PHILIPS TDA8764AHL/6

INTEGRATED CIRCUITS
DATA SHEET
TDA8764A
10-bit high-speed low-power ADC
Product specification
File under Integrated Circuits, IC11
2000 Jul 03
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
FEATURES
APPLICATIONS
• 10-bit resolution (binary or gray code)
High-speed analog-to-digital conversion for:
• Sampling rate up to 60 MHz
• Video data digitizing
• DC sampling allowed
• Radar pulse analysis
• One clock cycle conversion only
• High energy physics research
• High signal-to-noise ratio over a large analog input
frequency range (9.3 effective bits at 5 MHz full-scale
input at fclk = 60 MHz)
• Transient signal analysis
• Σ∆ modulators
• Medical imaging.
• No missing codes guaranteed
• In Range (IR) CMOS output
GENERAL DESCRIPTION
• TTL and CMOS levels compatible digital inputs
The TDA8764A is a 10-bit high-speed low-power
Analog-to-Digital Converter (ADC) for professional video
and other applications. It converts the analog input signal
into 10-bit binary or gray coded digital words at a maximum
sampling rate of 60 MHz. All digital inputs and outputs are
TTL and CMOS compatible, although a low-level sine
wave clock input signal is allowed.
• 2.7 to 3.6 V CMOS digital outputs
• Low-level AC clock input signal allowed
• Power dissipation only 312 mW
• Low analog input capacitance, no buffer amplifier
required
• No sample-and-hold circuit required.
The device requires an external source to drive its
reference ladder.
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
DESCRIPTION
VERSION
TDA8764ATS/6
SSOP28
plastic shrink small outline package; 28 leads; body width 5.3 mm
SOT341-1
TDA8764AHL/6
LQFP32
plastic low profile quad flat package; 32 leads; body 5 × 5 × 1.4 mm
SOT401-1
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
5.0
MAX.
5.25
UNIT
VCCA
analog supply voltage
4.75
V
VCCD
digital supply voltage
4.75
5.0
5.25
V
VCCO
output stages supply voltage
2.7
3.3
3.6
V
ICCA
analog supply current
−
29
37
mA
ICCD
digital supply current
−
33
40
mA
ICCO
output stages supply current
fclk = 60 MHz; ramp input −
0.5
2.0
mA
INL
integral non-linearity
fclk = 60 MHz; ramp input −
±0.8
±2
LSB
DNL
differential non-linearity
fclk = 60 MHz; ramp input −
±0.35
±0.9
LSB
fclk(max)
maximum clock frequency
TDA8764ATS and
TDA8764AHL
−
−
MHz
Ptot
total power dissipation
fclk = 60 MHz; ramp input −
312
411
mW
2000 Jul 03
2
60
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
BLOCK DIAGRAM
handbook, full pagewidth
VCCA
VCCD
CLK
3 (7)
1 (5)
OE
GRAY
11 (17) 10
15 (21)
(16)
CLOCK DRIVER
VRT
(6) 2
(31) 25
(30) 24
(29) 23
analog VI 8 (14)
voltage input
VRM
(28) 22
ANALOG-TO-DIGITAL
CONVERTER
(27) 21
CMOS
OUTPUTS
LATCHES
7 (13)
RLAD
(26) 20
(25) 19
(24) 18
(23) 17
(22) 16
VRB
D9
MSB
D8
D7
D6
D5
data outputs
D4
D3
D2
D1
D0
LSB
(19) 13
6 (12)
VCCO
CMOS
OUTPUT
IN-RANGE LATCH
TDA8764A
4 (8)
12 (18)
5, 27, 28
(9, 1, 3, 4, 10, 11, 32)
AGND
DGND
n.c.
14 (20)
OGND
The pin numbers given in parenthesis refer to the TDA8764AHL.
Fig.1 Block diagram.
