Not for new design, this product will be obsoleted soon BF998/BF998R/BF998RW Vishay Semiconductors N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode 2 1 Features • • • • • • • • • Integrated gate protection diodes Low noise figure e3 Low feedback capacitance High cross modulation performance Low input capacitance High AGC-range High gain Lead (Pb)-free component Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC SOT143 3 4 2 1 SOT143R 4 3 1 SOT343R 4 Applications 2 3 19216 Electrostatic sensitive device. Observe precautions for handling. • Input and mixer stages in UHF tuners Mechanical Data Pinning: 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 Typ: BF998RW Case: SOT343R Plastic case Weight: approx. 6.0 mg Marking: WMO Pinning: 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 Typ: BF998 Case: SOT143 Plastic case Weight: approx. 8.0 mg Marking: MO Pinning: 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1 Typ: BF998R Case: SOT143R Plastic case Weight: approx. 8.0 mg Marking: MOR Parts Table Part BF998 Ordering code Type Marking Remarks BF998A-GS08 MO SOT143 BF998A BF998A-GS08 MO SOT143 BF998R BF998RA-GS08 MOR SOT143R BF998RA BF998RA-GS08 MOR SOT143R BF998RW BF998RAW-GS08 or BF998RBW-GS08 WMO SOT343R BF998RAW BF998RAW-GS08 WMO SOT343R BF998RBW BF998RBW-GS08 WMO SOT343R Document Number 85011 Rev. 1.8, 05-Sep-08 www.vishay.com 1 BF998/BF998R/BF998RW Vishay Semiconductors Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified Parameter Test condition Symbol Value VDS 12 V ID 30 mA ± IG1/G2SM 10 mA Drain - source voltage Drain current Gate 1/Gate 2 - source peak current Gate 1/Gate 2 - source voltage ± VG1S/G2S 7 V Ptot 200 mW Tamb ≤ 60 °C Total power dissipation Unit Channel temperature TCh 150 °C Storage temperature range Tstg - 65 to + 150 °C Test condition Symbol Value Unit 1) RthChA 450 K/W Thermal Characteristics Parameter Channel ambient 1) on glass fibre printed board (25 x 20 x 1.5) mm3 plated with 35 µm Cu Electrical DC Characteristics Tamb = 25 °C, unless otherwise specified Parameter Symbol Min. ID = 10 μA, - VG1S = - VG2S = 4 V V(BR)DS 12 Gate 1 - source breakdown voltage ± IG1S = 10 mA, VG2S = VDS = 0 ± V(BR)G1SS 7 14 V Gate 2 - source breakdown voltage ± IG2S = 10 mA, VG1S = VDS = 0 ± V(BR)G2SS 7 14 V Gate 1 - source leakage current ± VG1S = 5 V, VG2S = VDS = 0 ± IG1SS 50 nA Gate 2 - source leakage current ± VG2S = 5 V, VG1S = VDS = 0 ± IG2SS 50 nA Drain - source breakdown voltage Drain current Test condition VDS = 8 V, VG1S = 0, VG2S = 4 V Part Typ. Max. Unit V BF998/ BF998R/ BF998RW IDSS 4 18 mA BF998A/ BF998RA/ BF998RAW IDSS 4 10.5 mA IDSS 9.5 BF998RBW 18 mA Gate 