VISHAY BF998_08

Not for new design, this product will be obsoleted soon
BF998/BF998R/BF998RW
Vishay Semiconductors
N-Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode
2
1
Features
•
•
•
•
•
•
•
•
•
Integrated gate protection diodes
Low noise figure
e3
Low feedback capacitance
High cross modulation performance
Low input capacitance
High AGC-range
High gain
Lead (Pb)-free component
Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
SOT143
3
4
2
1
SOT143R
4
3
1
SOT343R
4
Applications
2
3
19216
Electrostatic sensitive device.
Observe precautions for handling.
• Input and mixer stages in UHF tuners
Mechanical Data
Pinning:
1 = Source, 2 = Drain,
3 = Gate 2, 4 = Gate 1
Typ: BF998RW
Case: SOT343R Plastic case
Weight: approx. 6.0 mg
Marking: WMO
Pinning:
1 = Source, 2 = Drain,
3 = Gate 2, 4 = Gate 1
Typ: BF998
Case: SOT143 Plastic case
Weight: approx. 8.0 mg
Marking: MO
Pinning:
1 = Source, 2 = Drain,
3 = Gate 2, 4 = Gate 1
Typ: BF998R
Case: SOT143R Plastic case
Weight: approx. 8.0 mg
Marking: MOR
Parts Table
Part
BF998
Ordering code
Type Marking
Remarks
BF998A-GS08
MO
SOT143
BF998A
BF998A-GS08
MO
SOT143
BF998R
BF998RA-GS08
MOR
SOT143R
BF998RA
BF998RA-GS08
MOR
SOT143R
BF998RW
BF998RAW-GS08 or
BF998RBW-GS08
WMO
SOT343R
BF998RAW
BF998RAW-GS08
WMO
SOT343R
BF998RBW
BF998RBW-GS08
WMO
SOT343R
Document Number 85011
Rev. 1.8, 05-Sep-08
www.vishay.com
1
BF998/BF998R/BF998RW
Vishay Semiconductors
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Parameter
Test condition
Symbol
Value
VDS
12
V
ID
30
mA
± IG1/G2SM
10
mA
Drain - source voltage
Drain current
Gate 1/Gate 2 - source peak
current
Gate 1/Gate 2 - source voltage
± VG1S/G2S
7
V
Ptot
200
mW
Tamb ≤ 60 °C
Total power dissipation
Unit
Channel temperature
TCh
150
°C
Storage temperature range
Tstg
- 65 to + 150
°C
Test condition
Symbol
Value
Unit
1)
RthChA
450
K/W
Thermal Characteristics
Parameter
Channel ambient
1)
on glass fibre printed board (25 x 20 x 1.5) mm3 plated with 35 µm Cu
Electrical DC Characteristics
Tamb = 25 °C, unless otherwise specified
Parameter
Symbol
Min.
ID = 10 μA, - VG1S = - VG2S = 4 V
V(BR)DS
12
Gate 1 - source breakdown
voltage
± IG1S = 10 mA, VG2S = VDS = 0
± V(BR)G1SS
7
14
V
Gate 2 - source breakdown
voltage
± IG2S = 10 mA, VG1S = VDS = 0
± V(BR)G2SS
7
14
V
Gate 1 - source leakage current
± VG1S = 5 V, VG2S = VDS = 0
± IG1SS
50
nA
Gate 2 - source leakage current
± VG2S = 5 V, VG1S = VDS = 0
± IG2SS
50
nA
Drain - source breakdown
voltage
Drain current
Test condition
VDS = 8 V, VG1S = 0, VG2S = 4 V
Part
Typ.
Max.
Unit
V
BF998/
BF998R/
BF998RW
IDSS
4
18
mA
BF998A/
BF998RA/
BF998RAW
IDSS
4
10.5
mA
IDSS
9.5
BF998RBW
18
mA
Gate 1 - source cut-off voltage
VDS = 8 V, VG2S = 4 V, ID = 20 μA
- VG1S(OFF)
1.0
2.0
V
Gate 2 - source cut-off voltage
VDS = 8 V, VG1S = 0, ID = 20 μA
- VG2S(OFF)
0.6
1.0
V
Electrical AC Characteristics
Tamb = 25 °C, unless otherwise specified
VDS = 8 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz
Symbol
Min.
Typ.
