PHILIPS TDA8766G

INTEGRATED CIRCUITS
DATA SHEET
TDA8766
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
Product specification
Supersedes data of 1995 Mar 22
File under Integrated Circuits, IC02
1996 Mar 20
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
FEATURES
APPLICATIONS
• 10-bit resolution
High-speed analog-to-digital conversion for:
• 2.7 to 5.25 V operation
• Video data digitizing
• Sampling rate up to 20 MHz
• Camera
• DC sampling allowed
• Camcorder
• High signal-to-noise ratio over a large analog input
frequency range (9.3 effective bits at 1.0 MHz full-scale
input at fclk = 20 MHz)
• Radio communication.
GENERAL DESCRIPTION
• In range (IR) CMOS output
The TDA8766 is a 10-bit high-speed analog-to-digital
converter (ADC) for professional video and other
applications. It converts with 2.7 to 5.25 V operation the
analog input signal into 10-bit binary-coded digital words at
a maximum sampling rate of 20 MHz. All digital inputs and
outputs are CMOS compatible. A standby mode allows
reduction of the device power consumption down to 4 mW.
• CMOS/TTL compatible digital inputs and outputs
• External reference voltage regulator
• Power dissipation only 53 mW (typical)
• Low analog input capacitance, no buffer amplifier
required
• Standby mode
• No sample-and-hold circuit required.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDDA
analog supply voltage
2.7
3.3
5.25
V
VDDD1
digital supply voltage 1
2.7
3.3
5.25
V
VDDD2
digital supply voltage 2
2.7
3.3
5.25
V
VDDO
output stages supply voltage
2.5
3.3
5.25
V
IDDA
analog supply current
−
7.5
10
mA
IDDD
digital supply current
−
7.5
10
mA
IDDO
output stages supply current
fclk = 20 MHz; CL = 20 pF;
ramp input
−
1
2
mA
INL
integral non-linearity
fclk = 20 MHz; ramp input
−
±1
±2
LSB
DNL
differential non-linearity
fclk = 20 MHz; ramp input
−
±0.25
±0.7
LSB
fclk(max)
maximum clock frequency
20
−
−
MHz
Ptot
total power dissipation
−
53
73
mW
VDDA = VDDD = VDDO = 3.3 V
ORDERING INFORMATION
TYPE
NUMBER
TDA8766G
1996 Mar 20
PACKAGE
NAME
DESCRIPTION
VERSION
LQFP32
plastic low profile quad flat package; 32 leads; body 5 × 5 × 1.4 mm
SOT401-1
2
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
BLOCK DIAGRAM
handbook, full pagewidth
V DDA
CLK
VDDD2
OE
7
5
18
16
6
CLOCK DRIVER
STDBY
TDA8766
V RT 15
1 D9
31 D8
MSB
30 D7
RLAD
analog
voltage input
VI
29 D6
28 D5
14
ANALOG -TO - DIGITAL
CONVERTER
CMOS
OUTPUTS
LATCHES
27 D4
data outputs
26 D3
V RM 11
25 D2
23 D1
22 D0
20
VRB 10
CMOS
OUTPUT
IN RANGE LATCH
2
4
9
VSSA
analog
ground
19
VSSD2
21
VSSO
digital
ground 2
output
ground
Fig.1 Block diagram.
1996 Mar 20
3
3
VSSD1
digital
ground 1
MLC853
LSB
VDDO
IR
output
VDDD1
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
PINNING
SYMBOL PIN
DESCRIPTION
SYMBOL PIN
DESCRIPTION
D9
1
data output; bit 9 (MSB)
VDDD2
18
digital supply voltage 2 (2.7 to 5.25 V)
IR
2
in range data output
VSSD2
19
digital ground 2
VSSD1
3
digital ground 1
VDDO
20
VDDD1
4
digital supply voltage 1 (2.7 to 5.25 V)
positive supply voltage for output
stage (2.5 to 5.25 V)
CLK
5
clock input
VSSO
21
digital output ground
22
data output; bit 0 (LSB)
STDBY
6
standby mode input
D0
VDDA
7
analog supply voltage (2.7 to 5.25 V)
D1
23
data output; bit 1
n.c.
8
not connected
n.c.
24
not connected
VSSA
9
analog ground
D2
25
data output; bit 2
26
data output; bit 3
VRB
10
reference voltage BOTTOM input
D3
VRM
11
reference voltage MIDDLE
D4
27
data output; bit 4
n.c.
