PHILIPS TDA8793

INTEGRATED CIRCUITS
DATA SHEET
TDA8793
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
Preliminary specification
Supersedes data of 1998 May 14
File under Integrated Circuits, IC02
1999 Oct 06
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
FEATURES
GENERAL DESCRIPTION
• 8-bit low-power ADC (170 mW typical)
The TDA8793 is an 8-bit low-power Analog-to-Digital
Converter (ADC) which includes a track-and-hold circuit
and internal references. The device converts an analog
input signal, up to 100 MHz, into 8-bit binary codes at a
maximum sample rate of 100 Msps. All digital inputs and
output are TTL/CMOS compatible. A sine wave clock input
signal can also by used.
• 2.7 to 3.6 V operation
• Sampling rate up to 100 Msps
• Track-and-hold circuit
• CMOS/TTL compatible digital inputs and outputs
• Internal references
The Power-down mode enables the device power
consumption to be reduced to 5 mW.
• Adjustable full scale range possibility with external
reference
• Power-down mode; 5 mW.
APPLICATIONS
• Radio communications
• Digital data storage read channels
• Medical imaging
• Digital instrumentation.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCCA
analog supply voltage
2.7
3.0
3.6
V
VCCD
digital supply voltage
2.7
3.0
3.6
V
VCCO
output stages supply voltage
ICCA
analog supply current
ICCD
digital supply current
2.7
3.0
3.6
V
operating
32
40
48
mA
standby
0
5
100
µA
operating
13
16
22
mA
standby
0
0.65
1.1
mA
−
0.1
−
mA
ICCO
output stages supply current
INL
integral non-linearity
ramp input; fCLK = 2 MHz;
VCCA = VCCD = 3 V
−
±0.8
tbf
LSB
DNL
differential non-linearity
ramp input; fCLK = 2 MHz;
VCCA = VCCD = 3 V
−
±0.25 tbf
LSB
fCLK(max)
maximum clock input frequency
100
−
−
MHz
Ptot
total power dissipation
−
170
−
mW
VCC = 3 V
ORDERING INFORMATION
TYPE
NUMBER
TDA8793HL
1999 Oct 06
PACKAGE
NAME
LQFP32
DESCRIPTION
plastic low profile quad flat package; 32 leads; body 5 × 5 × 1.4 mm
2
VERSION
SOT401-1
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
BLOCK DIAGRAM
VCCA
TEN
handbook, full pagewidth
12
VCCD
VCCO2
VCCO1
10
22
20
7
26
25
24
INP
INN
REFOUT
REFIN
4
3
23
TRACK-ANDHOLD
CMOS
OUTPUTS
LATCHES
ADC
STDBY
15
2
32
11
D5
D4
D3
D2
D1
D0
CLK
VREFOUT = 1.85 V
REFERENCE
VSDN = 1.25 V
TDA8793
8
31
DEC
6
9
AGND
DGND
Fig.1 Block diagram.
1999 Oct 06
17
16
5
CLOCK DRIVER
SDN
18
D7
D6
3
19
21
OGND1 ODGND2
MGR016
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
PINNING
SYMBOL
PIN
DESCRIPTION
SYMBOL
PIN
D2
17
DESCRIPTION
data output bit 2
n.c.
1
not connected
D3
18
data output bit 3
REFIN
2
reference input for ADC
OGND1
19
output ground 1
INN
3
negative input
VCCO1
20
output supply voltage 1
INP
4
positive input
OGND2
21
output ground 2
REFOUT
5
reference for AC coupling
VCCO2
22
output supply voltage 2
AGND
6
analog ground
D4
23
data output bit 4
VCCA
7
analog supply voltage
D5
24
data output bit 5
STDBY
8
standby mode input
D6
25
data output bit 6
DGND
9
digital ground
D7
26
data output bit 7 (MSB)
not connected
track enable input (active LOW)
n.c
29
not connected
n.c.
13
not connected
n.c
30
not connected
n.c.
14
not connected
DEC
31
decoupling
D0
15
data output bit 0 (LSB)
SDN
32
stabilized decoupling node
D1
16
data output bit 1
handbook, full pagewidth
25 D6
28
12
26 D7
n.c
TEN
27 n.c.
not connected
28 n.c.