Forward transadmittance
Parameter
|y21s|
21
24
Gate 1 input capacitance
Cissg1
2.1
Cissg2
1.1
Feedback capacitance
Crss
25
fF
Output capacitance
Coss
1.05
pF
Gate 2 input capacitance
www.vishay.com
2
Test condition
VG1S = 0, VG2S = 4 V
Max.
Unit
mS
2.5
pF
pF
Document Number 85011
Rev. 1.8, 05-Sep-08
BF998/BF998R/BF998RW
Vishay Semiconductors
Parameter
Test condition
Symbol
GS = 2 mS, GL = 0.5 mS,
f = 200 MHz
Gps
GS = 3,3 mS, GL = 1 mS,
f = 800 MHz
Gps
16.5
VG2S = 4 to -2 V, f = 800 MHz
ΔGps
40
GS = 2 mS, GL = 0.5 mS,
f = 200 MHz
F
1.0
dB
GS = 3,3 mS, GL = 1 mS,
f = 800 MHz
F
1.5
dB
Power gain
AGC range
Noise figure
Min.
Typ.
Max.
Unit
28
dB
20
dB
dB
Common Source S-Parameters
Tamb = 25 °C, unless otherwise specified
VDS = 8 V, VG2S = 4 V, Z0 = 50 Ω
ID/mA
f/MHz
S11
LOG
MAG
S21
ANG
LOG
MAG
deg
5
10
15
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
Document Number 85011
Rev. 1.8, 05-Sep-08
- 0.03
- 0.15
- 0.34
- 0.70
- 1.03
- 1.33
- 1.62
- 1.92
- 2.21
- 2.49
- 2.80
- 3.07
- 3.31
- 0.05
- 0.16
- 0.48
- 0.76
- 1.11
- 1.43
- 1.75
- 2.07
- 2.40
- 2.70
- 3.03
- 3.32
- 3.59
- 0.05
- 0.17
- 0.50
- 0.81
- 1.18
- 1.52
- 1.86
- 2.20
- 2.53
- 2.86
- 3.21
- 3.50
- 3.80
- 7.2
- 14.1
- 20.9
- 32.1
- 39.2
- 45.8
- 52.3
- 58.7
- 64.7
- 70.7
- 76.6
- 82.5
- 88.6
- 9.0
- 18.7
- 26.0
- 33.7
- 41.2
- 48.3
- 55.1
- 61.6
- 67.9
- 74.2
- 80.2
- 86.4
- 92.3
- 9.4
- 19.4
- 27.1
- 35.0
- 42.9
- 50.3
- 57.2
- 63.9
- 70.4
- 76.8
- 82.9
- 89.0
- 95.1
S12
ANG
LOG
MAG
deg
5.71
5.51
5.20
2.01
1.45
0.94
0.43
- 0.10
- 0.59
- 1.12
- 1.52
- 1.93
- 2.35
5.19
5.58
4.45
3.95
3.40
2.88
2.39
1.88
1.39
0.90
0.50
0.13
- 0.28
6.07
6.44
5.31
4.80
4.23
3.72
3.22
2.72
2.24
1.74
1.34
0.95
0.56
168.8
157.3
134.7
121.3
108.4
96.5
85.0
74.1
63.6
53.1
43.7
33.6
24.1
165.3
151.8
136.3
123.3
110.9
99.5
88.7
78.1
67.9
57.9
48.7
38.9
29.6
165.4
152.0
136.7
123.8
111.5
100.3
89.6
79.4
69.2
59.4
50.2
40.8
31.5
S22
ANG
LOG
MAG
deg
- 55.94
- 50.26
- 48.51
- 46.98
- 46.40
- 46.40
- 47.02
- 47.53
- 47.81
- 48.52
- 48.53
- 46.95
- 44.44
- 56.24
- 49.97
- 47.91
- 46.48
- 45.91
- 45.91
- 46.53
- 47.13
- 47.41
- 48.21
- 48.43
- 47.04
- 44.54
- 55.74
- 49.47
- 47.41
- 45.98
- 45.41
- 45.41
- 46.13
- 46.63
- 47.00
- 47.91
- 48.33
- 47.04
- 44.53
83.6
76.8
67.7
62.8
57.8
57.3
58.9
63.3
73.1
83.5
102.1
120.4
131.7
81.9
75.0
67.2
61.8
56.3
55.8
56.7
60.7
69.9
80.0
98.9
118.2
130.5
81.4
74.6
66.4
60.8
55.1
54.4
54.9
58.5
67.3
76.7
95.2
115.3
128.7
ANG
deg
- 0.08