12
not connected
D5
28
data output; bit 5
29
data output; bit 6
30
data output; bit 7
VRT
15
reference voltage TOP input
D8
31
data output; bit 8
n.c.
32
not connected
OE
16
output enable input
n.c.
17
not connected
32 n.c.
handbook, full pagewidth
index
corner
D9
1
24 n.c.
IR
2
23 D1
VSSD1
3
22 D0
VDDD1
4
CLK
5
20 VDDO
STDBY
6
19 VSSD2
VDDA
7
18 VDDD2
n.c.
8
17 n.c.
21 VSSO
4
OE 16
VRT 15
VI 14
n.c. 13
n.c. 12
VRM 11
VRB 10
VSSA
9
TDA8766
Fig.2 Pin configuration.
1996 Mar 20
25 D2
D7
26 D3
analog input voltage
27 D4
14
28 D5
VI
29 D6
not connected
30 D7
13
31 D8
n.c.
D6
MLC854
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VDDA
analog supply voltage
note 1
−0.3
+7.0
V
VDDD1, VDDD2
digital supply voltages
note 1
−0.3
+7.0
V
VDDO
output stages supply voltage
note 1
−0.3
+7.0
V
∆VDD
supply voltage difference
VDDA − VDDD
−1.0
+4.0
V
VDDD − VDDO
−1.0
+4.0
V
−1.0
+4.0
V
VI
input voltage
VDDA − VDDO
referenced to VSSA
−0.3
+7.0
V
Vclk(p-p)
AC input voltage for switching
(peak-to-peak value)
referenced to VSSD
−
VDDD
V
IO
output current
−
10
mA
Tstg
storage temperature
−55
+150
°C
Tamb
operating ambient temperature
−20
+75
°C
Tj
junction temperature
−
+150
°C
Note
1. The supply voltages VDDA, VDDD and VDDO may have any value between −0.3 V and +7.0 V provided that the supply
voltage differences ∆VDD are respected.
HANDLING
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling integrated circuits.
THERMAL CHARACTERISTICS
SYMBOL
Rth j-a
1996 Mar 20
PARAMETER
thermal resistance from junction to ambient in free air
5
VALUE
UNIT
90
K/W
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
CHARACTERISTICS
VDDA = V7 to V9 = 3.3 V; VDDD = V4 to V3 = V18 to V19 = 3.3 V; VDDO = V20 to V21 = 3.3 V; VSSA, VSSD and VSSO
short-circuited together; Vi(p-p) = 1.83 V; CL = 20 pF; Tamb = 0 to +70 °C; typical values measured at Tamb = 25 °C;
unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supply
VDDA
analog supply voltage
2.7
3.3
5.25
V
VDDD1
digital supply voltage 1
2.7
3.3
5.25
V
VDDD2
digital supply voltage 2
2.7
3.3
5.25
V
VDDO
output stages supply voltage
2.5
3.3
5.25
V
∆VDD
voltage difference
VDDA − VDDD
−0.2
−
+0.2
V
VDDA − VDDO
−0.2
−
+3.0
V
VDDD − VDDO
−0.2
−
+3.0
V
IDDA
analog supply current
−
7.5
10
mA
IDDD
digital supply current
−
7.5
10
mA
IDDO
output stages supply current
−
1
2
mA
fclk = 20 MHz;
ramp input; CL = 20 pF
Inputs
CLOCK INPUT CLK (REFERENCED TO VSSD); see note 1
VIL
LOW level input voltage
0
−
0.3VDDD
V
VIH
HIGH level input voltage
0.7VDDD
−
VDDD
V
VDDD ≤ 3.6 V
0.6VDDD
−
VDDD
V
IIL
LOW level input current
Vclk = 0.3VDDD
−1
0
+1
µA
IIH
HIGH level input current
Vclk = 0.7VDDD
−
−
5
µA
ZI
input impedance
fclk = 20 MHz
−
4
−
kΩ
CI
input capacitance
fclk = 20 MHz
−
3
−
pF
0
−
0.3VDDD
V
INPUTS OE AND STDBY (REFERENCED TO VSSD); see Table 3
VIL
LOW level input voltage
VIH
HIGH level input voltage
0.7VDDD
−
VDDD
V
VDDD ≤ 3.6 V
0.6VDDD
−
VDDD
V
