IRF IRGP4072DPBF

PD - 97317
IRGP4072DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
•
•
•
•
•
•
•
•
Low VCE (ON) Trench IGBT Technology
Low switching losses
Maximum Junction temperature 150 °C
Square RBSOA
100% of the parts tested for clamped inductive load
Ultra fast soft Recovery Co-Pak Diode
Tight parameter distribution
Lead Free Package
C
VCES = 300V
IC = 40A, TC = 100°C
G
VCE(on) typ. = 1.46V
E
n-channel
Benefits
• High Efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
• Rugged transient Performance for increased reliability
• Low EMI
C
E
C
G
Applications
•
•
•
•
Uninterruptible Power Supplies
Battery operated vehicles
Welding
Solar converters and inverters
TO-247AC
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
300
V
IC @ TC = 25°C
Continuous Collector Current
70
IC @ TC = 100°C
Continuous Collector Current
40
ICM
120
ILM
Pulse Collector Current
Clamped Inductive Load Current
IF @ TC = 25°C
Diode Continous Forward Current
IF @ TC = 100°C
IFM
Diode Continous Forward Current
Diode Maximum Forward Current
VGE
Continuous Gate-to-Emitter Voltage
±20
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
180
PD @ TC = 100°C
Maximum Power Dissipation
71
TJ
Operating Junction and
TSTG
Storage Temperature Range
c
120
A
70
40
e
120
V
W
-55 to +150
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.70
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
0.87
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
80
–––
1
www.irf.com
04/16/08
IRGP4072DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
300
—
Max. Units
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.20
—
VCE(on)
Collector-to-Emitter Saturation Voltage
—
1.46
1.70
—
1.59
—
VGE(th)
Gate Threshold Voltage
2.6
—
5.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-13
—
gfe
ICES
Forward Transconductance
—
28
—
Collector-to-Emitter Leakage Current
—
1.0
25
—
450
—
—
2.26
2.69
—
1.53
—
—
—
±100
VFM
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
V
Conditions
Ref.Fig
VGE = 0V, IC = 1.0mA
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
V IC = 40A, VGE = 15V, TJ = 25°C
5,6,7
IC = 40A, VGE = 15V, TJ = 150°C
9,10,11
V VCE = VGE, IC = 500µA
mV/°C VCE = VGE, IC = 1.0mA (25°C - 150°C)
S VCE = 25V, IC = 40A
µA
9, 10,
11, 12
VGE = 0V, VCE = 300V
VGE = 0V, VCE = 300V, TJ = 150°C
V
IF = 40A
8
IF = 40A, TJ = 150°C
nA
VGE = ±30V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
73
Max. Units
110
Qge
Gate-to-Emitter Charge (turn-on)
—
13
20
Conditions
Ref.Fig
IC = 40A
nC
23
VGE = 15V
CT1
Qgc
Gate-to-Collector Charge (turn-on)
—
26
39
VCC = 240V
Eon
Turn-On Switching Loss
—
409
525
IC = 40A, VCC = 240V, VGE = 15V
Eoff
Turn-Off Switching Loss
—
838
1017
Etotal
Total Switching Loss
—
1247
1542
td(on)
Turn-On delay time
—
18
23
tr
Rise time
—
36
50
td(off)
Turn-Off delay time
—
144
121
tf
Fall time
—
95
124
Eon
Turn-On Switching Loss
—
713
—
Eoff
Turn-Off Switching Loss
—
1076
—
Etotal
Total Switching Loss
—
1789
—
Energy losses include tail & diode reverse recovery
td(on)
Turn-On delay time
—
16
—
IC = 40A, VCC = 240V, VGE = 15V
RG = 10Ω, L = 200µH
CT3
TJ = 150°C
WF1
µJ
CT3
RG = 10Ω, L = 200µH, TJ = 25°C
Energy losses include tail & diode reverse recovery
IC = 40A, VCC = 240V, VGE = 15V
ns
CT3
RG = 10Ω, L = 200µH, TJ = 25°C
IC = 40A, VCC = 240V, VGE=15V
µJ
13, 15
RG=10Ω, L=200µH, TJ = 150°C
CT3
WF1, WF2
14, 16
tr
Rise time
—
39
—
td(off)
Turn-Off delay time
—
176
—
tf
Fall time
—
133
—
Cies
Input Capacitance
—
2265
—
Coes
Output Capacitance
—
190
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
58
—
f = 1.0Mhz
TJ = 150°C, IC = 120A
4
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
VCC = 240V, Vp =300V
CT2
Erec
trr
Reverse Recovery Energy of the Diode
—
909
—
µJ
TJ = 150°C
Diode Reverse Recovery Time
—
122
—
ns
VCC = 240V, IF = 40A
A
VGE = 15V, Rg = 10Ω, L =200µH, Ls = 150nH
ns
WF2
pF
VGE = 0V
22
Rg = 10Ω, VGE = +15V to 0V
Irr
Peak Reverse Recovery Current
—
36
—
17, 18, 19
20, 21
WF3
Notes:
 VCC = 80% (VCES), VGE = 15V, L = 200µH, RG = 10Ω.
‚ This is only applied to TO-247AC package.
ƒ Pulse width limited by max. junction temperature.