2000 Jul 03
TC
9 (15)
3
(2) 26
IR output
FCE253
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
PINNING
PIN
SYMBOL
CLK
DESCRIPTION
TDA8764ATS
TDA8764AHL
1
5
clock input
TC
2
6
twos complement input (active LOW)
VCCA
3
7
analog supply voltage (5 V)
AGND
4
8
analog ground
n.c.
5
9
not connected
VRB
6
12
reference voltage BOTTOM input
VRM
7
13
reference voltage MIDDLE input
VI
8
14
analog input voltage
VRT
9
15
reference voltage TOP input
OE
10
16
output enable input (active LOW)
VCCD
11
17
digital supply voltage (5 V)
DGND
12
18
digital ground
VCCO
13
19
supply voltage for output stages (2.7 to 3.6 V)
OGND
14
20
output ground
GRAY
15
21
gray code input (active HIGH)
D0
16
22
data output; bit 0 (LSB)
D1
17
23
data output; bit 1
D2
18
24
data output; bit 2
D3
19
25
data output; bit 3
D4
20
26
data output; bit 4
D5
21
27
data output; bit 5
D6
22
28
data output; bit 6
D7
23
29
data output; bit 7
D8
24
30
data output; bit 8
D9
25
31
data output; bit 9 (MSB)
IR
26
2
in range data output
n.c.
27
1
not connected
n.c.
28
3
not connected
n.c.
−
4
not connected
n.c.
−
10
not connected
n.c.
−
11
not connected
n.c.
−
32
not connected
2000 Jul 03
4
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
handbook, halfpage
CLK
1
28 n.c.
TC
2
27 n.c.
VCCA
3
26 IR
AGND
4
25 D9
n.c.
5
24 D8
VRB
6
23 D7
VRM
7
VI
8
21 D5
VRT
9
20 D4
OE 10
19 D3
22 D6
TDA8764ATS
V CCD
11
18 D2
DGND
12
17 D1
V CCO 13
16 D0
OGND 14
15 GRAY
FCE254
25 D3
26 D4
27 D5
28 D6
29 D7
30 D8
handbook, full pagewidth
31 D9
32 n.c.
Fig.2 Pin configuration (SSOP28).
n.c.
1
24 D2
IR
2
23 D1
n.c.
3
22 D0
n.c.
4
21 GRAY
TDA8764AHL
18 DGND
AGND
8
17 VCCD
OE 16
20 OGND
VRT 15
7
VI 14
VCCA
VRM 13
19 VCCO
VRB 12
6
n.c. 11
TC
n.c. 10
5
n.c. 9
CLK
Fig.3 Pin configuration (LQFP32).
2000 Jul 03
5
FCE255
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCCA
analog supply voltage
note 1
−0.3
+7.0
V
VCCD
digital supply voltage
note 1
−0.3
+7.0
V
VCCO
output stages supply voltage
note 1
−0.3
+7.0
V
∆VCC
supply voltage difference between
VCCA − VCCD
−1.0
+1.0
V
VCCA − VCCO
−1.0
+4.0
V
VCCD − VCCO
−1.0
+4.0
V
−0.3
+7.0
V
AC input voltage for switching (peak-to-peak value) referenced to DGND
−
VCCD
V
IO
output current
−
10
mA
Tstg
storage temperature
−55
+150
°C
Tamb
ambient temperature
−40
+85
°C
Tj
junction temperature
−
150
°C
VI
input voltage
Vi(sw)(p-p)
referenced to AGND
Note
1. The supply voltages VCCA, VCCD and VCCO may have any value between −0.3 and +7.0 V provided that the supply
voltage differences ∆VCC are respected.
HANDLING
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling integrated circuits.