IIL
LOW level input current
VIL = 0.3VDDD
−1
−
−
µA
IIH
HIGH level input current
VIH = 0.7VDDD
−
−
+1
µA
VI (ANALOG INPUT VOLTAGE REFERENCED TO VSSA)
IIL
LOW level input current
VI = VRB
−
0
−
µA
IIH
HIGH level input current
VI = VRT
−
35
−
µA
ZI
input impedance
fi = 1 MHz
−
5
−
kΩ
CI
input capacitance
fi = 1 MHz
−
8
−
pF
1996 Mar 20
6
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
SYMBOL
TDA8766
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Reference voltages for the resistor ladder; see Table 1
1.1
1.2
−
V
2.7
3.3
VDDA
V
differential reference voltage
VRT − VRB
1.5
2.1
2.7
V
Iref
reference current
−
7.2
−
mA
RLAD
resistor ladder
−
290
−
Ω
TCRLAD
temperature coefficient of the resistor
ladder
−
1860
−
ppm
−
539
−
mΩ/K
VosB
offset voltage BOTTOM
note 2
−
135
−
mV
VosT
offset voltage TOP
note 2
−
135
−
mV
Vi(p-p)
analog input voltage
(peak-to-peak value)
note 3
1.4
1.83
2.4
V
−
VRB
reference voltage BOTTOM
VRT
reference voltage TOP
Vdiff
VTOP ≤ VDDA
Outputs
DIGITAL OUTPUTS D9 TO D0 AND IR (REFERENCED TO VSSD)
VOL
LOW level output voltage
IO = 1 mA
0
0.5
V
VOH
HIGH level output voltage
IO = −1 mA
VDDO − 0.5 −
VDDO
V
IOZ
output current in 3-state mode
0.5 V < VO < VDDO
−20
−
+20
µA
Switching characteristics
CLOCK INPUT CLK; see Fig.4; note 1
fclk(max)
maximum clock frequency
20
−
−
MHz
tCPH
clock pulse width HIGH
15
−
−
ns
tCPL
clock pulse width LOW
15
−
−
ns
Analog signal processing
LINEARITY
INL
integral non-linearity
fclk = 20 MHz;
ramp input; (see Fig.6)
−
±1
±2
LSB
DNL
differential non-linearity
fclk = 20 MHz;
ramp input; (see Fig.7)
−
±0.25
±0.7
LSB
INPUT SET RESPONSE (fclk = 20 MHz; see Fig.8; note 4)
tSTLH
analog input settling time
LOW-to-HIGH
full-scale square wave
−
4
6
ns
tSTHL
analog input settling time
HIGH-to-LOW
full-scale square wave
−
4
6
ns
fi = 1 MHz
−
−63
−
dB
without harmonics;
fclk = 20 MHz;
fi = 1 MHz
−
60
−
dB
HARMONICS; (fclk = 20 MHZ; see Fig.9; note 5)
THD
total harmonic distortion
SIGNAL-TO-NOISE RATIO; see Fig.9; note 5
S/N
1996 Mar 20
signal-to-noise ratio (full scale)
7
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
SYMBOL
TDA8766
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
EFFECTIVE BITS; see Fig.9; note 5
EB
effective bits
fclk = 20 MHz
fi = 300 kHz
−
9.5
−
bits
fi = 1 MHz
−
9.3
−
bits
fi = 3.58 MHz
−
8.0
−
bits
Timing (fclk = 20 MHz; CL = 20 pF); see Fig.4; note 6
tds
sampling delay time
−
−
5
ns
th
output hold time
5
−
−
ns
td
output delay time
VDDO = 4.75 V
8
12
15
ns
VDDO = 3.15 V
8
17
20
ns
VDDO = 2.7 V
8
21
24
ns
3-state output delay times; see Fig.5
tdZH
enable HIGH
−
14
18
ns
tdZL
enable LOW
−
16
20
ns
tdHZ
disable HIGH
−
16
20
ns
tdLZ
disable LOW
−
14
18
ns
Standby mode output delay times
tdSTBLH
standby (LOW-to-HIGH transition)
−
−
200
ns
tdSTBHL
start-up (HIGH-to-LOW transition)
−
−
500
ns
Notes
1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock
must not be less than 1 ns.
