INTEGRATED CIRCUITS DATA SHEET TDA8767 12-bit high-speed Analog-to-Digital Converter (ADC) Preliminary specification Supersedes data of 1997 Jun 27 File under Integrated Circuits, IC02 1999 Feb 16 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 FEATURES APPLICATIONS • 12-bit resolution • High-speed analog-to-digital conversion for: • Sampling rate up to 30 MHz – Video signal digitizing • −3 dB bandwidth of 18 MHz – High Definition TV (HDTV) • No missing codes guaranteed – Imaging (camera, scanner) • 5 V power supplies – Medical imaging • Binary or two’s complement CMOS outputs – Telecommunication • In-range CMOS output – Base-station receiver. • TTL/CMOS compatible static digital inputs • 3 to 5 V CMOS digital outputs GENERAL DESCRIPTION • TTL compatible clock input The TDA8767 is a bipolar 12-bit Analog-to-Digital Converter (ADC) for imaging or other applications. It converts the analog input signal into 12-bit binary coded digital words at a maximum sampling rate of 30 MHz. All digital inputs and outputs are CMOS compatible. • Power dissipation 335 mW (typ.) • Low analog input capacitance (typ. 2 pF), no buffer amplifier required • No external sample-and-hold circuit required • Differential or single analog Input • External amplitude range control • Voltage controlled regulator included. QUICK REFERENCE DATA SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT VCCA analog supply voltage 4.75 5.0 5.25 V VCCD digital supply voltage 4.75 5.0 5.25 V VCCO output supply voltage 3.0 3.3 5.25 V ICCA analog supply current − 40 tbf mA ICCD digital supply current − 22 tbf mA ICCO output supply current fclk = 4 MHz; fi = 400 kHz − 3.2 tbf mA ILE integral non-linearity fclk = 4 MHz; fi = 400 kHz − ±3.0 ±4.0 LSB DLE differential non-linearity fclk = 4 MHz; fi = 400 kHz; no missing codes − ±0.6 ±1 LSB fclk(max) maximum clock frequency TDA8767H/1 10 − − MHz TDA8767H/2 20 − − MHz TDA8767H/3 30 − − MHz − 335 − mW Ptot 1999 Feb 16 total power dissipation 2 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 ORDERING INFORMATION PACKAGE TYPE NUMBER NAME DESCRIPTION VERSION SAMPLING FREQUENCY (MHz) TDA8767H/1 TDA8767H/2 10 plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 × 10 × 1.75 mm QFP44 TDA8767H/3 SOT307-2 20 30 BLOCK DIAGRAM VCCA1 VCCA2 VCCA3 VCCA4 handbook, full pagewidth 2 9 3 VCCD1 VCCD2 CLK 41 36 37 15 TC OE 18 19 21 D11 MSB CLOCK DRIVER 22 D10 TDA8767 Vref 23 D9 11 24 D8 25 D7 AMP 26 D6 CMOS OUTPUTS VI VI 27 D5 42 ANALOG-TO-DIGITAL CONVERTER 43 LATCHES 29 D3 30 D2 sampleand-hold SH 31 D1 32 D0 39 33 IN-RANGE LATCH 44 10 AGND1 AGND2 4 AGND3 analog ground 20 CMOS OUTPUT 40 38 17 34 AGND4 DGND1 DGND2 OGND digital ground Fig.1 Block diagram. 1999 Feb 16 data outputs 28 D4 3 LSB VCCO IR MBH142 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 PINNING SYMBOL PIN DESCRIPTION SYMBOL PIN DESCRIPTION n.c. 1 not connected D9 23 data output; bit 9 VCCA1 2 analog supply voltage 1 (+5 V) D8 24 data output; bit 8 VCCA3 3 analog supply voltage 3 (+5 V) D7 25 data output; bit 7 AGND3 4 analog ground 3 D6 26 data output; bit 6 n.c. 5 not connected D5 27 data output; bit 5 n.c. 6 not connected D4 28 data output; bit 4 n.c. 7 not connected D3 29 data output; bit 3 n.c. 8 not connected D2 30 data output; bit 2 VCCA2 9 analog supply voltage 2 (+5 V) D1 31 data output; bit 1 AGND2 10 analog ground 2 D0 32 data output; bit 0 (LSB) Vref 11 reference voltage VCCO 33 output supply voltage (3 to 5.25 V) n.c. 12 not connected OGND 34 output ground n.c. 13 not connected n.c. 35 not connected n.c. 14 not connected CLK 36 clock input VCCD2 15 