2
www.irf.com
80
200
70
175
60
150
50
125
Ptot (W)
IC (A)
IRGP4072DPbF
40
100
30
75
20
50
10
25
0
0
25
50
75
100
125
150
0
25
50
75
100
125
150
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100
100
IC (A)
IC (A)
10µsec
100µsec
10
10
1msec
TC = 25°C
TJ = 150°C
Single Pulse
1
1
1
10
100
10
1000
100
VCE (V)
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 150°C; VGE =15V
200
200
180
180
160
160
140
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
120
100
80
ICE (A)
ICE (A)
140
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
120
100
80
60
60
40
40
20
20
0
0
0
2
4
6
8
10
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 60µs
www.irf.com
1000
0
2
4
6
8
10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 60µs
3
IRGP4072DPbF
100
200
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
180
160
120
-40°c
25°C
150°C
60
IF (A)
ICE (A)
140
80
100
80
40
60
40
20
20
0
0
0
2
4
6
8
10
0.0
1.0
2.0
VCE (V)
20
20
18
18
16
16
14
14
10
ICE = 20A
ICE = 40A
8
ICE = 80A
12
10
ICE = 20A
ICE = 40A
8
ICE = 80A
6
6
4
4
2
2
0
0
5
10
15
5
20
10
20
200
18
180
16
160
14
140
10
ICE = 20A
ICE = 40A
8
ICE = 80A
ICE (A)
VCE (V)
20
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
12
15
VGE (V)
VGE (V)
T J = 25°C
T J = 150°C
120
100
80
6
60
4
40
2
20
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
4
4.0
Fig. 8 - Typ. Diode Forward Characteristics
tp = 60µs
VCE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 60µs
12
3.0
VF (V)
20
0
5
10
15
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
IRGP4072DPbF
3000
1000
2500
tF
Swiching Time (ns)
Energy (µJ)
2000
EOFF
1500
1000
EON
tdOFF
100
tR
500
0
tdON
10
0
10
20
30
40
50
60
70
80
0
10
20
30
40
50
60
70
80
IC (A)
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L = 200µH; VCE = 240V, RG = 10Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L = 200µH; VCE = 240V, RG = 10Ω; VGE = 15V
2500
1000
tdOFF
EOFF
Swiching Time (ns)
Energy (µJ)
2000
1500
EON
tF
tR
100
tdON
1000
500
10
0
25
50
75
100
125
0
25
50
75
100
125
RG (Ω)
Rg ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L = 200µH; VCE = 240V, ICE = 40A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L = 200µH; VCE = 240V, ICE = 40A; VGE = 15V
40
40
RG = 10Ω
35
35
30
IRR (A)
IRR (A)
RG = 22Ω
RG = 47Ω
25
25
RG = 100Ω
20
15
20
0
20
40
60
IF (A)
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 150°C
www.irf.com
30
80
0
25
50
75
100
RG (Ω)
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 150°C
5
IRGP4072DPbF
2600
40
2400
10Ω
80A
2200
30
40A
2000
Q RR (µC)
IRR (A)
35
22Ω
47Ω
1800
1600
100Ω
20A
1400
25
1200
1000
20
300
400
500
600
700
300
800
400
diF /dt (A/µs)
600
700
800
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 240V; VGE = 15V; TJ = 150°C
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 240V; VGE = 15V; IF = 40A; TJ = 150°C
1200
10000
RG = 10Ω
1000
Cies
Capacitance (pF)
RG = 22Ω
800
Energy (µJ)
500
diF /dt (A/µs)
RG = 47Ω
600
RG = 100Ω
400
1000
Coes
100
Cres
200
0
10
20
30
40
50
60
70
80
0
50
IF (A)
100
150
200
VCE (V)
Fig. 22 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 150°C
VGE , Gate-to-Emitter Voltage (V)
16
V CES = 150V
14
V CES = 240V
12
10
8
6
4
2
0
0
25
50
75
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 40A; L = 100µH
6
www.irf.com
IRGP4072DPbF
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
τ2
τ1
τ3
τ2
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
1E-005
0.0001
τi (sec)
Ri (°C/W)
τC
τ
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
R4
R4
0.01788
0.00001
0.12215
0.000108
0.33816
0.001262
0.22196
0.007931
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ3
τ2
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
0.0001
1E-006
1E-005
0.0001
R3
R3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.2758 0.000776
0.3708
0.2252
0.002206
0.013373
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGP4072DPbF
L
L
VC C
80 V
DU T
D UT
4 80V
0
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
R=
VCC
ICM
d io d e clamp /
DU T
L
DUT
- 5V
DU T /
D RIVER
VCC
Rg
VCC
Rg
Fig.C.T.3 - Switching Loss Circuit
8
Fig.C.T.4 - Resistive Load Circuit
www.irf.com
IRGP4072DPbF
400
80
400
300
60
300
120
90
tr
TEST CURRENT
tf
VCE (V)
5% V CE
100
100
20
30
10% test
current
5% ICE
0
60
90% test
current
5% V CE
0
0
0
Eof f Loss
-100
-0.35
ICE (A)
200
40
90% ICE
ICE (A)
VCE (V)
200
Eon
-100
-0.4 -0.3 -0.2 -0.1 0.0 0.1
-20
0.65
0.15
-30
0.2
time(µs)
time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.3
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.3
100
50
50
40
QRR
0
30
-50
20
-100
10
-150
0
-200
-250
-10
Peak
IRR
-20
-300
10%
Peak
IRR
-350
-400
-1.00
IF (A)
VF (V)
tRR
0.00
1.00
2.00
-30
-40
-50
3.00
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.3
www.irf.com
9
IRGP4072DPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 04/08
10
www.irf.com