- 0.13
- 0.29
- 0.44
- 0.59
- 0.76
- 0.91
- 1.08
- 1.26
- 1.45
- 1.57
- 1.75
- 1.92
- 0.11
- 0.21
- 0.33
- 0.47
- 0.65
- 0.81
- 0.96
- 1.12
- 1.32
- 1.49
- 1.61
- 1.79
- 1.96
- 0.15
- 0.24
- 0.36
- 0.52
- 0.68
- 0.84
- 1.02
- 1.16
- 1.35
- 1.53
- 1.66
- 1.84
- 2.00
- 3.6
- 7.0
- 9.7
- 12.3
- 15.1
- 17.4
- 19.7
- 22.0
- 24.3
- 26.2
- 28.4
- 30.5
- 32.7
- 3.5
- 7.2
- 9.8
- 12.6
- 15.3
- 17.8
- 20.0
- 22.4
- 24.6
- 26.6
- 28.8
- 31.0
- 33.3
- 3.6
- 7.3
- 10.0
- 12.9
- 15.7
- 18.0
- 20.4
- 22.7
- 25.0
- 27.1
- 29.4
- 31.6
- 33.9
www.vishay.com
3
BF998/BF998R/BF998RW
Vishay Semiconductors
Typical Characteristics
Tamb = 25 °C, unless otherwise specified
ID - Drain Current (mA)
250
200
150
100
50
16
1V
12
8
0
4
VG1S = - 1 V
0
- 0.6
0
20
40
60
80 100 120 140 160
Tamb - Ambient Temperature (°C)
96 12159
12817
Figure 1. Total Power Dissipation vs. Ambient Temperature
30
V G2S = 4 V
25
ID - Drain Current (mA)
3V
2V
5V
VDS = 8 V
0
V G1S = 0.6 V
20
0.4 V
15
0.2 V
10
0
- 0.2 V
5
- 0.4 V
0
0
12812
2
4
6
8
VDS - Drain Source Voltage (V)
20
16
5V
1V
4V
12
8
0
4
0
- 0.8
12816
0.0
0.4
0.8
1.4
V DS = 8 V
V G2S = 4 V
f = 1 MHz
2.5
2.0
1.5
1.0
0.5
0.0
- 2 - 1.5
-1
- 0.5
0
0.5
1.0
1.5
VG1S - Gate 1 Source Voltage (V)
VG2S = 4 V
f = 1 MHz
2.5
2.0
1.5
1.0
0.5
0.0
1.2
VG1S - Gate 1 Source Voltage (V)
Figure 3. Drain Current vs. Gate 1 Source Voltage
www.vishay.com
1.0
Figure 5. Gate 1 Input Capacitance vs. Gate 1 Source Voltage
VG2S = - 1 V
- 0.4
0.6
3.0
3V
2V
6V
0.2
3.0
12863
Coss - Output Capacitance (pF)
ID - Drain Current (mA)
VDS = 8 V
- 0.2
VG2S - Gate 2 Source Voltage (V)
Figure 4. Drain Current vs. Gate 2 Source Voltage
10
Figure 2. Drain Current vs. Drain Source Voltage
4
4V
20
Cissg1 - Gate 1 Input Capacitance (pF)
Ptot - Total Power Dissipation (mW)
300
2
12864
4
6
8
10
12
VDS - Drain Source Voltage (V)
Figure 6. Output Capacitance vs. Drain Source Voltage
Document Number 85011
Rev. 1.8, 05-Sep-08
BF998/BF998R/BF998RW
Vishay Semiconductors
10
0
-5
1V
- 10
0
- 20
- 0.2 V
- 30
S 21
2
0.0
0.5
1.0
400 MHz
20 mA
700 MHz
- 30
1000 MHz
- 35
1.5
1300 MHz
0
4
8
12
16
20
24
28
32
Re (y21) (mS)
12821
Figure 7. Transducer Gain vs. Gate 1 Source Voltage
Figure 10. Short Circuit Forward Transfer Admittance
9
32
VDS = 8 V
f = 1 MHz
28
VG2S = 4 V
7
3V
24
20
16
2V
12
f = 1300 MHz
8
Im (y22) (ms)
y21s - Forward Transadmittance (ms)
10 mA
- 40
- 0.5
VG1S - Gate 1 Source Voltage (V)
12818
I D = 5 mA
- 15
f = 100 MHz
- 25
