MICROSEMI VRF2933

VRF2933
50V, 300W, 150MHz
RF POWER VERTICAL MOSFET
The VRF2933 is a gold-metallized silicon n-channel RF power transistor designed for broadband commercial and military applications requiring high power
and gain without compromising reliability, ruggedness, or inter-modulation
distortion.
FEATURES
• Improved Ruggedness V(BR)DSS = 170V
• 3:1 Load VSWR Capability at Specified Operating Conditions
• 300W with 22dB Typ. Gain @ 30MHz, 50V
• Nitride Passivated
• Excellent Stability & Low IMD
• Refractory Gold Metallization
• Common Source Configuration
• Improved Replacement for SD2933
• RoHS Compliant
• Thermally Enhanced Package
Maximum Ratings
Symbol
VDSS
ID
All Ratings: TC =25°C unless otherwise specified
Parameter
Drain-Source Voltage
VRF2933
Unit
170
V
Continuous Drain Current @ TC = 25°C
40
A
VGS
Gate-Source Voltage
±40
V
PD
Total Device dissipation @ TC = 25°C
648
W
TSTG
TJ
Storage Temperature Range
-65 to 150
Operating Junction Temperature Max
°C
200
Static Electrical Characteristics
Symbol
Parameter
Min
Typ
V(BR)DSS
Drain-Source Breakdown Voltage (VGS = 0V, ID = 100mA)
170
180
VDS(ON)
On State Drain Voltage (ID(ON) = 20A, VGS = 10V)
1.8
Max
2.8
Unit
V
IDSS
Zero Gate Voltage Drain Current (VDS = 100V, VGS = 0V)
2.0
mA
IGSS
Gate-Source Leakage Current (VDS = ±20V, VDS = 0V)
2.0
μA
gfs
Forward Transconductance (VDS = 10V, ID = 20A)
8
VGS(TH)
Gate Threshold Voltage (VDS = 10V, ID = 100mA)
2.9
3.6
4.4
V
Min
Typ
Max
Unit
0.27
°C/W
mhos
Symbol
RθJC
Characteristic
Junction to Case Thermal Resistance
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
050-4941 Rev F 8 -2009
Thermal Characteristics
Dynamic Characteristics
Symbol
VRF2933
Parameter
Test Conditions
Min
Typ
CISS
Input Capacitance
VGS = 0V
740
Coss
Output Capacitance
VDS = 50V
400
Crss
Reverse Transfer Capacitance
f = 1MHz
32
Max
Unit
pF
Functional Characteristics
Symbol
Parameter
GPS
f1 = 30MHz, VDD = 50V, IDQ = 250mA, Pout = 300W
ηD
f1 = 175MHz, VDD = 50V, IDQ = 250mA, Pout = 300W
ψ
f1 = 30MHz, VDD = 50V, IDQ = 250mA, Pout = 300W
Min
Typ
20
25
Max
dB
50
%
No Degradation in Output Power
3:1 VSWR - All Phase Angles
1. To MIL-STD-1311 Version A, test method 2204B, Two Tone, Reference Each Tone
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
Typical Performance Curves
30
55
50
45
25
6.5V
ID, DRAIN CURRENT (A)
6V
35
30
5.5V
25
20
5V
15
4.5V
10
4V
3.5V
5
0
0
V
5
10
15
15
10
5
TJ= 125°C
0
, DRAIN-TO-SOURCE VOLTAGE (V)
DS(ON)
FIGURE 1, Output Characteristics
2
4
6
8
VGS, GATE-TO-SOURCE VOLTAGE (V)
FIGURE 2, Transfer Characteristics
100
ID, DRAIN CURRENT (V)
Ciss
1.0E−9
C, CAPACITANCE (F)
TJ= 25°C
20
0
20
1.0E−8
Coss
1.0E−10
Crss
1.0E−11
TJ= -55°C
0
10
20
30
40
50
60