digital supply voltage 2 (+5 V) VCCD1 37 digital supply voltage 1 (+5 V) n.c. 16 not connected DGND1 38 digital ground 1 DGND2 17 digital ground 2 SH 39 TC 18 output two’s complement sample-and-hold enable input (CMOS level; active HIGH) OE 19 output enable input (CMOS level; active LOW) AGND4 40 analog ground 4 VCCA4 41 analog supply voltage 4 (+5 V) 42 complementary analog input voltage IR 20 in-range output VI D11 21 data output; bit 11 (MSB) VI 43 analog input voltage D10 22 data output; bit 10 AGND1 44 analog ground 1 1999 Feb 16 4 Philips Semiconductors Preliminary specification 34 OGND n.c. 1 33 VCCO VCCA1 2 32 D0 VCCA3 3 31 D1 AGND3 4 30 D2 n.c. 5 29 D3 TDA8767 26 D6 VCCA2 9 25 D7 AGND2 10 24 D8 Vref 11 23 D9 5 D10 22 D11 21 IR 20 28 D4 OE 19 TC 18 8 DGND2 17 n.c. n.c. 16 27 D5 VCCD2 15 7 n.c. 14 n.c. n.c. 13 6 n.c. 12 n.c. Fig.2 Pin configuration. 1999 Feb 16 35 n.c. 36 CLK 37 VCCD1 38 DGND1 39 SH TDA8767 40 AGND4 41 VCCA4 42 VI handbook, full pagewidth 43 VI 44 AGND1 12-bit high-speed Analog-to-Digital Converter (ADC) MBH143 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VCCA analog supply voltage note 1 −0.3 +7.0 V VCCD digital supply voltage note 1 −0.3 +7.0 V VCCO output supply voltage note 1 −0.3 +7.0 V ∆VCC supply voltage difference VCCA − VCCD −1.0 +1.0 V VCCO − VCCD −1.0 +4.0 V VCCA − VCCO −1.0 +4.0 V VI input voltage 0.3 VCCA V Vi(p-p) input voltage for differential clock drive (peak-to-peak value) − VCCD V IO output current − 10 mA Tstg storage temperature −55 +150 °C Tamb operating ambient temperature 0 70 °C Tj junction temperature − +150 °C referenced to AGND Note 1. The supply voltages VCCA, VCCD and VCCO may have any value between −0.3 V and +7.0 V provided that the supply voltage differences ∆VCC are respected. HANDLING Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits. THERMAL CHARACTERISTICS SYMBOL Rth j-a 1999 Feb 16 PARAMETER thermal resistance from junction to ambient in free air 6 VALUE (TYP.) UNIT 75 K/W Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 CHARACTERISTICS VCCA = V2 to V44, V9 to V10, V3 to V4 and V41 to V40 = 4.75 to 5.25 V; VCCD = V37 to V38 and V15 to V17 = 4.75 to 5.25 V; VCCO = V33 to V34 = 3.0 to 5.25 V; AGND and DGND shorted together; Tamb = 0 to +70 °C; typical values measured at VCCA = VCCD = 5 V and VCCO = 3.3 V; Vi(p-p) − Vi(p-p) = 2.0 V; CL = 15 pF and Tamb = 25 °C; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supply VCCA analog supply voltage 4.75 VCCD digital supply voltage 4.75 5.0 5.25 V VCCO output supply voltage 3.0 3.3 5.25 V ICCA analog supply current − 40 tbf mA ICCD digital supply current − 22 tbf mA ICCO output supply current − 12 tbf mA fclk = 20 MHz; fi = 4.43 MHz 5.0 5.25 V Inputs CLK (REFERENCED TO DGND) VIL LOW-level input voltage 0 − 0.8 V VIH HIGH-level input voltage 2.0 − VCCD V IIL LOW-level input current Vclk = 0.3VCCD −400 − − µA IIH HIGH-level input current Vclk = 0.7VCCD − − 100 µA Vclk = VCCD − − 300 µA Zi input impedance fclk = 30 MHz − 2 − kΩ Ci input capacitance fclk = 30 MHz − 2 − pF TC; SH AND OE (REFERENCED TO DGND); see Tables 3 and 4 VIL LOW-level input voltage 0 − 0.8 V VIH HIGH-level input voltage 2.0 − VCCD V IIL LOW-level input current VIL = 0.3VCCD −400 − − µA IIH HIGH-level input current VIH = 0.7VCCD − − 20 µA VI AND VI (REFERENCED TO AGND; see Tables 1 AND 2); Vref = VCCA − 2 V IIL LOW-level input current Vi = Vi − 10 − µA IIH HIGH-level input current Vi = Vi − 10 − µA Zi input impedance fi = 4.43 MHz − 10 − kΩ Ci input capacitance fi = 4.43 MHz − 2 − pF Vios(d) input offset voltage in differential mode VI = VI; output code 2047 VCCA = 5 V tbf 2.5 tbf V VCCA = 4.75 V tbf 2.25 tbf V VCCA = 5.25 V tbf 2.75 tbf V VCCA = 5 V tbf 2.5 tbf V VCCA = 4.75 V tbf 2.25 tbf V VCCA = 5.25 V tbf 2.75 tbf V Vios(s) 1999 Feb 16 input offset voltage in single mode VI = Vios(s); output code 2047 7 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) SYMBOL PARAMETER TDA8767 CONDITIONS MIN. TYP. MAX. UNIT Voltage controlled regulator input Vref (referenced to VCCA) Vref(FS) full scale fixed voltage Vi(p-p) − Vi(p-p) input voltage amplitude (peak-to-peak value) Iref VCCA = 5 V − 3.175 − V differential mode − 2.0 − V single mode; Vi = 2.5 V − 2.0 − V − 10 − µA input current at Vref Outputs (referenced to DGND) DIGITAL OUTPUTS D11 TO D0 AND IR (REFERENCED TO DGND) VOL LOW-level output voltage IOL = 2 mA 0 − 0.5 V VOH HIGH-level output voltage IOH = −0.4 mA VCCO − 0.5 − VCCD V IO output current in 3-state 0.5 V < VO < VCCO −20 − +20 µA SH = HIGH − − 1 MHz SH = LOW − − 1 kHz TDA8767H/1 10 − − MHz TDA8767H/2 20 − − MHz TDA8767H/3 30 − − MHz Switching characteristics CLOCK FREQUENCY fclk (see Fig.3) fclk(min) minimum clock frequency fclk(max) maximum clock frequency tCPH clock pulse width HIGH 8.5 − − ns tCPL clock pulse width LOW 8.5 − − ns Analog signal processing; 50% clock duty factor; Vi − Vi = 2.0 V; Vref = VCCA − 2 V; see Table 1 LINEARITY ILE integral non-linearity fclk = 4 MHz; ramp input − ±3.0 ±4.0 LSB DLE differential non-linearity fclk = 4 MHz; ramp input; no missing codes − ±0.6 ±1 LSB OFER offset error VCCA = VCCD = VCCO = 5 V; Tamb = 25 °C; Vi = Vi; output code = 2047 tbf − tbf LSB GER gain error amplitude; spread from device to device VCCA = VCCD = VCCO = 5 V; Tamb = 25 °C; Vi − Vi = 2.0 V tbf − tbf LSB −1 dB − 9 − MHz BANDWIDTH (fclk = 30 MHz); note 1 B analog bandwidth −3 dB − 18 − MHz tSTLH analog input settling time LOW-to-HIGH transition full scale square wave; note 3 − tbf − ns tSTHL analog input settling time HICH-to-LOW transition full scale square wave; note 3 − tbf − ns total harmonic distortion fclk = 30 MHz; fi = 4.43 MHz; note 2 − −64 − dB HARMONICS THD 1999 Feb 16 8 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) SYMBOL PARAMETER TDA8767 CONDITIONS MIN. TYP. MAX. UNIT SIGNAL-TO-NOISE RATIO S/N signal-to-noise ratio without harmonics; fclk = 30 MHz; fi = 4.43 MHz − 61 − dB − − 2 ns 8 − − ns − 12 15 ns 15 18 ns Timing (CL = 15 pF); note 4; see Fig.3 tds sampling delay time th output hold time td output delay time VCCO = 4.75 V VCCO = 3.15 V 3-state output delay times; see Fig.4 tdZH enable HIGH − 14 18 ns tdZL enable LOW − 16 20 ns tdHZ disable HIGH − 16 20 ns tdLZ disable LOW − 14 18 ns Notes to the characteristics 1. The −3 dB (or −1 dB) analog bandwidth is determined by the 3 dB (or 1 dB) reduction in the reconstructed output, the input being a full-scale sine wave. 2. THD (total harmonic distortion) is obtained with the addition of the first five harmonics: F THD = 20 log --------------------------------------------------------------------------------------------------------------2 2 2 2 2 (2nd) + (3rd) + (4th) + (5th) + (6th) F being the fundamental harmonic referenced at 0 dB for a full-scale sine wave input. 3. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale input (square wave signal) in order to sample the signal and obtain correct output data (see Fig.5). 