PHILIPS TDA8760K/4

INTEGRATED CIRCUITS
DATA SHEET
TDA8760
10-bit high-speed analog-to-digital
converter
Product specification
Supersedes data of April 1994
File under Integrated Circuits, IC02
1996 Sep 12
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
FEATURES
APPLICATIONS
• 10-bit resolution
• High-speed analog-to-digital conversion for
• Sampling rate up to 40 MHz
– Video signal digitizing
• Total Harmonic Distortion (THD): −65 dB at 4.43 MHz
full-scale and a 40 MHz clock frequency
– High Definition TV (HDTV)
– Digital video broadcasting (satellite and cable)
• High signal-to-noise ratio over a large analog input
frequency range (8.8 effective bits at 10 MHz full-scale
input at a 40 MHz clock frequency)
– Transient signal analysis
– High energy physics research
• +5 V power supplies
– Sigma-delta (SD) modulators
• Binary or two’s complement 3-state TTL outputs
– Medical imaging
• In-range 3-state TTL output
– Radar pulse digitizing.
• TTL compatible digital inputs
• LOW-level AC clock input signal allowed
GENERAL DESCRIPTION
• Power dissipation 850 mW (typical)
The TDA8760 is a monolithic bipolar 10-bit
Analog-to-Digital Converter (ADC) for video or other
applications. It converts the analog input signal into 10-bit
binary coded digital words at a maximum sampling rate of
40 MHz. All digital inputs and outputs are TTL compatible.
However, a sine wave clock input signal is allowed.
• Low analog input capacitance (typ. 4.5 pF), no buffer
amplifier required
• No external sample-and-hold circuit required
• Analog Input; single or differential
• External amplitude range control
• Voltage controlled regulator included.
1996 Sep 12
2
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VCCA
analog supply voltage
4.75
5.0
5.25
V
VCCD
digital supply voltage
4.75
5.0
5.25
V
VCCO
output supply voltage
4.75
5.0
5.25
V
ICCA
analog supply current
−
95
100
mA
ICCD
digital supply current
−
40
45
mA
ICCO
output supply current
−
35
40
mA
ILE
DC integral linearity error
fclk = 4 MHz
−
±1.0
±2.0
LSB
DLE
DC differential linearity error
fclk = 4 MHz
−
±0.6
±1.0
LSB
AILE
AC integral linearity error
fclk = 40 MHz;
fi = 4.43 MHz
−
±1.2
±2.0
LSB
fclk(max)
maximum clock frequency
TDA8760K/2
20
−
−
MHz
TDA8760K/4
40
−
−
MHz
Ptot
total power dissipation
−
850
970
mW
Tamb
operating ambient temperature
0
−
+70
°C
ORDERING INFORMATION
TYPE
NUMBER
TDA8760K/2
TDA8760K/4
1996 Sep 12
PACKAGE
NAME
PLCC44
DESCRIPTION
plastic leaded chip carrier; 44 leads
3
VERSION
SOT187-2
SAMPLING
FREQUENCY
(MHz)
20
40
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
14
V CCA2
V CCA3
13
17
7
V CCD1
3
VCCD2
CLK
CLK
21
2
1
AMP
TDA8760
VI
10
VI
11
AMP
SAMPLE
AND
HOLD
COARSE
ADC
FINE
DAC
FINE
ADC
24
OGND1
output ground
30
OGND2
output ground
37
OGND3
output ground
44
OGND4
output ground
42
43
V CCO3
V CCO4
Philips Semiconductors
15
VCCA1
10-bit high-speed analog-to-digital
converter
V refL
BLOCK DIAGRAM
1996 Sep 12
V refH
data outputs
27
4
29
31
32
33
ERROR
CORECTION
34
TTL
OUTPUTS
35
36
40
41
26
8
9
12
16
4
20
22
23
28
D9 (MSB)
D8
D7
D6
D5
D4
D3
D2
D1
D0 (LSB)
IR
25
MBD222 - 2
AGND3
DGND1
DGND2
digital ground
Fig.1 Block diagram for SO187 package.
