW20N60S5 Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Rev. 2.1 Page 11 2004-03-30