4. Output data acquisition: the output data is available after the maximum delay of td. 1999 Feb 16 9 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) Table 1 TDA8767 Output coding with differential inputs (typical values to AGND); VI(p-p) − VI(p-p) = 2.0 V; Vref = VCCA − 2 V CODE VI VI BINARY OUTPUTS TWO’S COMPLEMENT OUTPUTS D11 to D0 D11 to D0 0 000000000000 100000000000 IR underflow <2.0 >3.0 0 2.0 3.0 1 000000000000 1 0 0 0 0 0 0 0 0 0 00 1 − − 1 0 0 0 0 0 0 0 0 0 0 01 100000000001 ↓ − − ↓ ↓ ↓ 2047 2.5 2.5 1 011111111111 111111111111 ↓ − − ↓ ↓ ↓ 4094 − − 1 111111111110 011111111110 4095 3.0 2.0 1 111111111111 011111111111 overflow >3.0 <2.0 0 111111111111 011111111111 Table 2 Output coding with single input (typical values to AGND); VFS = 2.0 V (p-p); Vref = VCCA − 2 V CODE BINARY OUTPUTS TWO’S COMPLEMENT OUTPUTS D11 to D0 D11 to D0 IR VI underflow <1.5 0 000000000000 100000000000 0 1.5 1 000000000000 1 0 0 0 0 0 0 0 0 0 00 1 − 1 0 0 0 0 0 0 0 0 0 0 01 100000000001 ↓ − ↓ ↓ ↓ 2047 2.5 1 011111111111 111111111111 ↓ − ↓ ↓ ↓ 4094 − 1 111111111110 011111111110 4095 3.5 1 111111111111 011111111111 overflow >3.5 0 111111111111 011111111111 Table 3 Mode selection TC OE D0 to D11 and IR 0 0 binary; active 1 0 two’s complement; active X(1) 1 high impedance Note 1. Where: X = don’t care. Table 4 Sample-and-hold selection SH SAMPLE-AND-HOLD 1 active 0 inactive; tracking mode 1999 Feb 16 10 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 t CPL handbook, full pagewidth t CPH HIGH CLK 50 % LOW sample N sample N + 1 sample N + 2 Vl t ds th HIGH DATA D0 to D11 DATA N-2 DATA N-1 DATA N DATA N+1 50 % LOW td MBG855 Fig.3 Timing diagram. handbook, full pagewidth V CCD 50 % OE 0V t dHZ t dZH HIGH 90 % output data 50 % t dLZ LOW t dZL HIGH output data 50 % LOW 10 % V CCD 3.3 kΩ S1 TDA8767 15 pF TEST S1 t dLZ t dZL VCCD VCCD t dHZ DGND t dZH DGND OE MBH144 fOE = 100 kHz. Fig.4 Timing diagram and test conditions of 3-state output delay time. 1999 Feb 16 11 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 t STHL t STLH handbook, full pagewidth code 1023 VI 50 % 50 % code 0 5 ns 5 ns CLK MBD875 50 % 50 % 2 ns 2 ns Fig.5 Analog input settling time diagram. 1999 Feb 16 12 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 APPLICATION INFORMATION 5V handbook, full pagewidth 100 nF 220 nF SH mode 5V 100 nF VI 1:1 IN 100 Ω CLK(1) VI 100 Ω n.c. VCCA R1 (2) 4.7 µF 10 nF n.c. 5V 100 nF 100 nF 100 nF (3) Vref 100 nF 33 2 32 D0 (LSB) 3 31 D1 4 30 D2 n.c. 5 29 D3 n.c. 6 28 D4 n.c. 7 27 D5 n.c. 8 26 D6 9 25 D7 10 24 D8 11 23 D9 R2 5V 44 43 42 41 40 39 38 37 36 35 34 1 5V TDA8767H 12 13 14 15 16 17 18 19 20 21 22 MBH145 n.c. n.c. n.c. 5V 100 nF n.c. IR D10 D11 (MSB) chip select input (OE) output format select (TC) The analog, digital and output supplies should be separated and decoupled. (1) At power-up a high level clock must be provided within less than 1 µs or a pull-up resistor must be connected between CLK and VCCD. (2) R1, and R2 must be determined in order to obtain a middle voltage of 2.5 V; see Table 1. To ensure a sufficient analog input stability, the minimum current into these resistors must be about 1 mA. (3) Vref must be decoupled to VCCA. Fig.6 Application diagram (differential input mode). 1999 Feb 16 13 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 5V handbook, full pagewidth 100 nF 220 nF SH mode 5V 100 nF VI IN 50 Ω CLK(1) VI n.c. 50 Ω 50 Ω R1 n.c. VCCA (2) R2 4.7 µF 10 nF 5V 100 nF (3) Vref 1 5V 100 nF 33 2 32 D0 (LSB) 3 31 D1 4 30 D2 n.c. 5 29 D3 n.c. 6 28 D4 n.c. 7 27 D5 n.c. 8 26 D6 9 25 D7 10 24 D8 11 23 D9 5V 100 nF 100 nF 44 43 42 41 40 39 38 37 36 35 34 TDA8767H 12 13 14 15 16 17 18 19 20 21 22 MBH146 n.c. n.c. n.c. 5V 100 nF n.c. IR D10 D11 (MSB) chip select input OE output format select TC The analog, digital and output supplies should be separated and decoupled. (1) At power-up a high level clock must be provided within less than 1 µs or a pull-up resistor must be connected between CLK and VCCD. (2) R1, and R2 must be determined in order to obtain a voltage of 2.5 V on VI and VI; see Table 1. To ensure a sufficient analog input stability, the minimum current into these resistors must be about 1 mA. (3) Vref must be decoupled to VCCA. Fig.7 Application diagram (single input mode). 