TDA8760
analog ground
AGND4
handbook, full pagewidth
AGND2
Product specification
AGND1
VCCO1
OTC
V CCO2
CS
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
PINNING
SYMBOL
PIN
DESCRIPTION
CLK
1
clock input
CLK
2
complementary clock input
VCCD1
3
digital supply voltage (+5 V)
DGND1
4
digital ground
n.c.
5
not connected
n.c.
6
not connected
VCCA1
7
analog supply voltage (+5 V)
AGND1
8
analog ground
AGND2
9
analog ground
VI
10
analog input voltage
VI
11
complementary analog input voltage
AGND3
12
analog ground
VCCA2
13
analog supply voltage (+5 V)
VrefL
14
reference voltage LOW
VrefH
15
reference voltage HIGH
AGND4
16
analog ground
VCCA3
17
analog supply voltage (+5 V)
n.c.
18
not connected
n.c.
19
not connected
DGND2
20
digital ground
VCCD2
21
digital supply voltage (+5 V)
CS
22
chip select input (TTL level input; active HIGH)
OTC
23
output two’s complement
OGND1
24
output ground
VCCO1
25
output supply voltage (+5 V)
IR
26
in-range output
D9
27
data output, bit 9 (MSB)
VCCO2
28
output supply voltage (+5 V)
D8
29
data output, bit 8
OGND2
30
output ground
D7
31
data output, bit 7
D6
32
data output, bit 6
D5
33
data output, bit 5
D4
34
data output, bit 4
D3
35
data output, bit 3
D2
36
data output, bit 2
OGND3
37
output ground
n.c.
38
not connected
n.c.
39
not connected
D1
40
data output, bit 1
1996 Sep 12
5
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
SYMBOL
TDA8760
PIN
DESCRIPTION
CLK
CLK
OGND4
VCCO4
VCCO3
D0 (LSB)
D1
44
43
42
41
40
handbook, full pagewidth
1
output ground
2
44
VCCD1
OGND4
3
output supply voltage (+5 V)
DGND1
output supply voltage (+5 V)
43
4
42
VCCO4
n.c.
VCCO3
5
data output, bit 0 (LSB)
n.c.
41
6
D0
VCCA1
7
39 n.c.
AGND1
8
38 n.c.
AGND2
9
37 OGND3
V I 10
VI
36 D2
11
35 D3
AGND3 12
34 D4
TDA8760
V CCA2 13
33 D5
VrefL 14
32 D6
VrefH 15
31 D7
28
VCCO2
D9 (MSB) 27
26
IR
VCCO1 25
OGND1 24
OTC 23
CS 22
21
VCCD2
DGND2 20
29 D8
n.c. 19
30 OGND2
V CCA3 17
n.c. 18
AGND4 16
Fig.2 Pin configuration for SOT187-2.
1996 Sep 12
6
MGA928-1
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCCA
analog supply voltage
−0.3
+7.0
V
VCCD
digital supply voltage
−0.3
+7.0
V
VCCO
output supply voltage
−0.3
+7.0
V
∆VCC1
supply voltage difference between
VCCA and VCCD
−0.5
+0.5
V
∆VCC2
supply voltage difference between
VCCO and VCCD
−0.5
+0.5
V
∆VCC3
supply voltage difference between
VCCA and VCCO
−0.5
0.5
V
VI
input voltage
0.3
VCCA
V
VI(p-p)
input voltage for differential clock
drive (peak-to-peak value)
−
VCCD
V
IO
output current
−
10
mA
Tstg
storage temperature
−55
+150
°C
Tamb
operating ambient temperature
0
+70
°C
Tj
junction temperature
−
+150
°C
referenced to AGND
HANDLING
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is
desirable to take normal precautions appropriate to handling integrated circuits.
THERMAL CHARACTERISTICS
SYMBOL
Rth j-a
1996 Sep 12
PARAMETER
THERMAL RESISTANCE
Thermal resistance from junction to ambient in free air
TDA8760K/4
35 K/W
TDA8760K/2
46 K/W
7
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
CHARACTERISTICS
VCCA = VCCD = VCCO = 4.75 to 5.25 V; AGND and DGND shorted together;
VCCA − VCCD = VCCO − VCCD = VCCA − VCCO = −0.25 to +0.25 V; Tamb = 0 to +70 °C; unless otherwise specified.
