ROHM UMZ1NTR

EMZ1 / UMZ1N / IMZ1A
Transistors
General purpose transistor
(dual transistors)
EMZ1 / UMZ1N / IMZ1A
zExternal dimensions (Unit : mm)
zFeatures
1) Both a 2SA1037AK chip and 2SC2412K chip in a
EMT or UMT or SMT package.
2) Mounting possible with EMT3 or UMT3 or SMT3
automatic mounting machines.
3) Transistor elements are independent, eliminating
interference.
4) Mounting cost and area can be cut in half.
(3)
0.22
(4)
(5)
(2)
(6)
0.5 0.5
1.0
1.6
EMZ1
(1)
0.5
0.13
1.2
1.6
Each lead has same dimensions
ROHM : EMT6
1.25
1.3
2.0
(3)
(2)
(1)
(6)
(5)
0.2
(4)
UMZ1N
0.65
zStructure
NPN / PNP epitaxial planar silicon transistor
0.65
Abbreviated symbol : Z1
0.1Min.
EMZ1 / UMZ1N
(3)
(2)
IMZ1A
(4)
(1)
(5)
Tr1
0to0.1
0.7
0.15
zEquivalent circuit
0.9
2.1
Each lead has same dimensions
ROHM : UMT6
EIAJ : SC-88
Abbreviated symbol : Z1
(6)
Tr1
Tr2
Tr2
(1)
(1)
(3)
(4)
(5)
(2)
(2)
(6)
(3)
(6)
0.3
(5)
0.95 0.95
1.9
2.9
IMZ1A
(4)
1.6
Symbol
Limits
Tr1
Tr2
Collector-base voltage
VCBO
60
−60
V
Collector-emitter voltage
VCEO
50
−50
V
Emitter-base voltage
VEBO
7
−6
V
150
−150
mA
Collector current
EMZ1, UMZ1N
Power
dissipation IMZ1A
IC
PC
150 (TOTAL)
0.8
0.15
0.3to0.6
Unit
mW
300 (TOTAL)
Junction temperature
Tj
150
˚C
Storage temperature
Tstg
−55 to +150
˚C
0to0.1
Parameter
1.1
2.8
zAbsolute maximum ratings (Ta = 25°C)
Each lead has same dimensions
ROHM : SMT6
EIAJ : SC-74
Abbreviated symbol : Z1
∗1
∗2
∗1 120mW per element must not be exceeded.
∗2 200mW per element must not be exceeded.
Rev.A
1/4
EMZ1 / UMZ1N / IMZ1A
Transistors
zElectrical characteristics (Ta = 25°C)
Tr1 (NPN)
Parameter
Conditions
Symbol Min. Typ. Max. Unit
Collector-base breakdown voltage
BVCBO
60
−
−
V
IC=50µA
Collector-emitter breakdown voltage
BVCEO
50
−
−
V
IC=1mA
Emitter-base breakdown voltage
BVEBO
7
−
−
V
IE=50µA
Collector cutoff current
ICBO
−
−
0.1
µA
VCB=60V
Emitter cutoff current
IEBO
−
−
0.1
µA
VEB=7V
VCE (sat)
−
−
0.4
V
IC/IB=50mA/5mA
hFE
120
−
560
−
VCE=6V, IC=1mA
fT
−
180
−
Cob
−
2
3.5
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
MHz VCE=12V, IE=−2mA, f=100MHz
VCB=12V, IE=0A, f=1MHz
PF
Tr2 (PNP)
Parameter
Symbol Min. Typ. Max. Unit
Conditions
Collector-base breakdown voltage
BVCBO
−60
−
−
V
IC=−50µA
Collector-emitter breakdown voltage
BVCEO
−50
−
−
V
IC=−1mA
Emitter-base breakdown voltage
BVEBO
−6
−
−
V
IE=−50µA
Collector cutoff current
ICBO
−
−
−0.1
µA
VCB=−60V
Emitter cutoff current
IEBO
−
−
−0.1
µA
VEB=−6V
VCE (sat)
−
−
−0.5
V
IC/IB=−50mA/−5mA
hFE
120
−
560
−
VCE=−6V, IC=−1mA
fT
−
140
−
MHz VCE=−12V, IE=2mA, f=100MHz
Cob
−
4
5
PF
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
VCB=−12V, IE=0A, f=1MHz
zPackaging specifications
Package
Type
Taping
Code
T2R
TR
T108
Basic ordering
unit (pieces)
8000
3000
3000
EMZ1
UMZ1N
IMZ1A
zElectrical characteristic curves
Tr1 (NPN)
10
2
1
25˚C
−55˚C
5
0.5
0.2
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
BASE TO EMITTER VOLTAGE : VBE (V)