THERMAL CHARACTERISTICS
SYMBOL
Rth(j-a)
2000 Jul 03
PARAMETER
CONDITIONS
VALUE
UNIT
SSOP28
110
K/W
LQFP32
90
K/W
thermal resistance from junction to ambient
in free air
6
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
CHARACTERISTICS
VCCA = 4.75 to 5.25 V; VCCD = 4.75 to 5.25 V; VCCO = 2.7 to 3.6 V; AGND and DGND shorted together;
Tamb = 0 to 70 °C; typical values measured at VCCA = VCCD = 5 V; VCCO = 3.3 V; VRB = 1.3 V; VRT = 3.7 V; CL = 10 pF
and Tamb = 25 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VCCA
analog supply voltage
4.75
5.0
5.25
V
VCCD
digital supply voltage
4.75
5.0
5.25
V
VCCO
output stages supply voltage
2.7
3.3
3.6
V
∆VCC
supply voltage difference
between
VCCA − VCCD
−0.20
−
+0.20
V
VCCA − VCCO
−0.20
−
+2.55
V
−0.20
−
+2.55
V
ICCA
analog supply current
VCCD − VCCO
−
29
37
mA
ICCD
digital supply current
−
33
40
mA
ICCO
output stages supply current
−
0.5
2.0
mA
fclk = 60 MHz; ramp input
Inputs
PIN CLK (REFERENCED TO DGND); note 1
VIL
LOW-level input voltage
0
−
0.8
V
VIH
HIGH-level input voltage
2
−
VCCD
V
IIL
LOW-level input current
VCLK = 0.8 V
−1
0
+1
µA
IIH
HIGH-level input current
VCLK = 2 V
−
2
10
µA
Ci
input capacitance
−
2
−
pF
PINS OE; TC AND GRAY (REFERENCED TO DGND); see Tables 3 and 4
VIL
LOW-level input voltage
0
−
0.8
V
VIH
HIGH-level input voltage
2
−
VCCD
V
IIL
LOW-level input current
VIL = 0.8 V
−1
−
−
µA
IIH
HIGH-level input current
VIH = 2 V
−
−
1
µA
PIN VI (ANALOG INPUT VOLTAGE REFERENCED TO AGND)
IIL
LOW-level input current
VI = VRB = 1.3 V
−
0
−
µA
IIH
HIGH-level input current
VI = VRT = 3.7 V
−
55
−
µA
Yi
input admittance
fi = 5 MHz; note 2
Ri input resistance
−
45
−
kΩ
Ci input capacitance
3
5
7
pF
2000 Jul 03
7
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
SYMBOL
PARAMETER
TDA8764A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Reference voltages for the resistor ladder; see Table 1
VRB
reference voltage BOTTOM
1.2
1.3
2.2
V
VRT
reference voltage TOP
3.4
3.7
VCCA − 0.8
V
Vdiff(ref)
differential reference voltage
VRT − VRB
2.2
2.4
3.2
V
Iref
reference current
−
17.6
−
mA
RLAD
resistor ladder
−
136
−
Ω
TCRLAD
temperature coefficient of the
resistor ladder
−
1860
−
ppm
−
253
−
mΩ/K
Voffset(B)
offset voltage BOTTOM
Vdiff = 2.4 V; note 3
−
200
−
mV
Voffset(T)
offset voltage TOP
Vdiff = 2.4 V; note 3
−
190
−
mV
VI(p-p)
analog input voltage
(peak-to-peak value)
Vdiff = 2.4 V; note 4
1.95
2.01
2.10
V
−
0.5
V
Vdiff = 2.4 V
Outputs
PINS D9 TO D0 AND IR (REFERENCED TO OGND)
VOL
LOW-level output voltage
IOL = 1 mA
0
VOH
HIGH-level output voltage
IOH = −1 mA
VCCO − 0.5 −
VCCO
V
IOZ
output current in 3-state mode
0.5 V < VO < VCCO
−20
−
+20
µA
