PHILIPS TDA8765H/5

INTEGRATED CIRCUITS
DATA SHEET
TDA8765
10-bit high-speed Analog-to-Digital
Converter (ADC)
Preliminary specification
Supersedes data of 1998 May 08
File under Integrated Circuits, IC02
1999 Jan 06
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
FEATURES
APPLICATIONS
• 10-bit resolution
• High-speed analog-to-digital conversion for
• Sampling rate up to 55 MHz
– Video signal digitizing
• −3 dB bandwidth of 200 MHz
– High Definition TV (HDTV)
• 5 V power supplies
– Imaging (camera scanner)
• Binary or twos-complement CMOS outputs
– Medical imaging
• In-range CMOS-compatible output
– Telecommunication
• TLL- CMOS-compatible static digital inputs
– Base-station receiver.
• 3 to 5 V CMOS-compatible digital outputs
• Differential clock input; Positive Emitter Coupled Logic
(PECL) compatible
GENERAL DESCRIPTION
The TDA8765 is a bipolar 10-bit Analog-to-Digital
Converter (ADC) optimized for telecommunications and
professional imaging. It converts the analog input signal
into 10-bit binary coded digital words at a maximum
sampling rate of 55 MHz. All static digital inputs (SH, CE
and OTC) are TTL and CMOS compatible and all outputs
are CMOS compatible. A sine wave clock input signal can
also be used.
• Power dissipation 325 mW (typical)
• Low analog input capacitance (typical 2 pF), no buffer
amplifier required
• Integrated sample-and-hold amplifier
• Differential analog input
• External amplitude range control
• Voltage controlled regulator included.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCCA
analog supply voltage
4.75
5.0
5.25
V
VCCD
digital supply voltage
4.75
5.0
5.25
V
VCCO
output supply voltage
3.0
3.3
5.25
V
ICCA
analog supply current
−
33
tbf
mA
ICCD
digital supply current
−
30
tbf
mA
ICCO
output supply current
fCLK = 4 MHz; fi = 400 kHz −
3.2
tbf
mA
INL
integral non-linearity
fCLK = 4 MHz; fi = 400 kHz −
±0.5
±1.75
LSB
DNL
differential non-linearity
fCLK = 4 MHz; fi = 400 kHz −
±0.3
±0.5
LSB
fCLK(max)
maximum clock frequency
Ptot
TDA8765H/4
40
−
−
MHz
TDA8765H/5
55
−
−
MHz
−
325
tbf
mW
total power dissipation
ORDERING INFORMATION
TYPE
NUMBER
TDA8765H/4
TDA8765H/5
1999 Jan 06
PACKAGE
NAME
QFP44
DESCRIPTION
plastic quad flat package; 44 leads
(lead length 1.3 mm); body 10 × 10 × 1.75 mm
2
VERSION
SOT307-2
SAMPLING
FREQUENCY (MHz)
40
55
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
BLOCK DIAGRAM
VCCA1 VCCA2 VCCA3 VCCA4
handbook, full pagewidth
2
9
3
41
CLK
CLK
VCCD1 VCCD2
36
35
37
15
OTC
CE
19
18
21 D9
TDA8765
CLOCK DRIVER
MSB
22 D8
23 D7
Vref
24 D6
11
25 D5
CMOS
OUTPUTS
VI
43
VI
42
27 D3
ANALOG-TO-DIGITAL
CONVERTER
AMP
LATCHES
28 D2
29 D1
sampleand-hold
SH
n.c.
data outputs
26 D4
30 D0
LSB
39
33
1, 5 to 8,
12 to 14, 16, 31 and 32
44
10
AGND1
AGND2
OVERFLOW/
UNDERFLOW
LATCH
4
20
CMOS
OUTPUT
40
38
17
34
AGND4
DGND1
DGND2
OGND
VCCO
IR
MGK801
AGND3
Fig.1 Block diagram.
1999 Jan 06
3
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
PINNING
SYMBOL
PIN
DESCRIPTION
SYMBOL
PIN
DESCRIPTION
n.c.