1 - source cut-off voltage VDS = 8 V, VG2S = 4 V, ID = 20 μA - VG1S(OFF) 1.0 2.0 V Gate 2 - source cut-off voltage VDS = 8 V, VG1S = 0, ID = 20 μA - VG2S(OFF) 0.6 1.0 V Electrical AC Characteristics Tamb = 25 °C, unless otherwise specified VDS = 8 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz Symbol Min. Typ. Forward transadmittance Parameter |y21s| 21 24 Gate 1 input capacitance Cissg1 2.1 Cissg2 1.1 Feedback capacitance Crss 25 fF Output capacitance Coss 1.05 pF Gate 2 input capacitance www.vishay.com 2 Test condition VG1S = 0, VG2S = 4 V Max. Unit mS 2.5 pF pF Document Number 85011 Rev. 1.8, 05-Sep-08 BF998/BF998R/BF998RW Vishay Semiconductors Parameter Test condition Symbol GS = 2 mS, GL = 0.5 mS, f = 200 MHz Gps GS = 3,3 mS, GL = 1 mS, f = 800 MHz Gps 16.5 VG2S = 4 to -2 V, f = 800 MHz ΔGps 40 GS = 2 mS, GL = 0.5 mS, f = 200 MHz F 1.0 dB GS = 3,3 mS, GL = 1 mS, f = 800 MHz F 1.5 dB Power gain AGC range Noise figure Min. Typ. Max. Unit 28 dB 20 dB dB Common Source S-Parameters Tamb = 25 °C, unless otherwise specified VDS = 8 V, VG2S = 4 V, Z0 = 50 Ω ID/mA f/MHz S11 LOG MAG S21 ANG LOG MAG deg 5 10 15 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 Document Number 85011 Rev. 1.8, 05-Sep-08 - 0.03 - 0.15 - 0.34 - 0.70 - 1.03 - 1.33 - 1.62 - 1.92 - 2.21 - 2.49 - 2.80 - 3.07 - 3.31 - 0.05 - 0.16 - 0.48 - 0.76 - 1.11 - 1.43 - 1.75 - 2.07 - 2.40 - 2.70 - 3.03 - 3.32 - 3.59 - 0.05 - 0.17 - 0.50 - 0.81 - 1.18 - 1.52 - 1.86 - 2.20 - 2.53 - 2.86 - 3.21 - 3.50 - 3.80 - 7.2 - 14.1 - 20.9 - 32.1 - 39.2 - 45.8 - 52.3 - 58.7 - 64.7 - 70.7 - 76.6 - 82.5 - 88.6 - 9.0 - 18.7 - 26.0 - 33.7 - 41.2 - 48.3 - 55.1 - 61.6 - 67.9 - 74.2 - 80.2 - 86.4 - 92.3 - 9.4 - 19.4 - 27.1 - 35.0 - 42.9 - 50.3 - 57.2 - 63.9 - 70.4 - 76.8 - 82.9 - 89.0 - 95.1 S12 ANG LOG MAG deg 5.71 5.51 5.20 2.01 1.45 0.94 0.43 - 0.10 - 0.59 - 1.12 - 1.52 - 1.93 - 2.35 5.19 5.58 4.45 3.95 3.40 2.88 2.39 1.88 1.39 0.90 0.50 0.13 - 0.28 6.07 6.44 5.31 4.80 4.23 3.72 3.22 2.72 2.24 1.74 1.34 0.95 0.56 168.8 157.3 134.7 121.3 108.4 96.5 85.0 74.1 63.6 53.1 43.7 33.6 24.1 165.3 151.8 136.3 123.3 110.9 99.5 88.7 78.1 67.9 57.9 48.7 38.9 29.6 165.4 152.0 136.7 123.8 111.5 100.3 89.6 79.4 69.2 59.4 50.2 40.8 31.5 S22 ANG LOG MAG deg - 55.94 - 50.26 - 48.51 - 46.98 - 46.40 - 46.40 - 47.02 - 47.53 - 47.81 - 48.52 - 48.53 - 46.95 - 44.44 - 56.24 - 49.97 - 47.91 - 46.48 - 45.91 - 45.91 - 46.53 - 47.13 - 47.41 - 48.21 - 48.43 - 47.04 - 44.54 - 55.74 - 49.47 - 47.41 - 45.98 - 45.41 - 45.41 - 46.13 - 46.63 - 47.00 - 47.91 - 48.33 - 47.04 - 44.53 83.6 76.8 67.7 62.8 57.8 57.3 58.9 63.3 73.1 83.5 102.1 120.4 131.7 81.9 75.0 67.2 61.8 56.3 55.8 56.7 60.7 