2. Analog input voltages producing code 0 up to and including 1023:
a) VosB (voltage offset BOTTOM) is the difference between the analog input which produces data equal to 00 and
the reference voltage BOTTOM (VRB) at Tamb = 25 °C.
b) VosT (voltage offset TOP) is the difference between VRT (reference voltage TOP) and the analog input which
produces data outputs equal to 1023 at Tamb = 25 °C.
3. In order to ensure the optimum linearity performance of such converter architecture the lower and upper extremities
of the converter reference resistor ladder (corresponding to output codes 0 and 1023 respectively) are connected to
pins VRB and VRT via offset resistors ROB and ROT as shown in Fig.3.
V RT – V RB
a) The current flowing into the resistor ladder is IL = ------------------------------------------ and the full-scale input range at the converter,
R OB + R L + R OT
RL
to cover code 0 to code 1023, is V I = R L × I L = ------------------------------------------ × ( V RT – V RB ) = 0.871 × ( V RT – V RB )
R OB + R L + R OT
b) Since RL, ROB and ROT have similar behaviour with respect to process and temperature variation, the ratio
RL
----------------------------------------- will be kept reasonably constant from part to part. Consequently variation of the output codes
R OB + R L + R OT
at a given input voltage depends mainly on the difference VRT − VRB and its variation with temperature and supply
voltage. When several ADCs are connected in parallel and fed with the same reference source, the matching
between each of them is then optimized.
1996 Mar 20
8
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
4. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale
input (square-wave signal) in order to sample the signal and obtain correct output data.
5. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8K acquisition points per equivalent
fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency
(NYQUIST frequency). Conversion to signal-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.
6. Output data acquisition: the output data is available after the maximum delay time of td.
handbook, halfpage
VRT
ROT
code 1023
RL
VRM
RLAD
IL
code 0
ROB
VRB
MGD281
Fig.3 Explanation of note 3.
1996 Mar 20
9
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
Table 1
TDA8766
Output coding and input voltage (typical values; referenced to VSSA)
BINARY OUTPUT BITS
VI(p-p)
(V)
IR
Underflow
<1.335
0
STEP
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
0
0
0
1.335
1
0
0
0
0
0
0
0
0
0
0
1
.
1
0
0
0
0
0
0
0
0
0
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1022
.
1
1
1
1
1
1
1
1
1
1
0
1023
3.165
1
1
1
1
1
1
1
1
1
1
1
Overflow
>3.165
0
1
1
1
1
1
1
1
1
1
1
Table 2
Mode selection
OE
Table 3
D9 TO D0
IR
1
high impedance
high impedance
0
active; binary
active
Standby selection
STDBY
IDDA + IDDD (typ.)
D9 TO D0
1
last logic state
1.2 mA
0
active
15 mA
t CPL
handbook, full pagewidth
t CPH
50%
CLK
sample N
sample N + 1
sample N + 2
Vl
t ds
DATA
D0 to D9
th
VDDO
DATA
N-2
DATA
N-1
DATA
N
DATA
N+1
50%
0V
td
Fig.4 Timing diagram.
1996 Mar 20
10
MGD346
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
handbook, full pagewidth
TDA8766
V DDD
50 %
OE
t dHZ
t dZH
HIGH
90 %
output
data
50 %
t dLZ
LOW
t dZL
HIGH
output
data
50 %
LOW
10 %
V DDD
3.3 kΩ
S1
TDA8766
20 pF
TEST
S1
t dLZ
t dZL
VDDD
VDDD
t dHZ
GND
t dZH
GND
OE
MLC855
fOE = 100 kHz.
Fig.5 Timing diagram and test conditions of 3-state output delay time.
1996 Mar 20
11
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
MLD115
0.6
handbook, full pagewidth
A
(LSB)
0.4
0.2
0
−0.2
−0.4
−0.6
0
200
400
600
800
1000
f (codes)
1100
1023
Fig.6 Typical integral non-linearity (INL) performance.
MLD116
0.25
handbook, full pagewidth
A
(LSB)
0.15
0.05
−0.05
−0.15
−0.25
0
200
400
600
800
1000
f (codes)
Fig.7 Typical differential non-linearity (DNL) performance.
1996 Mar 20
12
1023
1100
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
t STHL
t STLH
handbook, full pagewidth
code 1023
VI
50 %
50 %
code 0
5 ns
5 ns
CLK
50 %
50 %
2 ns
MBD875
2 ns
Fig.8 Analog input settling-time diagram.