1
not connected
D7
23
data output; bit 7
VCCA1
2
analog supply voltage 1 (+5 V)
D6
24
data output; bit 6
VCCA3
3
analog supply voltage 3 (+5 V)
D5
25
data output; bit 5
AGND3
4
analog ground 3
D4
26
data output; bit 4
n.c.
5
not connected
D3
27
data output; bit 3
n.c.
6
not connected
D2
28
data output; bit 2
n.c.
7
not connected
D1
29
data output; bit 1
n.c.
8
not connected
D0
30
data output; bit 0 (LSB)
VCCA2
9
analog supply voltage 2 (+5 V)
n.c.
31
not connected
AGND2
10
analog ground 2
n.c.
32
not connected
Vref
11
reference voltage input
VCCO
33
output supply voltage (3 to 5.25 V)
n.c.
12
not connected
OGND
34
output ground
n.c.
13
not connected
CLK
35
complementary clock input; active
LOW
n.c.
14
not connected
VCCD2
15
digital supply voltage 2 (+5 V)
CLK
36
clock input
37
digital supply voltage 1 (+5 V)
n.c.
16
not connected
VCCD1
DGND2
17
digital ground 2
DGND1
38
digital ground 1
control input twos complement
output; active HIGH
SH
39
18
sample-and-hold enable input
(CMOS level; active HIGH)
chip enable input
(CMOS level; active LOW)
AGND4
40
analog ground 4
19
VCCA4
41
analog supply voltage 4 (+5 V)
IR
20
in-range output
VI
42
positive analog input voltage
D9
21
data output; bit 9 (MSB)
VI
43
negative analog input voltage
D8
22
data output; bit 8
AGND1
44
analog ground 1
OTC
CE
1999 Jan 06
4
Philips Semiconductors
Preliminary specification
34 OGND
n.c.
1
33 VCCO
VCCA1
2
32 n.c.
VCCA3
3
31 n.c.
AGND3
4
30 D0
n.c.
5
29 D1
TDA8765H
26 D4
VCCA2
9
25 D5
AGND2 10
24 D6
Vref 11
23 D7
5
D8 22
D9 21
IR 20
28 D2
CE 19
OTC 18
8
DGND2 17
n.c.
n.c. 16
27 D3
VCCD2 15
7
n.c. 14
n.c.
n.c. 13
6
n.c. 12
n.c.
Fig.2 Pin configuration.
1999 Jan 06
35 CLK
36 CLK
37 VCCD1
38 DGND1
TDA8765
39 SH
40 AGND4
41 VCCA4
42 VI
44 AGND1
handbook, full pagewidth
43 VI
10-bit high-speed Analog-to-Digital
Converter (ADC)
MGK800
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCCA
analog supply voltage
note 1
−0.3
+7.0
V
VCCD
digital supply voltage
note 1
−0.3
+7.0
V
VCCO
output supply voltage
note 1
−0.3
+7.0
V
∆VCC
supply voltage difference
VCCA − VCCD
−1.0
+1.0
V
VCCD − VCCO
−1.0
+4.0
V
VCCA − VCCO
−1.0
+4.0
V
VI
input voltage at pins 42 and 43
0.3
VCCA
V
Vi(p-p)
input voltage at pins 35 and 36 for
differential clock drive (peak-to-peak
value)
−
VCCD
V
IO
output current
−
10
mA
Tstg
storage temperature
−55
+150
°C
Tamb
operating ambient temperature
0
+85
°C
Tj
junction temperature
−
150
°C
referenced to AGND
Note
1. The supply voltages VCCA, VCCD and VCCO may have any value between −0.3 and +7.0 V provided that the supply
voltage differences ∆VCC are respected.
HANDLING
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling integrated circuits.