27
29 n.c.
n.c
clock input
30 n.c.
digital supply voltage
11
31 DEC
10
32 SDN
VCCD
CLK
n.c.
1
24 D5
REFIN
2
23 D4
INN
3
22 VCCO2
INP
4
21 OGND2
TDA8793
18 D2
STDBY
8
17 D3
DGND
Fig.2 Pin configuration.
1999 Oct 06
4
D1 16
7
D0 15
VCCA
n.c. 14
19 OGND1
n.c. 13
6
TEN 12
AGND
CLK 11
20 VCCO1
VCCD 10
5
9
REFOUT
MGR017
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCCA
analog supply voltage
−0.3
+7.0
V
VCCD
digital supply voltage
−0.3
+7.0
V
VCCO
output stages supply voltage
−0.3
+7.0
V
∆VCC
supply voltage differences between
VCCA and VCCD
−1.0
+1.0
V
VCCO and VCCD
−1.0
+1.0
V
−1.0
+1.0
V
−0.3
+7.0
V
VCCA and VCCO
VINP, INN
input voltage range
IO
output current
−
10
mA
Tstg
storage temperature
−55
+150
°C
Tamb
ambient temperature
0
70
°C
Tj
junction temperature
−
−
°C
referenced to AGND
HANDLING
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling integrated circuits.
THERMAL CHARACTERISTICS
SYMBOL
Rth(j-a)
1999 Oct 06
PARAMETER
CONDITIONS
thermal resistance from junction to ambient
5
in free air
VALUE
UNIT
94
K/W
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
CHARACTERISTICS
VCCA = V7 to V6 = 2.7 to 3.6 V; VCCD = V10 to V9 = 2.7 to 3.6 V; VCCO = V20 (or V22) to V19 (or V21) = 2.7 to 3.6 V;
AGND to DGND and OGND shorted together; VCCA to VCCD = −0.15 to +0.15 V; VCCD to VCCO = −0.15 to +0.15 V;
VCCA to VCCO = −0.15 to +0.15 V; Tamb = 0 to 70 °C; typical values measured at VCCA = VCCD = VCCO = 3.0 V and
Tamb = 25 °C; single-ended input; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VCCA
analog supply voltage
2.7
3.0
3.6
V
VCCD
digital supply voltage
2.7
3.0
3.6
V
VCCO
output stages supply voltage
2.7
3.0
3.6
V
ICCA
analog supply current
32
40
48
mA
ICCD
digital supply current
13
16
22
mA
ICCO
output stages supply current
fi = ramp input
−
0.1
tbf
mA
fi = 20 MHz
−
4
tbf
mA
1.21
1.25
1.29
V
Internal reference (pin SDN); note 1
Vref
reference voltage
Vreg
line regulation voltage
−
0.4
3
mV
TC
temperature coefficient
−
18
−
ppm/K
IL
load current
−1
−
−
mA
1.76
1.82
1.88
V
−
1.5
4
mV
2.7 < VCCA < 3.6 V
Internal reference (pin REFOUT)
Vo(ref)
reference voltage
Vo(reg)
line regulation voltage
2.7 < VCCA < 3.6 V
TC
temperature coefficient
−
18
−
ppm/K
IL
load current
−1
−
−
mA
−
−0.87
−
mA
Adjustable full scale input (pin REFIN); see Figs 3, 4, and 7
Iref
input current
VREFIN = 1.25 V
Clock input (pin CLK); note 2
VIL
LOW-level input voltage
0
−
0.8
V
VIH
HIGH-level input voltage
2
−
VCCD
V
IIL
LOW-level input current
VCLK = 0
−2
−
+2
µA
IIH
HIGH-level input current
VCLK = VCCD
−
−
5
µA
tr
clock rise time
0.75
−
tbf
ns
tf
clock fall time
0.75
−
tbf
ns
Zi
input impedance
fCLK = 100 MHz
−
32
−
kΩ
Ci
input capacitance
fCLK = 100 MHz
−
2
−
pF
Standby input (pin STDBY); see Table 1
VIL
LOW-level input voltage
0
−
0.8
V
VIH
HIGH-level input voltage
2
−
VCCD
V
IIL
LOW-level input current
VSTDBY = 0
−5
−
−
µA
IIH
HIGH-level input current
VSTDBY = VCCD
−
−
5
µA
1999 Oct 06
6
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
SYMBOL
PARAMETER
TDA8793
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Track enable input (pin TEN); see Table 2
VIL
LOW-level input voltage
0
−
0.8
V
VIH
HIGH-level input voltage