VG2S = - 0.8 V
- 50
- 1.0
- 10
- 20
- 0.4 V
- 40
V DS = 8 V
V G2S = 4 V
f = 100...1300 MHz
0
Im (y21) (ms)
- Transducer Gain (dB)
5
4V
3V
2V
f = 800 MHz
8
6
1000 MHz
5
700 MHz
4
3
400 MHz
2
1V
4
1
0
0
0
4
8
12
16
20
24
28
ID - Drain Current (mA)
12819
0
0.00
12822
Figure 8. Forward Transadmittance vs. Drain Current
100 MHz
0.25
0.50
V DS = 15 V
V G2S = 4 V
I D =10 mA
f = 100...1300 MHz
0.75
1.00
1.25
1.50
Re (y22) (mS)
Figure 11. Short Circuit Output Admittance
20
f = 1300 MHz
18
16
Im (y11) (ms)
14
1000 MHz
12
10
700 MHz
8
6
V DS = 8 V
V G2S = 4 V
I D = 10 mA
f = 100...1300 MHz
400 MHz
4
2
100 MHz
0
0
2
12820
4
6
8
10
12
14
Re (y11) (mS)
Figure 9. Short Circuit Input Admittance
Document Number 85011
Rev. 1.8, 05-Sep-08
www.vishay.com
5
BF998/BF998R/BF998RW
Vishay Semiconductors
VDS = 8 V, ID = 10 mA, VG2S = 4 V, Z0 = 50 Ω
S11
S21
j
90 °
120 °
j0.5
60 °
700
j2
1000
400
150 °
j0.2
30 °
j5
1300 MHz
100
0
0.2
0.5
1
2
5
180 °
1
2
0°
100
- j0.2
- j5
1300 MHz
1000
- 150°
- j0.5
- 30°
- j2
- 120°
-j
12960
- 60°
- 90°
12962
Figure 14. Forward Transmission Coefficient
Figure 12. Input Reflection Coefficient
S12
S22
j
90°
120°
60°
j0.5
150 °
j2
30°
j0.2
1200
1300 MHz
j5
200
100
180 °
0.08
0.16
0
0°
0.2
0.5
1
2
5
100
- j0.2
- 150°
- j5
- 30°
1300 MHz
- j2
- j0.5
- 120°
12973
- 60°
- 90°
Figure 13. Reverse Transmission Coefficient
www.vishay.com
6
12963
-j
Figure 15. Output Reflection Coefficient
Document Number 85011
Rev. 1.8, 05-Sep-08
BF998/BF998R/BF998RW
Vishay Semiconductors
0.5 [0.020]
0.35 [0.014]
0.5 [0.020]
0.35 [0.014]
1.1 [0.043]
0.9 [0.035]
0.08 [0.003]
0.15 [0.006]
3 [0.118]
2.8 [0.110]
0.1 [0.004] max.
Package Dimensions in millimeters (inches): SOT143
2.6 [0.102]
2.35 [0.093]
1.8 [0.071]
1.6 [0.063]
0.5 [0.020]
0.35 [0.014]
0.9 [0.035]
0.75 [0.030]
foot print recommendation:
96 12240
1.2 [0.047]
0.8 [0.031]
0.8 [0.031]
2 [0.079]
2 [0.079]
1.8 [0.071]
0.9 [0.035] 0.9 [0.035]
1.4 [0.055]
1.2 [0.047]
1.7 [0.067]
0.8 [0.031]
1.9 [0.075]
Package Dimensions in millimeters (inches): SOT143R
96 12239
Document Number 85011
Rev. 1.8, 05-Sep-08
www.vishay.com
7
BF998/BF998R/BF998RW
Vishay Semiconductors
Package Dimensions in millimeters (inches): SOT343R
96 12238
www.vishay.com
8
Document Number 85011
Rev. 1.8, 05-Sep-08
BF998/BF998R/BF998RW
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Document Number 85011
Rev. 1.8, 05-Sep-08
www.vishay.com
9
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1