69.9 80.0 98.9 118.2 130.5 81.4 74.6 66.4 60.8 55.1 54.4 54.9 58.5 67.3 76.7 95.2 115.3 128.7 ANG deg - 0.08 - 0.13 - 0.29 - 0.44 - 0.59 - 0.76 - 0.91 - 1.08 - 1.26 - 1.45 - 1.57 - 1.75 - 1.92 - 0.11 - 0.21 - 0.33 - 0.47 - 0.65 - 0.81 - 0.96 - 1.12 - 1.32 - 1.49 - 1.61 - 1.79 - 1.96 - 0.15 - 0.24 - 0.36 - 0.52 - 0.68 - 0.84 - 1.02 - 1.16 - 1.35 - 1.53 - 1.66 - 1.84 - 2.00 - 3.6 - 7.0 - 9.7 - 12.3 - 15.1 - 17.4 - 19.7 - 22.0 - 24.3 - 26.2 - 28.4 - 30.5 - 32.7 - 3.5 - 7.2 - 9.8 - 12.6 - 15.3 - 17.8 - 20.0 - 22.4 - 24.6 - 26.6 - 28.8 - 31.0 - 33.3 - 3.6 - 7.3 - 10.0 - 12.9 - 15.7 - 18.0 - 20.4 - 22.7 - 25.0 - 27.1 - 29.4 - 31.6 - 33.9 www.vishay.com 3 BF998/BF998R/BF998RW Vishay Semiconductors Typical Characteristics Tamb = 25 °C, unless otherwise specified ID - Drain Current (mA) 250 200 150 100 50 16 1V 12 8 0 4 VG1S = - 1 V 0 - 0.6 0 20 40 60 80 100 120 140 160 Tamb - Ambient Temperature (°C) 96 12159 12817 Figure 1. Total Power Dissipation vs. Ambient Temperature 30 V G2S = 4 V 25 ID - Drain Current (mA) 3V 2V 5V VDS = 8 V 0 V G1S = 0.6 V 20 0.4 V 15 0.2 V 10 0 - 0.2 V 5 - 0.4 V 0 0 12812 2 4 6 8 VDS - Drain Source Voltage (V) 20 16 5V 1V 4V 12 8 0 4 0 - 0.8 12816 0.0 0.4 0.8 1.4 V DS = 8 V V G2S = 4 V f = 1 MHz 2.5 2.0 1.5 1.0 0.5 0.0 - 2 - 1.5 -1 - 0.5 0 0.5 1.0 1.5 VG1S - Gate 1 Source Voltage (V) VG2S = 4 V f = 1 MHz 2.5 2.0 1.5 1.0 0.5 0.0 1.2 VG1S - Gate 1 Source Voltage (V) Figure 3. Drain Current vs. Gate 1 Source Voltage www.vishay.com 1.0 Figure 5. Gate 1 Input Capacitance vs. Gate 1 Source Voltage VG2S = - 1 V - 0.4 0.6 3.0 3V 2V 6V 0.2 3.0 12863 Coss - Output Capacitance (pF) ID - Drain Current (mA) VDS = 8 V - 0.2 VG2S - Gate 2 Source Voltage (V) Figure 4. Drain Current vs. Gate 2 Source Voltage 10 Figure 2. Drain Current vs. Drain Source Voltage 4 4V 20 Cissg1 - Gate 1 Input Capacitance (pF) Ptot - Total Power Dissipation (mW) 300 2 12864 4 6 8 10 12 VDS - Drain Source Voltage (V) Figure 6. Output Capacitance vs. Drain Source Voltage Document Number 85011 Rev. 1.8, 05-Sep-08 BF998/BF998R/BF998RW Vishay Semiconductors 10 0 -5 1V - 10 0 - 20 - 0.2 V - 30 S 21 2 0.0 0.5 1.0 400 MHz 20 mA 700 MHz - 30 1000 MHz - 35 1.5 1300 MHz 0 4 8 12 16 20 24 28 32 Re (y21) (mS) 12821 Figure 7. Transducer Gain vs. Gate 1 Source Voltage Figure 10. Short Circuit Forward Transfer Admittance 9 32 VDS = 8 V f = 1 MHz 28 VG2S = 4 V 7 3V 24 20 16 2V 12 f = 1300 MHz 8 Im (y22) (ms) y21s - Forward Transadmittance (ms) 10 mA - 40 - 0.5 VG1S - Gate 1 Source Voltage (V) 12818 I D = 5 mA - 15 f = 100 MHz - 25 VG2S = - 0.8 V - 50 - 1.0 - 10 - 20 - 0.4 V - 40 V DS = 8 V V G2S = 4 V f = 100...1300 MHz 0 Im (y21) (ms) - Transducer