THERMAL CHARACTERISTICS
SYMBOL
Rth(j-a)
1999 Jan 06
PARAMETER
CONDITION
thermal resistance from junction to ambient
6
in free air
VALUE
UNIT
75
K/W
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
CHARACTERISTICS
VCCA = V2 to V44, V9 to V10, V3 to V4 and V41 to V40 = 4.75 to 5.25 V; VCCD = V37 to V38 and V15 to V17 = 4.75 to 5.25 V;
VCCO = V33 to V34 = 3.0 to 5.25 V; AGND and DGND shorted together; Tamb = 0 to 85 °C; typical values measured at
VCCA = VCCD = 5 V and VCCO = 3.3 V, Tamb = 25 °C, VI(p-p) − VI(p-p) = 2.0 V and CL = 10 pF; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supply
VCCA
analog supply voltage
4.75
5.0
5.25
V
VCCD
digital supply voltage
4.75
5.0
5.25
V
VCCO
output supply voltage
3.0
3.3
5.25
V
ICCA
analog supply current
−
33
45
mA
ICCD
digital supply current
ICCO
output supply current
−
30
37
mA
fCLK = 4 MHz; fi = 400 kHz
−
3.2
tbf
mA
fCLK = 40 MHz;
fi = 4.43 MHz
−
11
tbf
mA
3.19
−
3.52
V
Inputs
CLK AND CLK (REFERENCED TO DGND)
VIL
LOW-level input voltage
VCCD = 5 V; note 1
VIH
HIGH-level input voltage
VCCD = 5 V; note 1
3.83
−
4.12
V
IIL
LOW-level input current
VCLK or VCLK = 3.19 V
−10
−
−
µA
IIH
HIGH-level input current
VCLK or VCLK = 3.83 V
−
−
10
µA
Zi
input impedance
fCLK = 40 MHz
2
−
−
kΩ
Ci
input capacitance
fCLK = 40 MHz
−
−
2
pF
∆VCLK(p-p)
differential AC input voltage
for switching (VCLK − VCLK;
peak-to-peak value)
DC voltage level = 2.5 V
0.5
−
2.0
V
OTC, SH AND CE (REFERENCED TO DGND); see Tables 2 and 3
VIL
LOW-level input voltage
0
−
0.8
V
2.0
−
VCCD
V
VIH
HIGH-level input voltage
IIL
LOW-level input current
VIL = 0.8 V
−20
−
−
µA
IIH
HIGH-level input current
VIH = 2.0 V
−
−
20
µA
VI AND VI (REFERENCED TO AGND; see Table 1); VREF = VCCA − 1.825 V
IIL
LOW-level input current
−
10
−
µA
IIH
HIGH-level input current
−
10
−
µA
Ri
input resistance
fi = 4.43 MHz
100
−
−
kΩ
Ci
input capacitance
fi = 4.43 MHz
−
−
2
pF
VI(CM)
common mode input voltage
VI = VI; output code 511
1999 Jan 06
VCCA = 5 V
tbf
3.6
tbf
V
VCCA = 4.75 V
tbf
3.35
tbf
V
VCCA = 5.25 V
tbf
3.85
tbf
V
7
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
SYMBOL
PARAMETER
TDA8765
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Voltage controlled regulator input Vref (referenced to AGND); note 2
Vref
full-scale fixed voltage
VI(p-p) − VI(p-p) input voltage amplitude
(peak-to-peak value)
Iref
VCCA = 5 V
−
3.175
−
V
Vref = VCCA − 1.825 V
−
2.0
−
V
−
0.5
10
µA
0
−
0.5
V
input current at Vref
Outputs (referenced to OGND)
DIGITAL OUTPUTS D11 TO D0 AND IR (REFERENCED TO OGND)
VOL
LOW-level output voltage
IOL = 2 mA
VOH
HIGH-level output voltage
IOH = −0.4 mA
VCCO − 0.5
−
VCCO
V
Io
output current in 3-state
output level between 0.5 V
and VCCO
−20
−
+20
µA
SH = HIGH
−
−
1
MHz
SH = LOW
−
−
1
kHz
TDA8765H/4
40
−
−
MHz
TDA8765H/5
55
−
−
MHz
Switching characteristics
CLOCK FREQUENCY fCLK; see Fig.5
fCLK(min)
fCLK(max)
minimum clock frequency
maximum clock frequency
tCLKH
clock pulse width HIGH
8.5
−
−
ns
tCLKL
clock pulse width LOW
8.5
−
−
ns
Analog signal processing; 50% clock duty factor; VI − VI = 2.0 V; Vref = VCCA− 1.825 V; see Table 1
LINEARITY
INL
integral non-linearity
fCLK = 4 MHz; fi = 400 kHz
−
±0.5
±1.75
LSB
DNL
differential non-linearity
fCLK = 4 MHz; fi = 400 kHz;
no missing code
−
±0.3
±0.5
LSB
Eoffset
offset error
VCCA = VCCD = VCCO = 5 V;
Tamb = 25 °C; VI = VI;
output code = 511
tbf
−11
tbf
mV
EG
gain error amplitude; spread
from device to device
VCCA = VCCD = VCCO = 5 V;
Tamb = 25 °C;
VI(p-p) − VI(p-p) = 2.0 V
−5
−
+5
%FS
−3 dB; full-scale input
tbf
200
−
MHz
BANDWIDTH (fCLK = 55 MHz); note 3
B
1999 Jan 06
analog bandwidth
8
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
SYMBOL
PARAMETER
TDA8765
CONDITIONS
MIN.