Typical values measured at VCCA = VCCD = VCCO = 5 V; Tamb = 25 °C.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VCCA
analog supply voltage
4.75
5.0
5.25
V
VCCD
digital supply voltage
4.75
5.0
5.25
V
VCCO
output supply voltage
4.75
5.0
5.25
V
ICCA
analog supply current
−
95
100
mA
ICCD
digital supply current
−
40
45
mA
ICCO
output supply current
−
35
40
mA
all outputs LOW
Inputs
CLK AND CLK (REFERENCED TO DGND); note 1
VIL
LOW level input voltage
0
−
0.8
V
VIH
HIGH level input voltage
2.0
−
VCCD
V
IIL
LOW level input current
Vclk or Vclk = 0.4 V
−400
−
−
mA
IIH
HIGH level input current
Vclk or Vclk = 2.0 V
−
−
100
mA
Vclk or Vclk = VCCD
−
−
300
mA
fclk = 40 MHz
−
2
−
kΩ
ZI
input impedance
CI
input capacitance
fclk = 40 MHz
−
4.5
−
pF
∆Vclk
AC input voltage for
switching (Vclk − Vclk)
DC level = 1.5 V
0.5
−
2.0
V
DC level = 2.5 V
1.5
−
5.0
V
0
−
0.8
V
OTC AND CS (REFERENCED TO DGND); see Table 3
VIL
LOW level input voltage
VIH
HIGH level input voltage
2.0
−
VCCD
V
IIL
LOW level input current
VIL = 0.8 V
−400
−
−
µA
IIH
HIGH level input current
VIH = 2.0 V
−
−
20
µA
1996 Sep 12
8
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
SYMBOL
PARAMETER
TDA8760
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VI AND VI (REFERENCED TO AGND); see also Tables 1 and 2
IIL
LOW level input current
VrefH − VrefL = 1.5 V
−
7
−
µA
IIH
HIGH level input current
VrefH − VrefL = 1.5 V
−
22
−
µA
ZI
input impedance
fi = 4.43 MHz
−
2
−
kΩ
CI
input capacitance
fi = 4.43 MHz
−
4.5
−
pF
VIoffset(d)
input offset voltage
differential mode; VI = VI;
output code 511; Table 1
VCCA = 5 V
3.3
3.4
3.6
V
VCCA = 4.75 V
3.2
−
3.45
V
VCCA = 5.25 V
3.3
−
3.8
V
VIoffset(s)
input offset voltage
single mode; VI = VIoffset(s);
output code 511; Table 2
VCCA = 5 V
3.6
3.7
3.8
V
VCCA = 4.75 V
3.5
−
3.65
V
VCCA = 5.25 V
3.6
−
4.0
V
Voltage controlled regulator inputs VrefH and VrefL (referenced to AGND); differential input
VrefH
reference voltage HIGH
4.0
4.5
VCCA
V
VrefL
reference voltage LOW
2.5
3.0
3.5
V
VI(p-p)
input voltage amplitude
(peak-to-peak value)
1.4
1.5
1.6
V
IrefH
input current at VrefH
−
10
−
µA
IrefL
input current at VrefL
−
10
−
µA
Voltage controlled regulator inputs VrefH and VrefL (referenced to AGND); single input
VrefH
reference voltage HIGH
4.0
4.4
VCCA
V
VrefL
reference voltage LOW
2.5
3.0
3.5
V
VI(p-p)
input voltage amplitude
(peak-to-peak value)
1.3
1.4
1.5
V
IrefH
input current at VrefH
−
10
−
µA
IrefL
input current at VrefL
−
10
−
µA
Outputs (referenced to DGND)
DIGITAL OUTPUTS D9 TO D0 AND IR (REFERENCED TO DGND)
VOL
LOW level output voltage
IO = 2 mA
0
−
0.4
V
VOH
HIGH level output voltage
IO = −0.4 mA
2.4
−
VCCD
V
IO
output current in 3-state
mode
0.4 V < VO < VCCO
−20
−
+20
µA
1996 Sep 12
9
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
SYMBOL
PARAMETER
TDA8760
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Switching characteristics