60
−
−
MHz
Switching characteristics
PIN CLK; see Fig.5; note 1
fclk(max)
maximum clock frequency
tCPH
clock pulse width HIGH
Tamb = 25 °C
7.0
−
−
ns
tCPL
clock pulse width LOW
Tamb = 25 °C
3.5
−
−
ns
−
±0.8
±2
LSB
±0.35
±0.9
LSB
−
±1
−
LSB
−
±0.5
−
%
Analog signal processing
LINEARITY
INL
integral non-linearity
fclk = 60 MHz; ramp input
DNL
differential non-linearity
fclk = 60 MHz; ramp input; −
no missing code
Eoffset
offset error
middle code
EG
gain error (from device to device) note 5
2000 Jul 03
8
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
SYMBOL
PARAMETER
TDA8764A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
BANDWIDTH (fCLK = 60 MHZ)
B
analog bandwidth
full-scale sine wave;
note 6
−
30
−
MHz
75% full-scale sine wave;
note 6
−
45
−
MHz
small signal at mid-scale;
VI = ±10 LSB at
code 512; note 6
−
700
−
MHz
tstLH
analog input settling time
LOW-to-HIGH
full-scale square wave;
see Fig.7; note 7
−
5
−
ns
tstHL
analog input settling time
HIGH-to-LOW
full-scale square wave;
see Fig.7; note 7
−
5
−
ns
HARMONICS (fCLK = 60 MHZ)
Hall(FS)
harmonics (full-scale);
all components
fi = 5 MHz
second harmonic
−
−68
−
dB
third harmonic
−
−67
−
dB
SFDR
spurious free dynamic range
fi = 5 MHz
−
72
−
dB
THD
total harmonic distortion
fi = 5 MHz
−
−64
−
dB
fi = 15 MHz
−
−57
−
dB
without harmonics;
fclk = 60 MHz; fi = 5 MHz
−
58
−
dB
57
−
dB
SIGNAL-TO-NOISE RATIO; note 8
SNRFS
signal-to-noise ratio (full-scale)
without harmonics;
53
fclk = 60 MHz; fi = 15 MHz
EFFECTIVE BITS; note 8
EB
effective bits
fclk = 60 MHz
fi = 5 MHz
−
9.3
−
bits
fi = 10 MHz
−
8.9
−
bits
fi = 15 MHz
−
8.8
−
bits
fi = 20 MHz
−
8.6
−
bits
fclk = 60 MHz
−
−67
−
dB
10−13
−
times/
sample
TWO-TONE; note 9
TTID
two-tone intermodulation
distortion
BIT ERROR RATE
BER
2000 Jul 03
bit error rate
fclk = 60 MHz; fi = 5 MHz; −
VI = ±16 LSB at code 512
9
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
SYMBOL
PARAMETER
TDA8764A
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Timing (fclk = 60 MHz; CL = 10 pF); see Fig.5 and note 10
tds
sampling delay time
−
0.7
2
ns
th
output hold time
4
−
−
ns
td
output delay time TDA8764ATS
VCCO = 2.7 V
−
10
14
ns
VCCO = 3.3 V
−
9
13
ns
VCCO = 2.7 V
−
13
17
ns
VCCO = 3.3 V
−
12
16
ns
−
−
10
pF
0.2
0.3
−
V/ns
td
output delay time TDA8764AHL
CL
digital output load capacitance
SR
slew rate
VCCO = 2.7 V
3-state output delay times (fclk = 60 MHz); see Fig.6
tdZH
enable HIGH
VCCO = 3.3 V
−
16
20
ns
tdZL
enable LOW
VCCO = 3.3 V
−
30
34
ns
tdHZ
disable HIGH
VCCO = 3.3 V
−
25
30
ns
tdLZ
disable LOW
VCCO = 3.3 V
−
23
27
ns
Notes
1.
The rise and fall times of the clock signal must not be less than 0.5 ns.