1999 Feb 16 14 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 PACKAGE OUTLINE QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm SOT307-2 c y X A 33 23 34 22 ZE e E HE A A2 wM (A 3) A1 θ bp Lp pin 1 index L 12 44 1 detail X 11 wM bp e ZD v M A D B HD v M B 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HD HE L Lp v w y mm 2.10 0.25 0.05 1.85 1.65 0.25 0.40 0.20 0.25 0.14 10.1 9.9 10.1 9.9 0.8 12.9 12.3 12.9 12.3 1.3 0.95 0.55 0.15 0.15 0.1 Z D (1) Z E (1) 1.2 0.8 1.2 0.8 θ o 10 0o Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 95-02-04 97-08-01 SOT307-2 1999 Feb 16 EUROPEAN PROJECTION 15 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 • Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave. SOLDERING Introduction to soldering surface mount packages • For packages with leads on two sides and a pitch (e): This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “Data Handbook IC26; Integrated Circuit Packages” (document order number 9398 652 90011). – larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board; There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used. – smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves at the downstream end. • For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners. Reflow soldering Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method. Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C. Manual soldering Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. Wave soldering Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. To overcome these problems the double-wave soldering method was specifically developed. If wave soldering is used the following conditions must be observed for optimal results: 1999 Feb 16 16 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 Suitability of surface mount IC packages for wave and reflow soldering methods SOLDERING METHOD PACKAGE REFLOW(1) WAVE BGA, SQFP not suitable HLQFP, HSQFP, HSOP, HTSSOP, SMS not PLCC(3), SO, SOJ suitable suitable(2) suitable suitable suitable LQFP, QFP, TQFP not recommended(3)(4) suitable SSOP, TSSOP, VSO not recommended(5) suitable Notes 1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”. 2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version). 3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners. 4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm. 5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm. DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 1999 Feb 16 17 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 NOTES 1999 Feb 16 18 Philips Semiconductors Preliminary specification 12-bit high-speed Analog-to-Digital Converter (ADC) TDA8767 NOTES 1999 Feb 16 19 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V, Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 489 4339/4239, Fax. +30 1 481 4240 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 62 5344, Fax.+381 11 63 5777 For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com © Philips Electronics N.V. 1999 SCA62 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 545004/750/03/pp20 Date of release: 1999 Feb 16 Document order number: 9397 750 04713