CLOCK FREQUENCY fclk (note 1; see Fig.3)
fclk(min)
minimum clock frequency
fclk(max)
maximum clock frequency
−
−
1
MHz
TDA8760K/4
40
−
−
MHz
TDA8760K/2
20
−
−
MHz
10
−
−
ns
8
−
−
ns
tCPH
clock pulse width HIGH
tCPL
clock pulse width LOW
note 7
Analog signal processing in differential input mode; see Table 1; 50% clock duty factor;
VI(p-p) = VrefH − VrefL = 1.5 V
LINEARITY
ILE
DC integral linearity error
fclk = 4 MHz
−
±1.0
±2.0
LSB
DLE
DC differential linearity error
fclk = 4 MHz
−
±0.6
±1.0
LSB
AILE
AC integral linearity error
note 3
−
±1.2
±2.0
LSB
OFE
offset error
VCCA = VCCD = VCCO = 5 V;
VI = VI; Tamb = 25 °C;
output code = 511
−3
−
+3
LSB
GE
gain error; amplitude spread
between devices
VCCA = VCCD = VCCO = 5 V;
Tamb = 25 °C;
VrefH − VrefL = 1.5 V
−10
−
+10
LSB
−1 dB
−
140
−
MHz
−3 dB
−
220
−
MHz
−
−
0
dB
BANDWIDTH (fclk = 40 MHZ); note 9
B
Analog bandwidth
HARMONICS (fclk = 40 MHZ); see Figs 6, 8 and 9
f1
fundamental harmonics
(full scale)
fi = 4.43 MHz
fall
harmonics (full scale);
all components
fi = 4.43 MHz
THD
second harmonics
−
−70
−63
dB
third harmonics
−
−70
−63
dB
−
−65
−60
dB
54
56
−
dB
total harmonic distortion
fi = 4.43 MHz; note 2
SIGNAL-TO-NOISE RATIO; notes 4 and 5; see Figs 6, 8 and 9
SNR
signal-to-noise ratio
1996 Sep 12
without harmonics;
fclk = 40 MHz;
fi = 4.43 MHz; Tamb = 25 °C
10
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
SYMBOL
PARAMETER
TDA8760
CONDITIONS
MIN.
TYP.
MAX.
UNIT
EFFECTIVE BITS; notes 4 and 5; see Figs 6, 8 and 9
EB
effective bits
TDA8760K/2 (fclk = 20 MHz)
fi = 4.43 MHz
−
8.90
−
bits
fi = 7.5 MHz
−
8.70
−
bits
effective bits
TDA8760K/4 (fclk = 40 MHz)
fi = 4.43 MHz
−
8.80
−
bits
fi = 10 MHz
−
8.80
−
bits
fi = 15 MHz
−
8.70
−
bits
fclk = 40 MHz; note 8
−
−65
−
dB
fclk = 40 MHz;
fi = 4.43 MHz; VI = ±16 LSB
at code 512
−
2 × 10−12
−
times/
samples
TWO-TONE
Two-tone
two-tone intermodulation
rejection
BIT ERROR RATE
BER
bit error rate
DIFFERENTIAL GAIN; SEE Fig.5
Gdiff
differential gain
fclk = 20 MHz; fi = 4.43 MHz
−
0.5
−
%
fclk = 40 MHz; fi = 4.43 MHz
−
1.0
−
%
fclk = 40 MHz; fi = 4.43 MHz
−
0.1
0.2
deg
DIFFERENTIAL PHASE
Φdiff
differential phase
Analog signal processing in single input mode; see Table 2; 50% clock duty factor; VI(p-p) = VrefH − VrefL = 1.4 V
LINEARITY
ILE
DC integral linearity error
fclk = 4 MHz
−
±1.0
±2.0
LSB
DLE
DC differential linearity error
fclk = 4 MHz
−
±0.6
±1.0
LSB
AILE
AC integral linearity error
note 3
−
±1.2
±2.0
LSB
−1 dB
−
140
−
MHz
−3 dB
−
220
−
MHz
−
−
0
dB
second harmonics
−
−61
−
dB
third harmonics
−
−62
−
dB
−
−59
−
dB
BANDWIDTH (fclk = 40 MHZ); note 9
B
Analog bandwidth
HARMONICS (fclk = 40 MHZ); see Fig.7
f1
fundamental harmonics
(full scale)
fi = 4.43 MHz
fall
harmonics (full scale);
all components
fi = 4.43 MHz
THD
total harmonic distortion
1996 Sep 12
fi = 4.43 MHz; note 2
11
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
SYMBOL
PARAMETER
TDA8760
CONDITIONS
MIN.
