ROHM QSZ4

QSZ4
Transistors
General purpose transistor
(isolated transistor and diode)
QSZ4
A 2SB1706 and a 2SD2671 are housed independently in a TSMT5 package.
zExternal dimensions (Unit : mm)
zApplications
DC / DC converter
Motor driver
QSZ4
zStructure
Silicon epitaxial planar transistor
ROHM : TSMT5
(5)
0.95 0.95
1.9
2.9
0.85
0∼0.1
0.3∼0.6
0.7
0.16
(3)
(4)
(2)
zFeatures
1) Low VCE(sat)
2) Small package
(1)
0.4
2.8
1.6
Each lead has same dimensions
Abbreviated symbol : Z04
zEquivalent circuit
(5)
(4)
Tr1
Tr2
(1)
(2)
(3)
zPackaging specifications
Type
QSZ4
Package
TSMT5
Marking
Code
Z04
Basic ordering unit(pieces)
3000
TR
1/4
QSZ4
Transistors
zAbsolute maximum ratings (Ta=25°C)
Tr1
Parameter
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Power dissipation
Junction temperature
Range of storage temperature
Symbol
VCBO
VCEO
VEBO
IC
ICP
Pc
Tj
Tstg
Limits
−30
−30
−6
−2
−4
500
1.25
0.9
150
−55 to +150
Unit
V
V
V
A
∗1
A
mW/Total ∗2
W/Total ∗3
W/Element ∗3
°C
°C
Limits
30
30
6
2
4
500
1.25
0.9
150
−50 to +150
Unit
V
V
V
A
∗1
A
mW/Total ∗2
W/Total ∗3
W/Element ∗3
°C
°C
∗1 Single pulse, Pw=1ms.
∗2 Each terminal mounted on a recommended land.
∗3 Mounted on a 25×25× t 0.8mm ceramic substrate.
Tr 2
Parameter
Collector-base voltage
Collector-emitter voltage
Emitter-base voltage
Collector current
Power dissipation
Junction temperature
Range of storage temperature
Symbol
VCBO
VCEO
VEBO
IC
ICP
Pc
Tj
Tstg
∗1 Single pulse, Pw=1ms.
∗2 Each terminal mounted on a recommended land.
∗3 Mounted on a 25×25× t 0.8mm ceramic substrate.
zElectrical characteristics (Ta=25°C)
Tr1
Parameter
Collector-base breakdown voltage
Collector-emitter breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current gain
Transition frequency
Collector output capacitance
Symbol
BVCBO
BVCEO
BVEBO
ICBO
IEBO
VCE(sat)
hFE
fT
Cob
Min.
−30
−30
−6
−
−
−
270
−
−
Typ.
−
−
−
−
−
−180
−
280
20
Max.
−
−
−
−100
−100
−370
680
−
−
Unit
V
V
V
nA
nA
mV
−
MHz
pF
Conditions
IC= −10µA
IC= −1mA
IE= −10µA
VCB= −30V
VEB= −6V
IC= −1.5A, IB= −75mA
VCE= −2V, IC= −200mA∗
VCE= −2V, IE=200mA, f=100MHz∗
VCB= −10V, IE=0A, f=1MHz
Symbol
BVCBO
BVCEO
BVEBO
ICBO
IEBO
VCE(sat)
hFE
fT
Cob
Min.
30
30
6
−
−
−
270
−
−
Typ.
−
−
−
−
−
180
−
280
20
Max.
