BF996S Vishay Telefunken N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode Electrostatic sensitive device. Observe precautions for handling. Applications Input- and mixer stages in UHF tuners. Features D Integrated gate protection diodes D Low noise figure D Low feedback capacitance 2 D High cross modulation performance D Low input capacitance D High AGC-range 1 G2 D G1 13 579 94 9279 3 4 BF996S Marking: MH Plastic case (SOT 143) 1=Source, 2=Drain, 3=Gate 2, 4=Gate 1 S 12623 Absolute Maximum Ratings Tamb = 25_C, unless otherwise specified Parameter Drain - source voltage Drain current Gate 1/Gate 2 - source peak current Total power dissipation Channel temperature Storage temperature range Test Conditions Type Tamb ≤ 60 °C Symbol Value VDS 20 ID 30 ±IG1/G2SM 10 Ptot 200 TCh 150 Tstg –65 to +150 Unit V mA mA mW °C °C Symbol RthChA Unit K/W Maximum Thermal Resistance Tamb = 25_C, unless otherwise specified Parameter Test Conditions Channel ambient on glass fibre printed board (25 x 20 x 1.5) mm3 plated with 35mm Cu Document Number 85010 Rev. 3, 20-Jan-99 Value 450 www.vishay.de • FaxBack +1-408-970-5600 1 (8) BF996S Vishay Telefunken Electrical DC Characteristics Tamb = 25_C, unless otherwise specified Parameter Drain - source breakdown voltage Gate 1 - source breakdown voltage Gate 2 - source breakdown voltage Gate 1 - source leakage current Gate 2 - source leakage current Drain current Test Conditions ID = 10 mA, –VG1S = –VG2S = 4 V Gate 1 - source cut-off voltage Gate 2 - source cut-off voltage VDS = 15 V, VG2S = 4 V, ID = 20 mA VDS = 15 V, VG1S = 0, ID = 20 mA Type Symbol V(BR)DS Min 20 ±IG1S = 10 mA, VG2S = VDS = 0 ±V(BR)G1SS ±IG2S = 10 mA, VG1S = VDS = 0 ±V(BR)G2SS Typ Max Unit V 8 14 V 8 14 V ±VG1S = 5 V, VG2S = VDS = 0 ±IG1SS 50 nA ±VG2S = 5 V, VG1S = VDS = 0 ±IG2SS 50 nA –VG1S(OFF) 18 10.5 18 2.5 mA mA mA V –VG2S(OFF) 2.0 V Max Unit mS pF pF fF pF dB dB dB dB dB VDS = 15 V, VG1S = 0, VG2S = 4 V BF996S BF996SA BF996SB IDSS IDSS IDSS 4 4 9.5 Electrical AC Characteristics VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz , Tamb = 25_C, unless otherwise specified Parameter Forward transadmittance Gate 1 input capacitance Gate 2 input capacitance Feedback capacitance Output capacitance Power g gain AGC range Noise figure g Test Conditions VG1S = 0, VG2S = 4 V GS = 2 mS, GL = 0.5 mS, f = 200 MHz GS = 3.3 mS, GL = 1 mS, f = 800 MHz VG2S = 4 to –2 V, f = 800 MHz GS = 2 mS, GL = 0.5 mS, f = 200 MHz GS = 3.3 mS, GL = 1 mS, f = 800 MHz www.vishay.de • FaxBack +1-408-970-5600 2 (8) Symbol y21s Cissg1 Cissg2 Crss Coss Gps Gps DGps F F Min 15 Typ 18.5 2.2 1.1 25 10.8 25 18 40 1.0 1.8 2.6 35 1.2 Document Number 85010 Rev. 3, 20-Jan-99 BF996S Vishay Telefunken Common Source S–Parameters VDS , = 15 V , VG2S = 4 V , Z0 = 50 W, Tamb = 25_C, unless otherwise specified ID/mA 5 10 15 f/MHz 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 Document Number 85010 Rev. 3, 20-Jan-99 S11 LOG MAG dB –0.05 –0.15 –0.43 –0.70 –1.03 –1.33 –1.62 –1.92 –2.21 –2.49 –2.80 –3.07 –3.31 –0.05 –0.16 –0.48 –0.76 –1.11 –1.43 –1.75 –2.07 –2.40 –2.70 –3.03 –3.32 –3.59 –0.05 –0.17 –0.50 –0.81 –1.18 –1.52 –1.86 –2.20 –2.53 –2.86 –3.21 –3.50 –3.80 ANG deg –8.5 –17.7 –24.6 –32.1 –39.2 –45.8 –52.3 –58.7 –64.7 –70.7 –76.6 –82.5 –88.6 –9.0 –18.7 –26.0 –33.7 –41.2 –48.3 –55.1 –61.6 –67.9 –74.2 –80.2 –86.4 –92.3 –9.4 –19.4 –27.1 –35.0 –42.9 –50.3 –57.2 –63.9 –70.4 –76.8 –82.9 –89.0 –95.1 S21 LOG MAG dB 3.24 3.63 2.51 2.01 1.45 0.94 0.43 –0.10 –0.59 –1.12 –1.52 –1.93 –2.35 5.19 5.58 4.45 3.95 3.40 2.88 2.39 1.88 1.39 0.90 0.50 0.13 –0.28 6.07 6.44 5.31 4.80 4.23 3.72 3.22 2.72 2.24 1.74 1.34 0.95 0.56 ANG deg 164.9 150.9 134.7 121.3 108.4 96.5 85.0 74.1 63.6 53.1 43.7 33.6 24.1 165.3 151.8 136.3 123.3 110.9 99.5 88.7 78.1 67.9 57.9 48.7 38.9 29.6 165.4 152.0 136.7 123.8 111.5 100.3 89.6 79.4 69.2 59.4 50.2 40.8 31.5 S12 LOG MAG dB –56.84 –50.57 –48.51 –46.98 –46.40 –46.40 –47.02 –47.53 –47.81 –48.52 –48.53 –46.95 –44.44 –56.24 –49.97 –47.91 –46.48 –45.91 –45.91 –46.53 –47.13 –47.41 –48.21 –48.43 –47.04 –44.54 –55.74 –49.47 –47.41 –45.98 –45.41 –45.41 –46.13 –46.63 –47.00 –47.91 –48.33 –47.04 –44.53 ANG deg 82.2 75.6 67.7 62.8 57.8 57.3 58.9 63.3 73.1 83.5 102.1 120.4 131.7 81.9 75.0 67.2 61.8 56.3 55.8 56.7 60.7 69.9 80.0 98.9 118.2 130.5 81.4 74.6 66.4 60.8 55.1 54.4 54.9 58.5 67.3 76.7 95.2 115.3 128.7 S22 LOG MAG dB –0.08 –0.18 –0.29 –0.44 –0.59 –0.76 –0.91 –1.08 –1.26 –1.45 –1.57 –1.75 –1.92 –0.11 –0.21 –0.33 –0.47 –0.65 –0.81 –0.96 –1.12 –1.32 –1.49 –1.61 –1.79 –1.96 –0.15 –0.24 –0.36 –0.52 –0.68 –0.84 –1.02 –1.16 –1.35 –1.53 –1.66 –1.84 –2.00 ANG deg –3.4 –7.1 –9.7 –12.3 –15.1 –17.4 –19.7 –22.0 –24.3 –26.2 –28.4 –30.5 –32.7 –3.5 –7.2 –9.8 –12.6 –15.3 –17.8 –20.0 –22.4 –24.6 –26.6 –28.8 –31.0 –33.3 –3.6 –7.3 –10.0 –12.9 –15.7 –18.0 –20.4 –22.7 –25.0 –27.1 –29.4 –31.6 –33.9 www.vishay.de • FaxBack +1-408-970-5600 3 (8) BF996S Vishay Telefunken Typical Characteristics (Tamb = 25_C unless otherwise specified) 22 250 200 150 100 50 14 12 10 0 8 6 4 VG1S= –1V 0 0 20 40 60 80 100 120 140 160 Tamb – Ambient Temperature ( °C ) –1 –0.5 0.0 0.5 1.0 1.5 VG2S – Gate 2 Source Voltage ( V ) 12852 Figure 1. Total Power Dissipation vs. Ambient Temperature Figure 4. Drain Current vs. Gate 2 Source Voltage 32 4.0 C issg1 – Gate 1 Input Capacitance ( pF ) 2V 1.5V 1V VG2S= 4V Ptot=200mW 28 ID – Drain Current ( mA ) 16 2 96 12159 24 20 0.5V 16 0 12 8 –0.5V 4 VG1S= –1V 0 0 2 4 6 8 10 12 14 VDS=15V VG2S=4V f=1MHz 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 16 VDS – Drain Source Voltage ( V ) 12849 –1 –0.5 0.0 0.5 1.0 1.5 ID – Drain Current ( mA ) 12853 Figure 2. Drain Current vs. Drain Source Voltage Figure 5. Gate 1 Input Capacitance vs. Drain Current 3.0 22 VDS= 15V 18 C issg2 – Gate 2 Input Capacitance ( pF ) 6V 5V 4V 3V 20 ID – Drain Current ( mA ) 4V 3V 2V 1V VDS= 15V 18 0 2V 16 1V 14 12 10 0.5V 8 6 0 4 2 VG2S= –1V 0 –1 12851 5V 20 ID – Drain Current ( mA ) P tot – Total Power Dissipation ( mW ) 300 –0.5 0.0 0.5 1.0 Figure 3. Drain Current vs. Gate 1 Source Voltage www.vishay.de • FaxBack +1-408-970-5600 4 (8) 2.0 1.5 1.0 0.5 0 –2 1.5 VG1S – Gate 1 Source Voltage ( V ) VDS=15V VG1S=0 f=1MHz 2.5 12854 –1 0 1 2 3 4 5 VG2S – Gate 2 Source Voltage ( V ) Figure 6. Gate 2 Input Capacitance vs. Gate 2 Source Voltage Document Number 85010 Rev. 3, 20-Jan-99 BF996S Vishay Telefunken 20 1.8 1.6 16 1.4 1.0 0.8 0.6 2 0 2 4 6 8 10 12 14 16 18 20 VDS – Drain Source Voltage ( V ) 10 –10 1V –20 0 –0.2V –0.4V –0.6V 2 S 21 –30 100MHz 0 1 2 3 4 5 6 7 8 9 10 Re (y11) ( mS ) Figure 10. Short Circuit Input Admittance 0 –5 Im ( y21 ) ( mS ) 0 VDS=15V VG2S=4V ID=10mA f=100...1300MHz 300MHz 12857 4V 3V 2V f= 200MHz 500MHz 6 0 Figure 7. Output Capacitance vs. Drain Source Voltage – Transducer Gain ( dB ) 8 0.2 0 700MHz 10 4 12856 900MHz 12 0.4 –50 1100MHz 14 1.2 –40 f=1300MHz 18 VG2S=4V f=1MHz Im ( y11 ) ( mS ) C oss – Output Capacitance ( pF ) 2.0 –0.8V VDS=15V VG2S=4V f=100...1300MHz 300MHz 500MHz –10 –15 f=100MHz ID=5mA 700MHz 900MHz 10mA –20 VG2S=–1V 15mA 1100MHz 1300MHz –60 –2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 VG1S – Gate 1 Source Voltage ( V ) 12855 6 2V 5 14 12 1V 10 8 6 0 2 4 6 8 10 12 14 16 20 f=1300MHz 1100MHz 900MHz 4 700MHz 3 500MHz 2 0 0.0 18 ID – Drain Current ( mA ) Figure 9. Forward Transadmittance vs. Drain Current Document Number 85010 Rev. 3, 20-Jan-99 15 300MHz 100MHz 0 12850 10 1 0.5V VG2S=0 5 VDS=15V VG2S=4V ID=10mA f=100...1300MHz 4 2 0 Re (y21) ( mS ) 7 Im ( y22 ) ( mS ) y21s – Forward Transadmittance ( mS ) 16 –5 Figure 11. Short Circuit Forward Transfer Admittance 4V 3V VDS=15V f=1MHz 18 –10 12858 Figure 8. Transducer Gain vs. Gate 1 Source Voltage 20 –25 –15 2.0 12859 0.5 1.0 1.5 2.0 2.5 3.0 Re (y22) ( mS ) Figure 12. Short Circuit Output Admittance www.vishay.de • FaxBack +1-408-970-5600 5 (8) BF996S Vishay Telefunken VDS = 15 V, ID = 10 mA, VG2S = 4 V , Z0 = 50 W S12 S11 j 90° 120° j0.5 150° j0.2 0 60° j2 30° 1300MHz j5 ÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁ 0.2 0.5 1 2 1 5 100 180° 0.08 0.16 0° 100 –j0.2 –j5 –150° 1300MHz –j0.5 –30° –j2 –120° –j 12 968 –60° –90° 12 969 Figure 13. Input reflection coefficient Figure 15. Reverse transmission coefficient S21 S22 j 90° 120° 60° j0.5 150° 500 300 j2 30° 700 j0.2 100 j5 ÁÁÁÁ ÁÁÁÁÁÁ 1300MHz 180° 1 2 0° 0 0.2 0.5 1 2 5 –j0.2 –150° –j5 1300MHz –30° –j0.5 –120° 12 970 1 100 –j2 –60° –90° Figure 14. Forward transmission coefficient www.vishay.de • FaxBack +1-408-970-5600 6 (8) 12 971 –j Figure 16. Output reflection coefficient Document Number 85010 Rev. 3, 20-Jan-99 BF996S Vishay Telefunken Dimensions in mm 96 12240 Document Number 85010 Rev. 3, 20-Jan-99 www.vishay.de • FaxBack +1-408-970-5600 7 (8) BF996S Vishay Telefunken Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 www.vishay.de • FaxBack +1-408-970-5600 8 (8) Document Number 85010 Rev. 3, 20-Jan-99