TYP.
MAX.
UNIT
SIGNAL-TO-NOISE RATIO; notes 4 and 5; see Fig.7
SNR
without harmonics;
fclk = 40 MHz;
fi = 4.43 MHz; Tamb = 25 °C
54
56
−
dB
effective bits
TDA8760K/2 (fclk = 20 MHz)
fi = 4.43 MHz
−
8.70
−
bits
fi = 7.5 MHz
−
8.50
−
bits
effective bits
TDA8760K/4 (fclk = 40 MHz)
fi = 4.43 MHz
−
8.50
−
bits
fi = 10 MHz
−
8.20
−
bits
two-tone intermodulation
rejection
fclk = 40 MHz; note 8
−
−60
−
dB
fclk = 40 MHz;
fi = 4.43 MHz; VI = ±16 LSB
at code 512
−
2 × 10−12
−
times/
samples
fclk = 20 MHz; fi = 4.43 MHz
−
0.5
−
%
fclk = 40 MHz; fi = 4.43 MHz
−
1.0
−
%
fclk = 40 MHz; fi = 4.43 MHz
−
0.1
0.2
deg
signal-to-noise ratio
EFFECTIVE BITS; notes 4 and 5; see Fig.7
EB
TWO-TONE
Two-tone
BIT ERROR RATE
BER
bit error rate
DIFFERENTIAL GAIN; see Fig.5
Gdiff
differential gain
DIFFERENTIAL PHASE
Φdiff
differential phase
Timing (note 6; see Fig.3; CL = 15 pF)
tds
sampling delay time
−
−
2
ns
th
output hold time
8
−
−
ns
td
output delay time
−
12
16
ns
16
ns
3-state output delay times (see Fig.4)
tdZH
enable HIGH
−
12
tdZL
enable LOW
−
12
16
ns
tdHZ
disable HIGH
−
8
12
ns
tdLZ
disable LOW
−
16
20
ns
1996 Sep 12
12
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
Notes
1. The circuit has two clock inputs: CLK and CLK. There are three modes of operation:
a) TTL mode 1:
CLK input is at TTL level with a threshold voltage of 1.5 V and sampling is taken on the falling edge of the clock
input signal. CLK decoupled to DGND via a 100 nF capacitor.
b) TTL mode 2:
CLK input is at TTL level with threshold voltage of 1.5 V and sampling is taken on the rising edge of the clock
input signal. CLK decoupled to DGND via a 100 nF capacitor.
c) TTL mode 3:
CLK and CLK inputs are at differential TTL levels.
d) AC driving modes:
When driving the CLK input directly and with any AC signal of minimum 0.5 V (p-p) and with a DC level of 1.5 V,
the sampling takes place at the falling edge of the clock signal.
When driving the CLK input with the same signal, sampling takes place at the rising edge of the clock signal.It is
recommended to decouple the CLK or CLK input to DGND via a 100 nF capacitor.
2. THD (total harmonic distortion) is obtained with the addition of the first five harmonics:
F
a) THD = 20 log --------------------------------------------------------------------------------------------------------------2
2
2
2
2
(2nd) + (3rd) + (4th) + (5th) + (6th)
b) F being the fundamental harmonic referenced at 0 dB for a full-scale sine wave input.
3. AC linearity: full-scale differential sine wave (fi = 4.43 MHz; fclk = 40 MHz).
4. Effective bits with differential input and single input are respectively executed with full scale differential input and
full-scale single sine wave.
5. Effective bits are obtained via a Fast Fourier Transformer (FFT) treatment taking 8K acquisition points per period.
The calculation takes into account all harmonics and noise up to half of the clock frequency (NYQUIST frequency).
Conversion to SNR: SNR = EB × 6.02 + 1.76 dB.
6. Output data acquisition: the output data is available after the maximum delay of td.
7. tCPH of 9 ns (minimum) can be applied at the penalty of 0.5 effective bit drop compared to typical values.