TYP.
MAX.
UNIT
HARMONICS (fCLK = 40 MHz)
Hfund(FS)
fundamental harmonics
(full scale)
fi = 4.43 MHz
Htot(FS)
harmonics (full scale);
all components
fi = 4.43 MHz
second harmonic
−
0
dB
−
−75
−
dB
−
−70
−
dB
total harmonic distortion
fi = 4.43 MHz; note 4
−
−66
−
dB
thermal noise (RMS value)
grounded input;
fCLK = 40 MHz
−
0.2
tbf
LSB
fi = 4.43 MHz
tbf
71
−
dB
fi = 10 MHz
tbf
68
−
dB
fi = 20 MHz
tbf
67
−
dB
without harmonics;
fCLK = 40 MHz;
fi = 4.43 MHz
−
59
−
dB
fi = 4.43 MHz
9.0
9.6
−
bits
fi = 10 MHz
−
9.6
−
bits
fi = 15 MHz
−
9.5
−
bits
fi = 4.43 MHz
−
9.6
−
bits
fi = 10 MHz
−
9.4
−
bits
fi = 15 MHz
−
9.3
−
bits
fi = 20 MHz
−
9.1
−
bits
third harmonic
THD
−
THERMAL NOISE
Nth(rms)
SPURIOUS FREE DYNAMIC RANGE
DRsf
spurious free dynamic range
SIGNAL-TO-NOISE RATIO; note 5
S/N
signal-to-noise ratio
EFFECTIVE NUMBER OF BITS; see Figs 3 and 4 and note 5
Nbit
effective number of bits
TDA8765H/4
(fCLK = 40 MHz)
effective number of bits
TDA8765H/5
(fCLK = 55 MHz)
INTERMODULATION; note 6
TTIR
two-tone intermodulation
rejection
fCLK = 40 MHz
tbf
66
−
dB
d3
third-order intermodulation
distortion
fCLK = 40 MHz
tbf
67
−
dB
fCLK = 40 MHz;
fi = 4.43 MHz;
VI = ±16 LSB at code 511
−
10−15
tbf
times/
sample
BIT ERROR RATE
BER
1999 Jan 06
bit error rate
9
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
SYMBOL
PARAMETER
TDA8765
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Timing (CL = 10 pF); see Fig.5 and note 7
td(s)
sampling delay time
th
output hold time
td
output delay time
−
−
2
ns
4
−
−
ns
VCCO = 5.25 V
−
10
15
ns
VCCO = 3.0 V
−
13
18
ns
3-state output delay times; see Fig.6
tdZH
enable HIGH
−
14
18
ns
tdZL
enable LOW
−
16
20
ns
tdHZ
disable HIGH
−
16
20
ns
tdLZ
disable LOW
−
14
18
ns
Notes
1. The circuit has two clock inputs: CLK and CLK. There are four modes of operation:
a) PECL mode 1 (DC level varies equal to DC level of VCCD): CLK and CLK inputs are at differential PECL levels.
b) PECL mode 2 (DC level varies equal to DC level of VCCD): CLK input is at PECL level and sampling is taken on
the falling edge of the clock input signal. A DC level of 3.65 V has to be applied on CLK decoupled to GND via a
100 nF capacitor.
c) PECL mode 3 (DC level varies equal to DC level of VCCD): CLK input is at PECL level and sampling is taken on
the rising edge of the clock input signal. A DC level of 3.65 V has to be applied on CLK decoupled to GND via a
100 nF capacitor.
d) AC driving mode 4: when driving the CLK input directly and with any AC signal of minimum 0.5 V (p-p) and with
a DC level of 2.5 V, the sampling takes place at the falling edge of the clock signal.