1
2. The input admittance is Y i = ----- + jωCi
Ri
3. Analog input voltages producing code 0 up to and including code 1023:
a) Voffset(B) (offset voltage BOTTOM) is the difference between the analog input which produces data equal to 00
and the reference voltage BOTTOM (VRB) at Tamb = 25 °C.
b) Voffset(T) (offset voltage TOP) is the difference between VRT (reference voltage TOP) and the analog input which
produces data outputs equal to code 1023 at Tamb = 25 °C.
4. In order to ensure the optimum linearity performance of such converter architecture the lower and upper extremities
of the converter reference resistor ladder (corresponding to output codes 0 and 1023 respectively) are connected to
pins VRB and VRT via offset resistors ROB and ROT as shown in Fig.4.
V RT – V RB
a) The current flowing into the resistor ladder is I L = ----------------------------------------- and the full-scale input range at the converter,
R OB + R L + R OT
RL
˙ 8375 × ( V – V )
to cover code 0 to 1023, is V I = R L × I L = ----------------------------------------- × ( V RT – V RB ) = 0.
RT
RB
R OB + R L + R OT
b) Since RL, ROB and ROT have similar behaviour with respect to process and temperature variation, the ratio
RL
------------------------------------------ will be kept reasonably constant from device to device. Consequently variation of the output
R OB + R L + R OT
codes at a given input voltage depends mainly on the difference VRT − VRB and its variation with temperature and
supply voltage. When several ADCs are connected in parallel and fed with the same reference source, the
matching between each of them is then optimized.
5.
( V 1023 – V 0 ) – V i(p-p)
E G = ---------------------------------------------------- × 100
V i(p-p)
6. The analog bandwidth is defined as the maximum input sine wave frequency which can be applied to the device.
No glitches greater than 2 LSBs, nor any significant attenuation are observed in the reconstructed signal.
2000 Jul 03
10
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
7. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale
input (square wave signal) in order to sample the signal and obtain correct output data.
8. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8K acquisition points per equivalent
fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency
(Nyquist frequency). Conversion to signal-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.
9. Intermodulation measured relative to either tone with analog input frequencies of 4.5 and 4.3 MHz. The two input
signals have the same amplitude and the total amplitude of both signals provides full-scale to the converter.
10. Output data acquisition: the output data is available after the maximum delay time of td. It is recommended to have
the lowest possible output load. These parameters are guaranteed by characterization and not by production test.
handbook, halfpage
VRT
ROT
code 1023
RL
VRM
RLAD
IL
code 0
ROB
VRB
FCE256
Fig.4 Explanation of note 4.
2000 Jul 03
11
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
Table 1
TDA8764A
Output coding and input voltage (typical values; referenced to AGND; VRB = 1.3 V; VRT = 3.7 V; binary/gray
codes
BINARY OUTPUT BITS
STEP
VI
IR
U/F
<1.5
0
0
1.5
1
0
0
0
0
1
:
1
0
0
0
0
:
:
:
:
:
:
:
:
GRAY OUTPUT BITS
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1022
:
1
1
1
1
1
1
1
1
1
1
0
1
0
0
0
0
0
0
0
0
1
1023
3.51
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
O/F
>3.51
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
Table 2
Output coding and input voltage (typical values; referenced to AGND; binary/twos complement codes
BINARY OUTPUT BITS
STEP
TWOS COMPLEMENT OUTPUT BITS
VI
IR
U/F
<1.5
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
1.5
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
:
1
0
0
0
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
:
1022
:
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
1023
3.51
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
O/F
>3.51
0
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
Table 3
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
TC mode selection
TC
OE
X
1
high-impedance
0
0
active; twos complement
active
1
0
active; binary
active
Table 4
D9 to D0
IR
high-impedance
Gray mode selection
GRAY
OE
X
1
high-impedance
high-impedance
0
0
active; binary
active
1
0
active; gray
active
2000 Jul 03
D9 to D0
12
IR
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
t CPL
handbook, full pagewidth
t CPH
VIH
50%
CLK
VIL
sample N
sample N + 1
sample N + 2
Vl
t ds
th
HIGH
DATA
D0 to D9
DATA
N-2
DATA
N-1
DATA
N
DATA
N+1
50%
LOW
td
FCE257
Fig.5 Timing diagram.