8. Intermodulation measured relative to either tone with analog input frequencies of 4.43 MHz and 4.53 MHz. The two
input signals have the same amplitude and the total amplitude of both signals provides full-scale to the converter.
9. The −3 dB (or −1 dB) analog bandwidth is determined by the 3 dB (or 1 dB) reduction in the reconstructed output,
the input being a full-scale sine wave.
1996 Sep 12
13
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
Table 1 Output coding with differential inputs (typical values to AGND); VI(p-p) = VrefH − VrefL = 1.5 V
CODE
VI(p-p)
VI(p-p)
BINARY OUTPUTS
TWO’S COMPLEMENT
OUTPUTS
D9 TO D0
D9 TO D0
IR
underflow
<3.025
>3.775
0
0000000000
1000000000
0
3.025
3.775
1
0000000000
1000000000
1
−
−
1
0000000001
1000000001
•
−
−
•
••••••••••
••••••••••
511
3.40
3.40
1
0111111111
1111111111
•
−
−
•
••••••••••
••••••••••
1022
−
−
1
1111111110
0111111110
1023
3.775
3.025
1
1111111111
0111111111
overflow
>3.775
<3.025
0
1111111111
0111111111
Table 2 Output coding with single inputs (typical values to AGND); VI(p-p) = VrefH − VrefL = 1.4 V; VI(p-p) = 3.7 V
CODE
BINARY OUTPUTS
TWO’S COMPLEMENT
OUTPUTS
D9 TO D0
D9 TO D0
IR
VI(p-p)
underflow
<3.0
0
0000000000
1000000000
0
3.0
1
0000000000
1000000000
1
−
1
0000000001
1000000001
•
−
•
••••••••••
••••••••••
511
3.7
1
0111111111
1111111111
•
−
•
••••••••••
••••••••••
1022
−
1
1111111110
0111111110
1023
4.4
1
1111111111
0111111111
overflow
>4.4
0
1111111111
0111111111
Table 3 Mode selection.
OTC
CS
D0 TO D9 AND IR
1
1
binary; active
0
1
two’s complement; active
X(1)
0
high impedance
Note
1. Where: X = don’t care.
1996 Sep 12
14
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
t CPL
t CPH
1.4 V
CLK
sample N
sample N + 1
sample N + 2
Vl
t dS
t HD
2.4 V
DATA
D0 to D7
DATA
N-2
DATA
N-1
DATA
N
DATA
N+1
1.4 V
0.4 V
td
MBD721
Fig.3 Timing diagram.
full pagewidth
V CCD
CS
50 %
t dHZ
t dZH
HIGH
90 %
output
data
50 %
t dLZ
LOW
t dZL
HIGH
output
data
50 %
LOW
TEST
10 %
V CCD
3.3 kΩ
S1
TDA8760
15 pF
tdLZ
VCCD
tdZL
VCCD
tdHZ
GND
tdZH
GND
MBD723
CS
CS = 100 kHz.
Fig.4 Timing diagram and test conditions of 3-state output delay time.
1996 Sep 12
15
S1
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
digital output
handbook, full pagewidth
f i = 4.43 MHz
Vi
CODE 1023
V4
(1)
f i = 4.43 MHz
V3
(1)
f i = 4.43 MHz
V2
(1)
f i = 4.43 MHz
V1
(1)
f i = 4.43 MHz
(1)
V0
DC offset voltage
CODE 0
MBD722
(1) Full-scale divided-by-5.
 V n ( 1 to 4 ) – V0 
G diff = maximum of  ------------------------------------------  × 100%
V0
Fig.5 Differential gain measurement conditions.
MGA931 - 2
9.0
effective
bits
effective
bits
40 MHz
8.8
f clk = 20 MHz
8.8
8.6
8.6
8.4
8.4
8.2
8.2
40 MHz
8.0
8.0
0
Fig.6
MBD223 - 1
9.0
f clk = 20 MHz
4
8
12
0
20
16
f i (MHz)
Typical effective bits under differential input
mode as a function of input signal
frequency.
1996 Sep 12
Fig.7
16
2
4
6
8
10
f i (MHz)
Typical effective bits under single input
mode as a function of input signal
frequency.