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 3, Capacitance vs Drain-to-Source Voltage
BVdss Line
ID, DRAIN CURRENT (A)
40
050-4941 Rev F 8 -2009
250μs PULSE
TEST<0.5 % DUTY
CYCLE
7.5V
IDMax
10
Rds(on)
PD Max
1
TJ = 125°C
TC = 75°C
1
Unit
10
100
800
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 4, Forward Safe Operating Area
VRF2933
D = 0.9
0.25
0.20
0.7
0.15
0.5
Note:
0.10
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.30
0.3
t1
t2
0.05
t1 = Pulse Duration
0.1
t
0.05
0
10
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10
-5
10-3
-4
10 -1
10-2
1.0
RECTANGULAR PULSE DURATION (seconds)
Figure 5. Maximum Effective Transient Thermal Impedance Junction-to-Case vs Pulse Duration
TJ (°C)
TC (°C)
.076
.115
ZEXT
.079
Dissipated Power
(Watts)
.009
.080
.224
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 5b, TRANSIENT THERMAL IMPEDANCE MODEL
500
Freq=30MHz
450
400
40V
350
300
250
200
150
400
350
250
200
150
100
50
50
0
0.5
1
1.5
2
2.5
Pout, INPUT POWER (WATTS PEP)
Figure 6. POUT versus PIN
0
3
40V
300
100
0
50V
450
0
2
4
6
8
10
Pout, INPUT POWER (WATTS PEP)
Figure 7. POUT versus PIN
12
Table 1 - Typical Class AB Large Signal Input - Output Impedance
Freq. (MHz)
Zin
Zout
2
23.6 - j 5.5
4.0 - j 0.1
13.5
7.6 - j 10.1
3.9 - j 0.6
27.1
3.5 - j 6.0
3.7 - j 1.1
40.7
2.5 - j 4.0
3.3 - j 1.5
65
1.95 - j 2.07
2.6 - j 1.9
100
1.8 - j 0.66
1.76 - j 0.2
150
1.78 + j 0.5
1.03 + j 1.7
ZIN - Gate shunted with 25Ω
Idq = 250mA
ZOL - Conjugate of optimum load for 300 Watts output at Vdd=150V
050-4941 Rev F 8-2009
OUTPUT POWER (WPEP)
Freq=65MHz
50V
OUTPUT POWER (WPEP)
500
VRF2933
30 MHz Test Circuit
50V
R1
Vbias
C3
C4
C5
R4
+
R2
C10
FB
R3
L2
L1
T1
+
C11
C12
T2
Output
C8
C2
RF
Input
L3
C9
VRF2933
C1
C7
C6
L3 2t #16 on 2x 267300081 .5" bead
R1-R2 1k Ohm 1/4W
R3 100 Ohm 1W
R4 470 Ohm "low inductance" 3W
T1 16:1 transforner 4t #20 teflon on
RF Parts Co. T1/2 transformer core
T2 9:1 transformer 3t #16 teflon on
RF Parts Co. T1 transformer core
C1 1800pF ATC100B ceramic
C2, C3, C5, C9, C10, C12 0.1uF 100V
C6 680 pF metal clad 500V mica
C7 ARCO 467 mica trimmer
C8 100 pF ATC 100E ceramic
C4, C11 10uF 100V Electrolytic
FB small ferrite bead ui =125
L1 20 nH 2t #18 0.188"d .2"l
L2 38 nH - 2.5t #14 enam. .25" dia.
M177 (0.63 dia. SOE) Mechanical Data
All dimensions are ±.005
A
.125d nom
J
4
1
B
5
2
PIN 1 - DRAIN
PIN 2 - GATE
PIN 3 - SOURCE
PIN 4 - SOURCE
PIN 5 - SOURCE
F
050-4941 Rev F 8-2009
.135 r
OK
3
DIM
MIN
TYP
MAX
A
0.225
0.230
0.235
B
0.265
0.270
0.275
C
0.860
0.865
0.870
D
1.130
1.135
1.140
E
0.545
0.550
0.555
F
0.003
0.005
0.007
G
0.098
0.103
0.108
C
H
0.150
0.160
0.170
D
I
J
1.080
1.100
1.120
K
0.625
0.630
0.635
E
H
G
0.280
I
Seating Plane
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.