2
−
VCCD
V
IIL
LOW-level input current
VTEN = 0
−5
−
−
µA
IIH
HIGH-level input current
VTEN = VCCD
−
−
5
µA
Inputs (pins INP and INN); analog input voltage referenced to AGND; VREFIN = 1.27 V; see Table 3
Vi(p-p)
input voltage range
(peak-to-peak value)
Vi = VINP − VINN;
Tamb = 25 °C
0.90
0.97
1.040
V
∆TCI
input voltage range drift
−
0.5
−
mV/K
Vi(os)
input offset voltage
output code = 127
−25
−
+25
mV
Zi
input impedance
fINP = 50 MHz
−
90
−
kΩ
Ci
input capacitance
fINP = 50 MHz
−
2
−
pF
IIL
LOW-level input current
VINP = VREFOUT + 0.5
−1
−
−
µA
VINP = VREFOUT − 0.5
−1
−
−
µA
VINP = VREFOUT + 0.5
−
−
40
µA
VINP = VREFOUT − 0.5
−
−
40
µA
−
1
−
V
IIH
HIGH-level input current
Adjustable full scale range; VREFIN = 1.2 to 1.35 V; see Fig.3
VI(p-p)
input voltage range
(peak-to-peak value)
Vi = VINP − VINN;
Tamb = 25 °C
Voltage controlled regulator input pin VREFIN (referenced to AGND); note 3
Vi(ref)
reference voltage
tbf
1.25
tbf
V
Ii(ref)
input current on pin VREFIN
−
tbf
1.1
mA
−
0.5
V
Outputs; ADC data outputs
VOL
LOW-level output voltage
IO = 1 mA
−
IO = −0.4 mA
VCCO − 0.5 −
VCCO
V
−
−
10
pF
10% to 90%; CL = 10 pF
−
1.2
−
V/ns
track = LOW
−
−
6
MHz
VOH
HIGH-level output voltage
CL
output load capacitance
δv/δt
slew rate
Switching characteristics; note 2; see Table 1
fCLK(min)
minimum clock frequency
fCLK(max)
maximum clock frequency
100
−
−
MHz
tW(CLKH)
clock pulse width HIGH
4
−
−
ns
tW(CLKL)
clock pulse width LOW
4
−
−
ns
1999 Oct 06
7
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
SYMBOL
PARAMETER
TDA8793
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Analog signal processing; note 3; see Figs 4, 5, 6 and 7
INL
integral non-linearity
ramp input; fCLK = 2 MHz;
VCCA = VCCD = 3 V
−
±0.8
tbf
LSB
DNL
differential non-linearity
ramp input; fCLK = 2 MHz;
VCCA = VCCD = 3 V
−
±0.25
tbf
LSB
S/N
signal-to-noise ratio (full scale)
without harmonics;
fCLK = 100 MHz
fi = 20 MHz
42
45
−
dB
fi = 50 MHz
−
45
−
dB
−
350
−
MHz
fi = 20 MHz
−
−56
−
dB
fi = 50 MHz
−
−52
−
dB
fi = 20 MHz
−
−
0
dB
fi = 50 MHz
−
−
0
dB
fi = 20 MHz
−
66
−
dB
fi = 50 MHz
−
57
−
dB
fi = 20 MHz
−
66
−
dB
fi = 50 MHz
−
55
−
dB
fi = 20 MHz
−
64
−
dB
fi = 50 MHz
−
61
−
dB
fi = 20 MHz
−
64
−
dB
fi = 50 MHz
−
59
−
dB
BW(−3dB)
−3 dB analog bandwidth
THD
total harmonics distortion
Hfund(FS)
HD2(FS)
full scale fundamental harmonics
second harmonic distortion (full
scale) all components included
fCLK = 100 MHz
differential inputs;
fCLK = 100 MHz
single-ended input;
fCLK = 100 MHz
HD3(FS)
third harmonic distortion (full scale)
all components included
differential inputs;
fCLK = 100 MHz
single-ended input;
fCLK = 100 MHz
SFDR
EB
spurious free dynamic range
effective bits
fCLK = 100 MHz
dB
fi = 20 MHz
−
57
−
dB
fi = 50 MHz
−
54
−
dB
fCLK = 100 MHz; note 4
bits
fi = 20 MHz
7.0
7.4
−
bits
fi = 50 MHz
−
7.2
−
bits
−
−
1.5
ns
Data timing; fCLK = 100 MHz; CL = 10 pF; see Fig.8
tds
sampling delay
th
output hold time
3
−
−
ns
td
output delay time
−
5
8
ns
1999 Oct 06
8
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
Notes
1. It is possible to use the reference output voltage (pin SDN) to drive other analog circuits under the limits indicated.