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
MRC299
0
amplitude
(dB)
–20.2
–40.4
–60.6
–80.8
–101
–121
0
1.25
2.50
3.75
5.00
6.25
7.50
8.75
10.0
f (MHz)
Effective bits: 9.1; THD = −65.81 dB;
Harmonic levels (dB): 2nd = −75.54; 3rd = −76.29; 4th = −74.90; 5th = −67.50; 6th = −90.87.
Fig.8 Fast Fourier Transformer (fclk = 20 MHz; fi = 4.43 MHz); for differential input mode.
MBD220
0
amplitude
(dB)
–20
–40
–60
–80
–100
–120
0
2.5
5
7.5
10
12.5
15
17.5
20
f (MHz)
Effective bits: 8.92; THD = −65.86 dB;
Harmonic levels (dB): 2nd = −70.92; 3rd = −68.48; 4th = −75.32; 5th = − 81.40; 6th = −72.69.
Fig.9 Fast Fourier Transformer (fclk = 40 MHz; fi = 4.43 MHz); for differential input mode.
1996 Sep 12
17
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
INTERNAL PIN CONFIGURATION
VCCA1 V CCA2 VCCA3
handbook, full pagewidth
7
VI
and
VI
13
V CCD1 V CCD2
17
3
CLK
21
CLK
1
2
VCCD
VCCA
10 and 11
30
kΩ
30
kΩ
AGND
1.5 V
V CCA
DGND
V refL
V refH
14
25 and 43
15
VCCO1 /
VCCO4
AGND
V CCO3
20
kΩ
CS
and
OTC
22 and 23
31 to 36,
40 and 41
1.5 V
30 and 37
TDA8760
DGND
8
9
12
16
4
20
MGA978
AGND1 AGND2 AGND3 AGND4
DGND1 DGND2
analog ground
digital ground
Fig.10 Description of input and output circuitry.
1996 Sep 12
18
data output
bit 7 to 0
OGND2 /
OGND3
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
APPLICATION INFORMATION
100 nF
handbook, full pagewidth
CLK
5V
differential
analog inputs
IN
(1)
5V
100 nF
100 nF
IN
D0 (LSB)
D1
100 nF
4.7 µF
4.7 µF
7
IN
IN
(2)
(2)
R1
R2 R3
(2)
5
4
R4
100 nF
3
2
1 44 43 42 41 40
38
9
37
10
36
D2
11
35
D3
TDA8760
34
D4
13
33
D5
14
32
D6
15
31
D7
16
30
17
(3)
100
nF
29
D8
18 19 20 21 22 23 24 25 26 27 28
(3)
100
nF
39
8
12
100 nF
(2)
6
D9 (MSB)
5V
100 nF
3 V 4.5 V
100 nF
100 nF
5V
5V
output format select
chip select input
The analog, digital and output supplies should be separated and decoupled.
(1) Differential clock signals can be applied if required.
(2) R1 and R2 must be determined in order to obtain a middle voltage of 3.4 V; see Table 1.
(3) VrefH and VrefL must be decoupled to AGND.
Fig.11 Application diagram for differential input mode.
1996 Sep 12
19
MGA979
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
100 nF
handbook, full pagewidth
single
analog
input
CLK
5V
(1)
5V
100 nF
100 nF
IN
D0 (LSB)
D1
100 nF
7
100
nF
IN
6
5
4
3
2
1 44 43 42 41 40
38
9
37
10
36
D2
35
D3
34
D4
13
33
D5
14
32
D6
15
31
D7
16
30
11
IN
(2)
(2)
R1
R2
TDA8760
12
100 nF
100 nF
17
(3)
100
nF
29
D8
18 19 20 21 22 23 24 25 26 27 28
(3)
100
nF
39
8
D9 (MSB)
5V
100 nF
3 V 4.5 V
100 nF
100 nF
5V
5V
output format select
chip select input
MGA980
The analog, digital and output supplies should be separated and decoupled.
(1) Differential clock signals can be applied if required.
(2) R1 and R2 must be determined in order to obtain 3.4 V at the transformer; see Table 1.
Adaptation with the single input signal impedance must be taken care of.