−
−
−
100
100
370
680
−
−
Unit
V
V
V
nA
nA
mV
−
MHz
pF
Conditions
IC=10µA
IC=1mA
IE=10µA
VCB=30V
VEB=6V
IC=1.5A, IB=75mA
VCE=2V, IC=200mA ∗
VCE=2V, IE= −200mA, f=100MHz∗
VCB=10V, IE=0A, f=1MHz
∗ Pulsed
Tr 2
Parameter
Collector-base breakdown voltage
Collector-emitter breakdown voltage
Emitter-base breakdown voltage
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current gain
Transition frequency
Collector output capacitance
∗ Pulsed
2/4
QSZ4
Transistors
zElectrical characteristic curves
VCE= −2V
Pulsed
Ta=25 C
Ta=−40 C
100
10
0.001
0.01
0.1
1
10
10
IC/IB=20/1
Pulsed
1
0.1
Ta=25 C
Ta=100 C
0.01
0.001
0.1
1
10
10
1000
TRANSITION FREQUENCY : fT (MHz)
VBE=2V
Pulsed
Ta=100 C
Ta=25 C
1
Ta=−40 C
0.1
0.1
1
1
Fig.4 Grounded emitter propagation
characteristics
IC/IB=50/1
IC/IB=20/1
0.1
0.001
IC/IB=10/1
0.01
0.1
1
10
Fig.3 Base-emitter saturation voltage
vs. collectir current
10000
Ta=25 C
VCE= −2V
f=100MHz
100
Ta=25 C
VCE= −12V
IC/IB=20/1
Pulsed
1000
tstg
100
tf
tdon
10
tr
10
0.01
10
BASE TO EMITTER CURRENT : VBE (V)
Ta=25 C
Pulsed
COLLECTOR CURRENT : IC (A)
Fig.2 Collector-emitter saturation voltage
vs. collector current
Fig.1 DV current gain
vs. collector current
COLLECTOR CURRENT :IC (A)
0.01
10
COLLECTOR CURRENT : IC (A)
COLLECTOR CURRENT : IC (A)
0.01
Ta=−40 C
SWITCHINGTIME : (ns)
DC CURRENT GAIN : hFE
Ta=100 C
BASE SATURATION VOLTAGE : VBE(sat) (V)
1000
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
Tr1(PNP)
0.1
1
10
1
0.01
0.1
1
EMITTER CURRENT : IE (A)
COLLECTOR CURRENT : IC(A)
Fig.5 Gain bandwidth product
vs. emitter curent
Fig.6 Switching time
10
COLLECTOR CURRENT :IC (A)
1000
IC=0A
f=1MHz
Ta=25 C
Cib
100
Cob
10
1
0.001
0.01
0.1
1
10
100
EMITTER TO BASE VOLTAGE : VBE (V)
COLLECTOR TO BASE VOLTAGE : VCB (V)
Fig.7 Collector output capacitance
vs. collector-base voltage
Emitter input capacitance
vs. emitter-base voltage
3/4
QSZ4
Transistors
DC CURRENT GAIN : hFE
Ta=125 C
Ta=25 C
Ta=−25 C
100
10
0.001
0.01
0.1
1
10
10
IC/IB=20/1
Pulsed
1
Ta=−25 C
Ta=25 C
Ta=125 C
0.1
0.01
0.001
COLLECTOR CURRENT : IC (A)
1
10
TRANSITION FREQUENCY : fT (MHz)
Ta=125 C
1
Ta=25 C
Ta=−25 C
0.1
0.01
0.4
0.6
0.8
1
1.2
IC/IB=20/1
Pulsed
Ta=−25 C
Ta=25 C
Ta=125 C
1
0.1
0.001
1.4
BASE TO EMITTER CURRENT : VBE (V)
Fig.11 Grounded emitter propagation
characteristics
Ta=25 C
VCE=−2V
f= 100MHz
100
10
0.01
0.1
1
EMITTER CURRENT : IE (A)
Fig.12 Gain bandwidth product
vs. emitter current
0.01
0.1
1
10
COLLECTOR CURRENT : IC (A)
1000
VCE=−2V
Pulsed
COLLECTOR CURRENT : IC (A)
0.1
Fig.9 Collector-emitter saturation voltage
base-emitter saturation voltage
vs. collector current
10
0.2
0.01
10
COLLECTOR CURRENT : IC (A)
Fig.8 DC current gain
vs. collector current
0.001
0
BASE SATURATION VOLTAGE : VBE(sat) (V)
VCE=−2V
Pulsed
10
Fig.10 Base-emitter saturation voltage
vs. collector current
EMITTER INPUT CAPACITANCE : Cib (pF)
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
1000
COLLECTOR SATURATION VOLTAGE : VCE(sat) (V)
Tr2(NPN)
1000
IC=0A
f=1MHz
Ta=25 C
Cob
100
Cib
10
0.001
0.01
0.1
1
10
100
EMITTER TO BASE VOLTAGE : VEB (V)
COLLECTOR TO BASE VOLTAGE : VCB (V)
Fig.13 Collector output chapacitance
vs. collector-base voltage
Emitter input capacitance
vs. emitter-base voltage
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.1