2. In addition to a good layout of the digital and analog grounds, it is recommended that the rise and fall times of the
clock must be not less than 0.75 ns.
3. It is possible with an external reference voltage connected to REFIN pin to adjust the ADC input range. The input
range variation will be fixed.
4. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8 k acquisition points per equivalent
fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency
(nyquist frequency). Conversion to signal-to-noise ratio: SINAD = 6.02 × EB + 1.76 dB.
Table 1
Table 2
Table 3
Standby selection
PIN STDBY
D0 TO D7
ICCA + ICCD
LOW
inactive
56 mA
HIGH
active; output logic state LOW
0.7 mA
Track-and-hold selection
PIN TEN
TRACK-AND-HOLD
LOW
active
HIGH
inactive; tracking mode
Output coding and input voltage (typical values; referenced to AGND); VREFIN = 1.27 V
BINARY OUTPUT BITS
STEP
VINP (V)
VINN (V)
Underflow
<1.6
0
1.6
D7
D6
D5
D4
D3
D2
D1
D0
>2.1
0
0
0
0
0
0
0
0
2.1
0
0
0
0
0
0
0
0
1
...
...
0
0
0
0
0
0
0
1
...
...
...
...
...
...
...
...
...
...
...
127
1.85
1.85
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
...
254
...
...
1
1
1
1
1
1
1
0
255
2.1
1.6
1
1
1
1
1
1
1
1
Overflow
>2.1
<1.6
1
1
1
1
1
1
1
1
1999 Oct 06
9
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
FCE421
1.4
FCE423
67
handbook, halfpage
handbook, halfpage
SFDR
S/N
(dB)
Vi(p-p)
(V)
(1)
62
1.2
57
1
52
(2)
0.8
47
0.6
1.15
1.35
1.25
42
1.15
1.45
VREFIN (V)
1.35
1.25
1.45
VREFIN (V)
Typical values measured at VCCA = VCCD = VCCO = 3.0 V,
fCLK = 100 MHz, Tamb = 25 °C and single-ended input.
(1) SFDR
(2) S/N
Typical values measured at VCCA = VCCD = VCCO = 3.0 V,
fCLK = 100 MHz, Tamb = 25 °C and single-ended input.
Fig.3
Fig.4
ADC input voltage as a function of VREFIN
reference input voltage.
FCE419
55
FCE420
8
handbook, halfpage
THD
S/N
(dB)
Noise and spurious free dynamic range as
a function of VREFIN reference input voltage.
handbook, halfpage
EB
(bits)
(1)
53
(1)
7.5
(2)
(2)
51
7
49
6.5
(3)
47
6
45
1
10
fi (MHz)
5.5
102
1
(1) THD for differential inputs
(2) THD for single-ended input
(3) S/N
Typical values measured at VCCA = VCCD = VCCO = 3.0 V,
fCLK = 100 MHz and Tamb = 25 °C.
Fig.5
fi (MHz)
102
(1) Differential inputs
(2) Single-ended input
Typical values measured at VCCA = VCCD = VCCO = 3.0 V,
fCLK = 100 MHz and Tamb = 25 °C.
Noise and distortion as a function of input
frequency.
1999 Oct 06
10
Fig.6 Effective bits as a function of input frequency.