(3) VrefH and VrefL must be decoupled to AGND.
Fig.12 Application diagram for differential input mode using an input transformer.
1996 Sep 12
20
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
100 nF
handbook, full pagewidth
single
analog
input
CLK
5V
(1)
5V
100 nF
100 nF
IN
D0 (LSB)
D1
100 nF
4.7 µF
4.7 µF
7
IN
IN
(2)
(2)
R1
R2 R3
(2)
5
4
R4
100 nF
3
2
1 44 43 42 41 40
38
9
37
10
36
D2
11
35
D3
34
D4
13
33
D5
14
32
D6
15
31
D7
16
30
TDA8760
17
(3)
100
nF
29
D8
18 19 20 21 22 23 24 25 26 27 28
(3)
100
nF
39
8
12
100 nF
(2)
6
D9 (MSB)
5V
100 nF
3 V 4.5 V
100 nF
100 nF
5V
5V
output format select
chip select input
The analog, digital and output supplies should be separated and decoupled.
(1) Differential clock signals can be applied if required.
(2) R1 = R3; R2 = R4. R1, R2, R3 and R4 must be determined in order to obtain a middle voltage of 3.7 V; see Table 2.
(3) VrefH and VrefL must be decoupled to AGND.
Fig.13 Application diagram for single input mode.
1996 Sep 12
21
MGA981
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
PACKAGE OUTLINE
PLCC44: plastic leaded chip carrier; 44 leads
SOT187-2
eD
eE
y
X
39
A
29
28
40
bp
ZE
b1
w M
44
1
E
HE
pin 1 index
A
A4 A1
e
(A 3)
6
β
18 k 1
Lp
k
7
detail X
17
e
v M A
ZD
D
B
HD
v M B
0
5
10 mm
scale
DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)
UNIT
A
A1
min.
A3
A4
max.
bp
b1
mm
4.57
4.19
0.51
0.25
3.05
0.53
0.33
0.81
0.66
0.180
inches
0.020 0.01
0.165
D (1)
E (1)
e
eD
eE
HD
HE
k
16.66 16.66
16.00 16.00 17.65 17.65 1.22
1.27
16.51 16.51
14.99 14.99 17.40 17.40 1.07
k1
max.
Lp
v
w
y
0.51
1.44
1.02
0.18
0.18
0.10
Z D(1) Z E (1)
max. max.
2.16
β
2.16
45 o
0.630 0.630 0.695 0.695 0.048
0.057
0.021 0.032 0.656 0.656
0.020
0.05
0.007 0.007 0.004 0.085 0.085
0.12
0.590 0.590 0.685 0.685 0.042
0.040
0.013 0.026 0.650 0.650
Note
1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT187-2
112E10
MO-047AC
1996 Sep 12
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
95-02-25
97-12-16
22
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
SOLDERING
Wave soldering
Introduction
Wave soldering techniques can be used for all PLCC
packages if the following conditions are observed:
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering
technique should be used.
• The longitudinal axis of the package footprint must be
parallel to the solder flow.
• The package footprint must incorporate solder thieves at
the downstream corners.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “IC Package Databook” (order code 9398 652 90011).
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Reflow soldering
Reflow soldering techniques are suitable for all PLCC
packages.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
The choice of heating method may be influenced by larger
PLCC packages (44 leads, or more). If infrared or vapour
phase heating is used and the large packages are not
absolutely dry (less than 0.1% moisture content by
weight), vaporization of the small amount of moisture in
them can cause cracking of the plastic body. For more
information, refer to the Drypack chapter in our “Quality
Reference Handbook” (order code 9397 750 00192).
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Repairing soldered joints
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
1996 Sep 12
23
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATION
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1996 Sep 12
24
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
NOTES
1996 Sep 12
25
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
NOTES
1996 Sep 12
26
Philips Semiconductors
Product specification
10-bit high-speed analog-to-digital
converter
TDA8760
NOTES
1996 Sep 12
27
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 615 800, Fax. +358 615 80920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. +30 1 4894 339/911, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 926 5361, Fax. +7 095 564 8323
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,
TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 825 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1996
SCA51
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
537021/1200/02/pp28
Date of release: 1996 Sep 12
Document order number:
9397 750 01092