MLD117
0
handbook, full pagewidth
A
(dB)
20
40
60
80
100
120
0
1.25
2.5
3.76
5.01
6.26
7.51
8.76
10
f (MHz)
Effective bits: 9.59; THD = −76.60 dB.
Harmonic levels (dB): 2nd = −81.85; 3rd = −87.56; 4th = −88.81; 5th = −88.96; 6th = −79.58.
Fig.9 Typical Fast Fourier Transform (fclk = 20 MHz; fi = 1 MHz).
1996 Mar 20
13
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
INTERNAL PIN CONFIGURATIONS
handbook, halfpage
handbook, halfpage
V DDO
V DDA
D9 to D0
IR
VI
V SSO
VSSA
MLC856
MLC857
Fig.10 CMOS data and In Range (IR) outputs.
Fig.11 Analog inputs.
handbook, halfpage
handbook, halfpage
VDDA
V DDO
VRT
VRM
OE
(STDBY)
VRB
VSSA
V SSO
MLC859
MLC858
Fig.12 OE (STDBY) input.
1996 Mar 20
R LAD
Fig.13 VRB, VRM and VRT.
14
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
V
DDD
handbook,
halfpage
1/2V
CLK
DDD
VSSD
MLC860
Fig.14 CLK input.
1996 Mar 20
15
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
APPLICATION INFORMATION
Additional application information will be supplied upon request (please quote number “AN96012”).
handbook, full pagewidth
(2)
n.c.
32
D9
IR
V SSD1
VDDD1
CLK
STDBY
VDDA
D8
31
D7
30
D6
29
D5
D4
28
27
D3
26
D2
25
(2)
1
24
2
23
3
22
4
21
TDA8766
5
20
6
19
7
18
8
17
(2)
n.c.
n.c.
D1
D0
VSSO
VDDO
VSSD2
VDDD2
(2)
9
10
VSSA
100
nF
11
12
13
VRB(1) VRM (1) n.c.(2)
(3)
VSSA
14
(2)
n.c.
15
VI (4)
VRT
n.c.
16
(1) OE
MLC861
100
nF
VSSA
100
nF
VSSA
The analog and digital supplies should be separated and decoupled.
The external voltage reference generator must be built such that a good supply voltage ripple rejection is achieved with respect to the LSB value.
Eventually, the reference ladder voltages can be derived from a well regulated VDDA supply through a resistor bridge and a decoupled capacitor.
(1) VRB, VRM and VRT are decoupled to VSSA.
(2) Pins 8, 12, 13, 17, 24 and 32 should be connected to the closest ground pin in order to prevent noise influence.
(3) When VRM is not used, pin 11 can be left open, avoiding the decoupling capacitor. In any case, pin 11 must not be grounded.
(4) When analog input signal is AC coupled, an input bias or a clamping level must be applied to VI input (pin 14).
Fig.15 Application diagram.
1996 Mar 20
16
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
PACKAGE OUTLINE
SOT401-1
LQFP32: plastic low profile quad flat package; 32 leads; body 5 x 5 x 1.4 mm
c
y
X
A
17
24
ZE
16
25
e
A A2
E HE
(A 3)
A1
w M
pin 1 index
θ
bp
32
Lp
9
L
1
8
detail X
ZD
e
v M A
w M
bp
D
B
HD
v M B
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HD
HE
L
Lp
v
w
y
mm
1.60
0.15
0.05
1.5
1.3
0.25
0.27
0.17
0.18
0.12
5.1
4.9
5.1
4.9
0.5
7.15
6.85
7.15
6.85
1.0
0.75
0.45
0.2
0.12
0.1
Z D (1) Z E (1)
θ
0.95
0.55
7
0o
0.95
0.55
o
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
95-12-19
97-08-04
SOT401-1
1996 Mar 20
EUROPEAN
PROJECTION
17
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
If wave soldering cannot be avoided, the following
conditions must be observed:
SOLDERING
Introduction
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave)
soldering technique should be used.
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
• The footprint must be at an angle of 45° to the board
direction and must incorporate solder thieves
downstream and at the side corners.
Even with these conditions, do not consider wave
soldering LQFP packages LQFP48 (SOT313-2),
LQFP64 (SOT314-2) or LQFP80 (SOT315-1).
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “IC Package Databook” (order code 9398 652 90011).
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Reflow soldering
Reflow soldering techniques are suitable for all LQFP
packages.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
Repairing soldered joints
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
Wave soldering
Wave soldering is not recommended for LQFP packages.
