BF961 Vishay Semiconductors N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode 3 Features • • • • • • 4 Integrated gate protection diodes High cross modulation performance Low noise figure High AGC-range Low feedback capacitance Low input capacitance 2 1 G2 D G1 S Applications Electrostatic sensitive device. Observe precautions for handling. Input- and mixer stages especially for FM- and VHF TV-tuners up to 300 MHz. 13625 Mechanical Data Case: TO-50 Plastic case Weight: approx. 124 mg Marking: BF961 Pinning: 1 = Drain, 2 = Source, 3 = Gate 1, 4 = Gate 2 Parts Table Part Ordering Ccode Marking Package BF961 BF961A or BF961B BF961 TO50 BF961A BF961A BF961 TO50 BF961B BF961B BF961 TO50 Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified Parameter Test condition Drain - source voltage Drain current Gate 1/Gate 2 - source peak current Tamb ≤ 60 °C Symbol Value Unit VDS 20 V ID 30 mA ± IG1/G2SM 10 mA mW Ptot 200 Channel temperature TCh 150 °C Storage temperature range Tstg - 55 to + 150 °C Symbol Value Unit RthChA 450 K/W Total power dissipation Maximum Thermal Resistance Parameter Channel ambient 1) Test condition 1) on glass fibre printed board (40 x 25 x 1.5) mm3 plated with 35 µm Cu Document Number 85002 Rev. 1.5, 25-Nov-04 www.vishay.com 1 BF961 VISHAY Vishay Semiconductors Electrical DC Characteristics Tamb = 25 °C, unless otherwise specified Symbol Min Drain - source breakdown voltage Parameter ID = 10 µA, - VG1S = - VG2S = 4 V Test condition Part V(BR)DS 20 Typ. Max Unit Gate 1 - source breakdown voltage ± IG1S = 10 mA, VG2S = VDS = 0 ± V(BR)G1SS 8 14 V Gate 2 - source breakdown voltage ± IG2S = 10 mA, VG1S = VDS = 0 ± V(BR)G2SS 8 14 V V Gate 1 - source leakage current ± VG1S = 5 V, VG2S = VDS = 0 ± IG1SS 100 nA Gate 2 - source leakage current ± VG2S = 5 V, VG1S = VDS = 0 ± IG2SS 100 nA Drain current VDS = 15 V, VG1S = 0, VG2S = 4 V BF961 BF961A BF961B IDSS 4 20 mA IDSS 4 10.5 mA IDSS 9.5 20 mA Gate 1 - source cut-off voltage VDS = 15 V, VG2S = 4 V, ID = 20 µA - VG1S(OFF) 3.5 V Gate 2 - source cut-off voltage VDS = 15 V, VG1S = 0, ID = 20 µA - VG2S(OFF) 3.5 V Electrical AC Characteristics Tamb = 25 °C, unless otherwise specified VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz Parameter Test condition Forward transadmittance Gate 1 input capacitance Gate 2 input capacitance VG1S = 0, VG2S = 4 V Symbol Min Typ. | y21s | 12 15 Max Unit mS Cissg1 3.7 pF Cissg2 1.6 pF Feedback capacitance Crss 25 fF Output capacitance Coss 1.6 pF Gps 20 dB ∆Gps 50 dB F 1.8 Power gain GS = 2 mS, GL = 0.5 mS, f = 200 MHz AGC range VG2S = 4 to - 2 V, f = 200 MHz Noise figure GS = 2 mS, GL = 0.5 mS, f = 200 MHz 2.5 dB 300 22 200 150 100 50 96 12159 18 0.4 V 16 14 0.2 V 12 10 0 8 –0.2 V –0.4 V –0.6 V –0.8 V 6 4 2 0 0 0 20 40 60 80 100 120 140 160 Tamb - Ambient Temperature ( °C ) Figure 1. Total Power Dissipation vs. Ambient Temperature www.vishay.com 2 V G1S = 0.6 V 20 250 ID – Drain Current ( mA) Ptot -Total Power Dissipation ( mW ) Typical Characteristics (Tamb = 25 °C unless otherwise specified) 0 96 12160 2 4 6 8 10 12 14 16 18 20 22 24 V DS – Drain Source Voltage ( V ) Figure 2. Drain Current vs. Drain Source Voltage Document Number 85002 Rev. 1.5, 25-Nov-04 BF961 VISHAY V DS = 15 V I DS = 