Gain (dB) 5 4V 3V 2V f = 800 MHz 8 6 1000 MHz 5 700 MHz 4 3 400 MHz 2 1V 4 1 0 0 0 4 8 12 16 20 24 28 ID - Drain Current (mA) 12819 0 0.00 12822 Figure 8. Forward Transadmittance vs. Drain Current 100 MHz 0.25 0.50 V DS = 15 V V G2S = 4 V I D =10 mA f = 100...1300 MHz 0.75 1.00 1.25 1.50 Re (y22) (mS) Figure 11. Short Circuit Output Admittance 20 f = 1300 MHz 18 16 Im (y11) (ms) 14 1000 MHz 12 10 700 MHz 8 6 V DS = 8 V V G2S = 4 V I D = 10 mA f = 100...1300 MHz 400 MHz 4 2 100 MHz 0 0 2 12820 4 6 8 10 12 14 Re (y11) (mS) Figure 9. Short Circuit Input Admittance Document Number 85011 Rev. 1.8, 05-Sep-08 www.vishay.com 5 BF998/BF998R/BF998RW Vishay Semiconductors VDS = 8 V, ID = 10 mA, VG2S = 4 V, Z0 = 50 Ω S11 S21 j 90 ° 120 ° j0.5 60 ° 700 j2 1000 400 150 ° j0.2 30 ° j5 1300 MHz 100 0 0.2 0.5 1 2 5 180 ° 1 2 0° 100 - j0.2 - j5 1300 MHz 1000 - 150° - j0.5 - 30° - j2 - 120° -j 12960 - 60° - 90° 12962 Figure 14. Forward Transmission Coefficient Figure 12. Input Reflection Coefficient S12 S22 j 90° 120° 60° j0.5 150 ° j2 30° j0.2 1200 1300 MHz j5 200 100 180 ° 0.08 0.16 0 0° 0.2 0.5 1 2 5 100 - j0.2 - 150° - j5 - 30° 1300 MHz - j2 - j0.5 - 120° 12973 - 60° - 90° Figure 13. Reverse Transmission Coefficient www.vishay.com 6 12963 -j Figure 15. Output Reflection Coefficient Document Number 85011 Rev. 1.8, 05-Sep-08 BF998/BF998R/BF998RW Vishay Semiconductors 0.5 [0.020] 0.35 [0.014] 0.5 [0.020] 0.35 [0.014] 1.1 [0.043] 0.9 [0.035] 0.08 [0.003] 0.15 [0.006] 3 [0.118] 2.8 [0.110] 0.1 [0.004] max. Package Dimensions in millimeters (inches): SOT143 2.6 [0.102] 2.35 [0.093] 1.8 [0.071] 1.6 [0.063] 0.5 [0.020] 0.35 [0.014] 0.9 [0.035] 0.75 [0.030] foot print recommendation: 96 12240 1.2 [0.047] 0.8 [0.031] 0.8 [0.031] 2 [0.079] 2 [0.079] 1.8 [0.071] 0.9 [0.035] 0.9 [0.035] 1.4 [0.055] 1.2 [0.047] 1.7 [0.067] 0.8 [0.031] 1.9 [0.075] Package Dimensions in millimeters (inches): SOT143R 96 12239 Document Number 85011 Rev. 1.8, 05-Sep-08 www.vishay.com 7 BF998/BF998R/BF998RW Vishay Semiconductors Package Dimensions in millimeters (inches): SOT343R 96 12238 www.vishay.com 8 Document Number 85011 Rev. 1.8, 05-Sep-08 BF998/BF998R/BF998RW Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Document Number 85011 Rev. 1.8, 05-Sep-08 www.vishay.com 9 Legal Disclaimer Notice Vishay Disclaimer All product specifications and data are subject to change without notice. Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product. Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications. Product names and markings noted herein may be trademarks of their respective owners. Document Number: 91000 Revision: 18-Jul-08 www.vishay.com 1