When driving the CLK input with the same signal, sampling takes place at the rising edge of the clock signal. It is
recommended to decouple the CLK or CLK input to DGND via a 100 nF capacitor.
2. It is possible with an external reference connected to pin Vref to adjust the ADC input range. This voltage has to be
referenced to VCCA. For VCCA − 1.825 V, the differential input voltage amplitude is 2 V (p-p).
3. The −3 dB analog bandwidth is determined by the 3 dB reduction in the reconstructed output, the input being a
full-scale sine wave.
4. THD (total harmonic distortion) is obtained with the addition of the first five harmonics:
F
THD = 20 log --------------------------------------------------------------------------------------------------------------2
2
2
2
2
(2nd) + (3rd) + (4th) + (5th) + (6th)
where F is the fundamental harmonic referenced at 0 dB for a full-scale sine wave input.
5. Effective number of bits are obtained via a Fast Fourier Transform (FFT). The calculation takes into account all
harmonics and noise up to half of the clock frequency (Nyquist frequency). Conversion to SNR:
SNR = Nbit × 6.02 + 1.76 dB.
6. Intermodulation measured relative to either tone with analog input frequencies of 4.43 and 4.53 MHz. The two input
signals have the same amplitude and the total amplitude of both signals provides full-scale to the converter (−6 dB
below full scale for each input signal).
d3 is the ratio of the RMS-value of either input tone to the RMS-value of the worst case third order intermodulation
product.
7. Output data acquisition: the output data is available after the maximum delay of td.
1999 Jan 06
10
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
Table 1
TDA8765
Output coding with differential inputs (typical values to AGND); Vi(p-p) − Vi(p-p) = 2.0 V; Vref = VCCA − 1.825 V
CODE
Vi(p-p)
Vi(p-p)
BINARY OUTPUTS
TWOS COMPLEMENT
OUTPUTS
D9 TO D0
D9 TO D0
1000000000
IR
Underflow
<3.1
>4.1
0
0000000000
0
3.1
4.1
1
0000000000
1 0 0 0 0 0 0 0 00
1
−
−
1
0000000001
1000000001
↓
−
−
↓
↓
↓
511
3.6
3.6
1
0111111111
1111111111
↓
−
−
↓
↓
↓
1022
−
−
1
1111111110
0111111110
1023
4.1
3.1
1
1111111111
0111111111
Overflow
>4.1
<3.1
0
1111111111
0111111111
Table 2 Mode selection
OTC
CE
D0 TO D9 AND IR
0
0
binary; active
1
0
twos complement; active
X(1)
1
high impedance
Note
1. X = don’t care.
Table 3 Sample-and-hold selection
SH
SAMPLE-AND-HOLD
1
active
0
inactive; tracking mode
1999 Jan 06
11
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
MGL430
0
amplitude
(dB)
−20
handbook, full pagewidth
−40
−60
−80
−100
−120
−140
−160
0
5
10
15
f (MHz)
20
Effective bits: 9.68; THD = −70.8 dB.
Harmonic levels (dB): 2nd = −80.3; 3rd = −74.5; 4th = −87.7; 5th = −76.4; 6th = −78.6.
Fig.3 Typical fast Fourier transform (fCLK = 40 MHz; fi = 4.43 MHz).
MGL431
0
amplitude
(dB)
−20
handbook, full pagewidth
−40
−60
−80
−100
−120
−140
−160
0
5
10
15
20
Effective bits: 9.12; THD = −62.5 dB.
Harmonic levels (dB): 2nd = −73.0; 3rd = −63.4; 4th = −80.9; 5th = −78.1; 6th = −74.4.
Fig.4 Typical fast Fourier transform (fCLK = 50 MHz; fi = 21.4 MHz).