This is because of the likelihood of solder bridging due to
closely-spaced leads and the possibility of incomplete
solder penetration in multi-lead devices.
1996 Mar 20
18
Philips Semiconductors
Product specification
10-bit high-speed 2.7 to 5.25 V
analog-to-digital converter
TDA8766
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1996 Mar 20
19
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02) 805 4455, Fax. (02) 805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. (01) 60 101-1256, Fax. (01) 60 101-1250
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211,
Volodarski Str. 6, 220050 MINSK,
Tel. (172) 200 733, Fax. (172) 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. (359) 2 689 211, Fax. (359) 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:
Tel. (800) 234-7381, Fax. (708) 296-8556
Chile: see South America
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. (852) 2319 7888, Fax. (852) 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300
COPENHAGEN S, Tel. (032) 88 2636, Fax. (031) 57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (358) 0-615 800, Fax. (358) 0-61580 920
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex,
Tel. (01) 4099 6161, Fax. (01) 4099 6427
Germany: P.O. Box 10 51 40, 20035 HAMBURG,
Tel. (040) 23 53 60, Fax. (040) 23 53 63 00
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01) 4894 339/4894 911, Fax. (01) 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block,
Dr. Annie Besant Rd. Worli, BOMBAY 400 018
Tel. (022) 4938 541, Fax. (022) 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01) 7640 000, Fax. (01) 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. (03) 645 04 44, Fax. (03) 648 10 07
Italy: PHILIPS SEMICONDUCTORS,
Piazza IV Novembre 3, 20124 MILANO,
Tel. (0039) 2 6752 2531, Fax. (0039) 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108, Tel. (03) 3740 5130, Fax. (03) 3740 5077
Korea: Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02) 709-1412, Fax. (02) 709-1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03) 750 5214, Fax. (03) 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO,
TEXAS 79905, Tel. 9-5(800) 234-7831, Fax. (708) 296-8556
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. (040) 2783749, Fax. (040) 2788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09) 849-4160, Fax. (09) 849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022) 74 8000, Fax. (022) 74 8341
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC,
MAKATI, Metro MANILA,
Tel. (63) 2 816 6380, Fax. (63) 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. (022) 612 2831, Fax. (022) 612 2327
Portugal: see Spain
Romania: see Italy
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65) 350 2000, Fax. (65) 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd.,
195-215 Main Road Martindale, 2092 JOHANNESBURG,
P.O. Box 7430 Johannesburg 2000,
Tel. (011) 470-5911, Fax. (011) 470-5494
South America: Rua do Rocio 220 - 5th floor, Suite 51,
CEP: 04552-903-SÃO PAULO-SP, Brazil,
P.O. Box 7383 (01064-970),
Tel. (011) 821-2333, Fax. (011) 829-1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03) 301 6312, Fax. (03) 301 4107
Sweden: Kottbygatan 7, Akalla. S-16485 STOCKHOLM,
Tel. (0) 8-632 2000, Fax. (0) 8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01) 488 2211, Fax. (01) 481 77 30
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. (66) 2 745-4090, Fax. (66) 2 398-0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. (0212) 279 2770, Fax. (0212) 282 6707
Ukraine: PHILIPS UKRAINE,
2A Akademika Koroleva str., Office 165, 252148 KIEV,
Tel. 380-44-4760297, Fax. 380-44-4766991
United Kingdom: Philips Semiconductors LTD.,
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,
Tel. (0181) 730-5000, Fax. (0181) 754-8421
United States: 811 East Arques Avenue, SUNNYVALE,
CA 94088-3409, Tel. (800) 234-7381, Fax. (708) 296-8556
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. (381) 11 825 344, Fax. (359) 211 635 777
Internet: http://www.semiconductors.philips.com/ps/
For all other countries apply to: Philips Semiconductors,
Marketing & Sales Communications, Building BE-p,
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,
Fax. +31-40-2724825
SCDS48
© Philips Electronics N.V. 1996
All rights are reserved. Reproduction in whole or in part is prohibited without the
prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation
or contract, is believed to be accurate and reliable and may be changed without
notice. No liability will be accepted by the publisher for any consequence of its
use. Publication thereof does not convey nor imply any license under patent- or
other industrial or intellectual property rights.
Printed in The Netherlands
537021/1100/02/pp20
Document order number:
Date of release: 1996 Mar 20
9397 750 00746