handbook, full pagewidth
VCCD
50%
OE
tdHZ
tdZH
HIGH
90%
output
data LOW
tdLZ
50%
tdZL
LOW
HIGH
50%
output
data HIGH
LOW
10%
VCCD
3.3 kΩ
TDA8764A
10 pF
S1
TEST
S1
tdLZ
VCCD
tdZL
VCCD
tdHZ
DGND
tdZH
DGND
FCE258
OE
fOE = 100 kHz.
Fig.6 Timing diagram and test conditions of 3-state output delay time.
2000 Jul 03
13
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
t stHL
t stLH
handbook, full pagewidth
code 1023
VI
50%
50%
code 0
2 ns
2 ns
CLK
50%
50%
0.5 ns
0.5 ns
FCE259
Fig.7 Analog input settling-time diagram.
2000 Jul 03
14
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
INTERNAL PIN CONFIGURATIONS
handbook, halfpage
handbook, halfpage
VCCO
V CCA
D9 to D0
IR
VI
OGND
AGND
FCE260
FCE261
Fig.8 CMOS data and in range outputs.
Fig.9 Analog input.
handbook, halfpage
VCCA
handbook, halfpage
VCCO
VRT
VRM
OE
R LAD
VRB
TC
GRAY
OGND
AGND
FCE262
FCE263
Fig.10 OE, GRAY and TC inputs.
2000 Jul 03
Fig.11 VRB, VRM and VRT inputs.
15
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
handbook, halfpage
VCCD
CLK
1.5V
DGND
FCE264
Fig.12 CLK input.
2000 Jul 03
16
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
APPLICATION INFORMATION
33 Ω CLK
handbook, halfpage
n.c.
1
28
2
27
3
26
4
25
5
24
6
23 D7
7
22
(3)
TC
VCCA
100 nF
n.c.
IR
(2)
AGND
n.c.
V RB(1)
100 nF
V RM (1)
AGND
VI
100 nF
V RT (1)
AGND
D9
D8
D6
TDA8764ATS
8
21
9
20
10
19
11
18
12
17
13
16
14
15
D5
D4
100 nF
OE
D3
AGND
V CCD
100 nF
(2)
DGND
V CCO
100 nF
D2
D1
D0
(2)
OGND
GRAY
FCE265
The analog and digital supplies should be separated and well decoupled.
An application note is available and describes the design and the realization of a demoboard that uses TDA8764ATS with an application environment.
(1) VRB, VRM and VRT are decoupled to AGND.
(2) Decoupling capacitor for supplies must be placed close to the device.
(3) This resistor is mandatory (33 Ω is its minimum value) and must be near the clock source.
Fig.13 Application diagram (SSOP28).
2000 Jul 03
17
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
handbook, full pagewidth
n.c.
32
n.c.
IR
n.c.
n.c.
33 Ω CLK
D9
31
D8
D7
30
D6
29
28
D5
27
D4
26
D3
25
1
24
2
23
3
22
4
21
TDA8764AHL
20
5
(3)
TC
VCCA
(2)
100 nF
AGND
6
19
7
18
8
17
9
10
n.c.
n.c.
12
11
n.c.
13
VRB
(1)
VRM
VI
(1)
100 nF
100 nF
AGND
14
AGND
D2
D1
D0
GRAY
OGND
(2)
VCCO
100 nF
DGND
(2)
VCCD
100 nF
16
15
VRT
OE
(1)
100 nF
FCE266
AGND
The analog and digital supplies should be separated and well decoupled.
An application note is available and describes the design and the realization of a demoboard that uses TDA8764AHL with an
application environment.