1999 Jan 06
12
f (MHz)
25
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
tCLKL
handbook, full pagewidth
tCLKH
HIGH
50%
CLK
LOW
sample N + 1
sample N
sample N + 2
VI
th
td(s)
HIGH
DATA
D0 to D9
DATA
N−2
DATA
N−1
DATA
N
DATA
N+1
50%
LOW
td
MBH427
Fig.5 Timing diagram.
handbook, full pagewidth
VCCD
50 %
CE
0V
tdHZ
tdZH
HIGH
90 %
output
data
50 %
tdLZ
LOW
tdZL
HIGH
output
data
50 %
LOW
10 %
VCCD
3.3 kΩ
TDA8765
S1
15 pF
CE
TEST
S1
tdLZ
VCCD
tdZL
VCCD
tdHZ
DGND
tdZH
DGND
MBH423
fCE = 100 kHz.
Fig.6 Timing diagram and test conditions of 3-state output delay time.
1999 Jan 06
13
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
APPLICATION INFORMATION
handbook, full pagewidth
220 nF
1:1
5V
VI
IN
100 nF
100 Ω
SH
mode
5V
100 nF
100 Ω
CLK
VI
(1)
CLK
VCCA
5V
R1
n.c.
5V
4.7 µF
10 nF
R2
100 nF
100 nF
5V
100 nF
Vref
(3)
44 43 42 41 40 39 38 37 36 35 34
1
100 nF
33
2
32
3
31
n.c.
4
30
D0 (LSB)
29
D1
28
D2
n.c
n.c.
5
n.c.
6
n.c.
7
27
D3
n.c.
8
26
D4
9
25
D5
10
24
D6
11
23
D7
TDA8765
12 13 14 15 16 17 18 19 20 21 22
n.c.
n.c.
n.c.
n.c.
5V
100 nF
IR
D8
D9
(MSB)
MGK802
chip select input
output format select
The analog, digital and output supplies should be separated and decoupled.
(1) Single-ended clock signals can be applied if required.
(2) R1 and R2 must be determined in order to obtain a middle voltage of 3.6 V; see common mode input voltage.
In addition, the minimum current into these resistors should be about 1 mA in order to ensure a sufficient analog input stability.
(3) Vref must be decoupled to VCCA.
Fig.7 Application diagram.
1999 Jan 06
14
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
PACKAGE OUTLINE
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm
SOT307-2
c
y
X
A
33
23
34
22
ZE
e
E HE
A A2
wM
(A 3)
A1
θ
bp
Lp
pin 1 index
L
12
44
1
detail X
11
wM
bp
e
ZD
v M A
D
B
HD
v M B
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HD
HE
L
Lp
v
w
y
mm
2.10
0.25
0.05
1.85
1.65
0.25
0.40
0.20
0.25
0.14
10.1
9.9
10.1
9.9
0.8
12.9
12.3
12.9
12.3
1.3
0.95
0.55
0.15
0.15
0.1
Z D (1) Z E (1)
1.2
0.8
1.2
0.8
θ
o
10
0o
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
95-02-04
97-08-01
SOT307-2
1999 Jan 06
EUROPEAN
PROJECTION
15
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
If wave soldering is used the following conditions must be
observed for optimal results:
SOLDERING
Introduction to soldering surface mount packages
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
• For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Wave soldering
Manual soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
To overcome these problems the double-wave soldering
method was specifically developed.
1999 Jan 06
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
16
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
REFLOW(1)
WAVE
BGA, SQFP
not suitable
HLQFP, HSQFP, HSOP, HTSSOP, SMS not
PLCC(3),
SO, SOJ
suitable
suitable(2)
suitable
suitable
suitable
LQFP, QFP, TQFP
not recommended(3)(4)
suitable
SSOP, TSSOP, VSO
not recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1999 Jan 06
17
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
NOTES
1999 Jan 06
18
Philips Semiconductors
Preliminary specification
10-bit high-speed Analog-to-Digital
Converter (ADC)
TDA8765
NOTES
1999 Jan 06
19
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 489 4339/4239, Fax. +30 1 481 4240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 62 5344, Fax.+381 11 63 5777
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1999
SCA61
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
545104/750/02/pp20
Date of release: 1999 Jan 06
Document order number:
9397 750 04716