10
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
FCE422
8
handbook, halfpage
EB
(bits)
7
6
5
1.15
1.25
1.35
VREFIN (V)
1.45
Typical values measured at VCCA = VCCD = VCCO = 3.0 V,
fCLK = 100 MHz, Tamb = 25 °C and single-ended input.
Fig.7
Effective bits as a function of VREFIN
reference input voltage.
tCPL
handbook, full pagewidth
tCPH
HIGH
50 %
CLK
LOW
sample N
sample N + 1
sample N + 2
Vl
th
tds
HIGH
DATA
D0 to D7
DATA
N−2
DATA
N−1
DATA
N
DATA
N+1
50 %
LOW
td
MGR018
Fig.8 Timing diagram.
1999 Oct 06
11
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
APPLICATION INFORMATION
handbook, full pagewidth
100 nF
SND
100 nF
REFIN
10 nF
INN
220 nF
INP
input
50 Ω
32
DEC
31
2
3
4
TDA8793
50 Ω
REFOUT
5
100 nF
MGR019
Fig.9 Application diagram for single-ended input mode with internal reference.
handbook, full pagewidth
EXTERNAL
REFERENCE
1.25 V
100 nF
DEC
100 nF
10 nF
220 nF
REFIN
INN
INP
input
50 Ω
31
2
3
4
TDA8793
50 Ω
REFOUT
5
100 nF
MGR020
Fig.10 Application diagram for single-ended input mode with external reference.
1999 Oct 06
12
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
handbook, full pagewidth
100 nF
SND
100 nF
REFIN
220 nF
input 2
INN
50 Ω
DEC
32
31
2
3
TDA8793
220 nF
input 1
50 Ω
INP
REFOUT
4
5
100 nF
MGR021
Fig.11 Application diagram for differential input mode with internal reference.
handbook, full pagewidth
100 nF
SND
100 nF
220 nF
input
REFIN
INN
1:1
32
DEC
31
2
3
100 nF
100 Ω
100 Ω
INP
REFOUT
TDA8793
4
5
100 nF
MGR022
Fig.12 Application diagram for differential input mode using a transformer.
1999 Oct 06
13
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
PACKAGE OUTLINE
SOT401-1
LQFP32: plastic low profile quad flat package; 32 leads; body 5 x 5 x 1.4 mm
c
y
X
A
17
24
ZE
16
25
e
A A2
E HE
(A 3)
A1
w M
pin 1 index
θ
bp
32
Lp
9
L
1
8
detail X
ZD
e
v M A
w M
bp
D
B
HD
v M B
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HD
HE
L
Lp
v
w
y
mm
1.60
0.15
0.05
1.5
1.3
0.25
0.27
0.17
0.18
0.12
5.1
4.9
5.1
4.9
0.5
7.15
6.85
7.15
6.85
1.0
0.75
0.45
0.2
0.12
0.1
Z D (1) Z E (1)
θ
0.95
0.55
7
0o
0.95
0.55
o
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
95-12-19
97-08-04
SOT401-1
1999 Oct 06
EUROPEAN
PROJECTION
14
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
SOLDERING
Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
• For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
The footprint must incorporate solder thieves at the
downstream end.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Reflow soldering
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Manual soldering
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
Wave soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
To overcome these problems the double-wave soldering
method was specifically developed.
If wave soldering is used the following conditions must be
observed for optimal results:
1999 Oct 06
15
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
REFLOW(1)
WAVE
BGA, SQFP
not suitable
suitable(2)
HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS
not
PLCC(3), SO, SOJ
suitable
LQFP, QFP, TQFP
SSOP, TSSOP, VSO
suitable
suitable
suitable
not
recommended(3)(4)
suitable
not
recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1999 Oct 06
16
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
NOTES
1999 Oct 06
17
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
NOTES
1999 Oct 06
18
Philips Semiconductors
Preliminary specification
8-bit, low-power, 3 V, 100 Msps
Analog-to-Digital Converter (ADC)
TDA8793
NOTES
1999 Oct 06
19
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 62 5344, Fax.+381 11 63 5777
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 68
© Philips Electronics N.V. 1999
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
545004/02/pp20
Date of release: 1999
Oct 06
Document order number:
9397 750 06028