(1) VRB, VRM and VRT are decoupled to AGND.
(2) Decoupling capacitor for supplies must be placed close to the device.
(3) This resistor is mandatory (33 Ω is its minimum value) and must be near the clock source.
Fig.14 Application diagram (LQFP32).
2000 Jul 03
18
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
PACKAGE OUTLINES
SSOP28: plastic shrink small outline package; 28 leads; body width 5.3 mm
D
SOT341-1
E
A
X
c
HE
y
v M A
Z
28
15
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
1
14
bp
e
detail X
w M
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
θ
mm
2.0
0.21
0.05
1.80
1.65
0.25
0.38
0.25
0.20
0.09
10.4
10.0
5.4
5.2
0.65
7.9
7.6
1.25
1.03
0.63
0.9
0.7
0.2
0.13
0.1
1.1
0.7
8
0o
Note
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.
OUTLINE
VERSION
SOT341-1
2000 Jul 03
REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
95-02-04
99-12-27
MO-150
19
o
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
SOT401-1
LQFP32: plastic low profile quad flat package; 32 leads; body 5 x 5 x 1.4 mm
c
y
X
A
17
24
ZE
16
25
e
A A2
E HE
(A 3)
A1
w M
pin 1 index
θ
bp
32
Lp
9
L
1
8
detail X
ZD
e
v M A
w M
bp
D
B
HD
v M B
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HD
HE
L
Lp
v
w
y
mm
1.60
0.15
0.05
1.5
1.3
0.25
0.27
0.17
0.18
0.12
5.1
4.9
5.1
4.9
0.5
7.15
6.85
7.15
6.85
1.0
0.75
0.45
0.2
0.12
0.1
Z D (1) Z E (1)
θ
0.95
0.55
7
0o
0.95
0.55
o
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT401-1
136E01
MS-026
2000 Jul 03
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
99-12-27
00-01-19
20
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
SOLDERING
Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
• For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Manual soldering
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
Wave soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
To overcome these problems the double-wave soldering
method was specifically developed.
If wave soldering is used the following conditions must be
observed for optimal results:
2000 Jul 03
21
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
WAVE
BGA, LFBGA, SQFP, TFBGA
not suitable
suitable(2)
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS
not
PLCC(3), SO, SOJ
suitable
LQFP, QFP, TQFP
SSOP, TSSOP, VSO
REFLOW(1)
suitable
suitable
suitable
not
recommended(3)(4)
suitable
not
recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
2000 Jul 03
22
Philips Semiconductors
Product specification
10-bit high-speed low-power ADC
TDA8764A
DATA SHEET STATUS
DATA SHEET STATUS
PRODUCT
STATUS
DEFINITIONS (1)
Objective specification
Development
This data sheet contains the design target or goal specifications for
product development. Specification may change in any manner without
notice.
Preliminary specification
Qualification
This data sheet contains preliminary data, and supplementary data will be
published at a later date. Philips Semiconductors reserves the right to
make changes at any time without notice in order to improve design and
supply the best possible product.
Product specification
Production
This data sheet contains final specifications. Philips Semiconductors
reserves the right to make changes at any time without notice in order to
improve design and supply the best possible product.
Note
1. Please consult the most recently issued data sheet before initiating or completing a design.
DEFINITIONS
DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Right to make changes  Philips Semiconductors
reserves the right to make changes, without notice, in the
products, including circuits, standard cells, and/or
software, described or contained herein in order to
improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for
the use of any of these products, conveys no licence or title
under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that
these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
2000 Jul 03
23
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,
Tel. +66 2 361 7910, Fax. +66 2 398 3447
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 3341 299, Fax.+381 11 3342 553
For all other countries apply to: Philips Semiconductors,
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,
The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 70
© Philips Electronics N.V. 2000
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
613502/01/pp24
Date of release: 2000
Jul 03
Document order number:
9397 750 06996