10 mA V G1S = 0.5 V 0V –0.5 V –2 96 12161 –1 0 1 2 3 4 5 6 V G2S – Gate 2 Source Voltage ( V ) Y21S – ForwardTransadmittance ( mS ) Figure 3. Forward Transadmittance vs. Gate 2 Source Voltage 22 20 18 V DS = 15 V f = 1 MHz V G2S = 5 V 16 14 12 10 8 4V 6 0V 4 3V 2V 1V 2 Cissg2 – Gate 2 Input Capacitance ( pF ) 24 22 20 18 16 14 12 10 8 6 4 2 0 V G1S - Gate 1 Source Voltage ( V ) 2.8 2.4 2.0 1.6 1.2 0.8 0.4 0.0 2.0 1.5 1.0 0.5 0 3.0 f =700 MHz 600 MHz 500 MHz 10 400 MHz 8 300 MHz 6 4 0.5 2 Rev. 1.5, 25-Nov-04 8 10 12 14 16 18 20 22 12 1.0 Document Number 85002 6 Figure 7. Output Capacitance vs. Drain Source Voltage 14 Figure 5. Gate 1 Input Capacitance vs. Gate 1 Source Voltage 4 V DS - Drain Source V oltage ( V ) 16 0.0 –2.0–1.5–1.0–0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 96 12163 V G1S – Gate 1 Source Voltage ( V ) 2 96 12165 3.5 1.5 V G2S = 4 V f = 1 MHz 2.5 18 2.0 0 1 2 3 4 5 6 7 V G2S – Gate 2 Source Voltage ( V ) 3.0 4.0 V DS = 15 V V G2S = 4 V f = 1 MHz –1 0.0 Im ( y11) ( mS ) Cissg1 – Gate 1 Input Capacitance ( pF ) 3.2 Figure 6. Gate 2 Input Capacitance vs. Gate 2 Source Voltage Figure 4. Forward Transadmittance vs. Gate 1 Source Voltage 2.5 V DS = 15 V V G1S = 0 f = 1 MHz 3.6 –2 0 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 96 12162 4.0 96 12164 Coss – Output Capacitance ( pF ) Y21S – ForwardTransadmittance ( mS ) Vishay Semiconductors V DS = 15 V V G2S = 4 V I D = 5...20 mA f = 50...700 MHz 200 MHz 100 MHz 0 0 96 12166 1 2 3 4 5 6 7 8 9 10 Re (y 11) ( mS ) Figure 8. Short Circuit Input Admittance www.vishay.com 3 BF961 VISHAY Vishay Semiconductors 10 V DS = 15 V V G2S = 4 V f = 50...700 MHz 5 Im ( y 21 ) ( mS ) 0 f = 50 MHz I D = 5 mA 10 mA 20 mA –5 –10 100 MHz 200 MHz 300 MHz –15 400 MHz –20 500 MHz 600 MHz –25 700 MHz –30 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 Re (y 21) ( mS ) 96 12167 Im ( y22 ) ( mS ) Figure 9. Short Circuit Forward Transfer Admittance 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 f = 700 MHz 600 MHz I D = 5 mA 500 MHz I D = 20 mA 400 MHz 300 MHz 200 MHz 100 MHz 0.0 0.2 0.4 0.6 V DS = 15 V V G2S = 4 V I D = 5...20 mA f = 50...700 MHz 0.8 1.0 1.2 1.4 Re (y 22 ) ( mS ) 96 12168 Figure 10. Short Circuit Output Admittance www.vishay.com 4 Document Number 85002 Rev. 1.5, 25-Nov-04 BF961 VISHAY Vishay Semiconductors VDS = 15 V, ID = 5 to 20 mA, VG2S = 4 V, Z0 = 50 Ω S11 S12 90 ° j 120° j0.5 60 ° j2 150° j0.2 30 ° 300 j5 0 0.2 0.5 1 2 ∞ 5 100 –j0.2 700 MHz 12920 0.08 –150 ° –j2 –j0.5 0.04 0° 50 –j5 300 500 600 700 MHz 180° –30° –120 ° –60° –90 ° 12921 –j Figure 13. Reverse Transmission Coefficient Figure 11. Input Reflection Coefficient S21 S22 ID= 20 mA 90° 120° j 60° ID= 10 mA j0.5 ID= 5 mA 30° 400 j0.2 200 50 0.8 1.6 0° 0 –120° Figure 12. Forward Transmission Coefficient Rev. 1.5, 25-Nov-04 0.5 1 –j0.5 –60° –90 ° 0.2 –j0.2 –30 ° –150° Document Number 85002 j5 700MHz 180 ° 12922 j2 12923 ı∞ 100 300 500 –j5 700 MHz 2 5 –j2 –j Figure 14. Output Reflection Coefficient www.vishay.com 5 BF961 VISHAY Vishay Semiconductors Package Dimensions in mm 96 12242 www.vishay.com 6 Document Number 85002 Rev. 1.5, 25-Nov-04 BF961 VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 Document Number 85002 Rev. 1.5, 25-Nov-04 www.vishay.com 7