Fig.1 Grounded emitter propagation
characteristics
0.50mA
mA
0.45 A
0.40m
0.35mA
Ta=25˚C
80
0.30mA
0.25mA
60
0.20mA
0.15mA
40
0.10mA
20
0.05mA
IB=0A
0
0
0.4
0.8
1.2
1.6
2.0
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.2 Grounded emitter output
characteristics ( I )
10
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : IC (mA)
20
0.1
0
100
VCE=6V
Ta=100˚C
COLLECTOR CURRENT : IC (mA)
50
30µA
Ta=25˚C
27µA
8
24µA
21µA
6
18µA
15µA
12µA
4
9µA
6µA
2
3µA
0
0
IB=0A
4
8
12
16
20
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.3 Grounded emitter output
characteristics ( II )
Rev.A
2/4
EMZ1 / UMZ1N / IMZ1A
500
Ta=25˚C
VCE=5V
3V
1V
200
100
50
25˚C
200
−55˚C
100
50
20
20
0.5
1
2
5
10 20
10
0.2
50 100 200
COLLECTOR CURRENT : IC (mA)
Fig.5
IC/IB=10
0.2
Ta=100˚C
25˚C
−55˚C
0.1
0.05
0.02
0.01
0.2
0.5
1
2
5
10
20
50 100 200
COLLECTOR CURRENT : IC (mA)
20
Ta=25˚C
f=1MHz
IE=0A
IC=0A
Cib
5
2
Co
b
1
0.2
0.5
1
2
5
10
20
50
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.10 Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
2
5
10 20
50 100 200
0.5
Ta=25˚C
0.2
IC/IB=50
20
10
0.1
0.05
0.02
0.01
0.2
0.5
1
2
5
10
20
Ta=100˚C
25˚C
−55˚C
0.1
0.05
0.02
0.01
0.5
1
2
5
10
20
50 100 200
COLLECTOR CURRENT : IC (mA)
Ta=25˚C
VCE=6V
IC/IB=50
0.2
0.2
0.5
Fig.6 Collector-emitter saturation
voltage vs. collector current ( I )
DC current gain vs. collector
current ( II )
50 100
500
200
100
50
−0.5
−1
−2
−5
−10
−20
−50 −100
EMITTER CURRENT : IE (mA)
COLLECTOR CURRENT : IC (mA)
Fig.8 Collector-emitter saturation
voltage vs. collector current ( III )
Fig.7 Collector-emitter saturation
voltage vs. collector current ( II )
10
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
DC current gain vs. collector
current ( I )
0.5
1
COLLECTOR CURRENT : IC (mA)
BASE COLLECTOR TIME CONSTANT : Cc rbb' (ps)
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
Fig.4
0.5
TRANSITION FREQUENCY : fT (MHz)
10
0.2
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE
: Cib (pF)
VCE=5V
Ta=100˚C
DC CURRENT GAIN : hFE
DC CURRENT GAIN : hFE
500
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
Transistors
Fig.9 Gain bandwidth product vs.
emitter current
Ta=25˚C
f=32MHZ
VCB=6V
200
100
50
20
10
−0.2
−0.5
−1
−2
−5
−10
EMITTER CURRENT : IE (mA)
Fig.11 Base-collector time constant vs.
emitter current
Rev.A
3/4
EMZ1 / UMZ1N / IMZ1A
Transistors
Tr2 (PNP)
−10
−5
−2
−1
−0.5
−0.2
−28.0
−8
−24.5
−21.0
−6
−17.5
−14.0
−4
−10.5
−7.0
−2
−3.5µA
−0.8
−1.2
−1.6
−60
−500
−450
−400
−350
−300
−250
−200
−150
−40
−100
−20
−50µA
−2
−5
−10 −20
−40˚C
200
100
50
VCE=−6V
−50 −100
−0.2
COLLECTOR CURRENT : IC (mA)
−1
−0.5
−0.2
−0.1
Ta=100˚C
25˚C
−40˚C
−0.05
−0.2
−0.5 −1
−2
−5
−10 −20
−50 −100
COLLECTOR CURRENT : IC (mA)
Fig.18 Collector-emitter saturation
voltage vs. collector current ( II )
−2
−5
−10 −20
−50 −100
−1
−5
1000
Ta=25˚C
VCE=−12V
500
200
100
50
0.5
1
2
5
10
20
50
100
EMITTER CURRENT : IE (mA)
Fig.19 Gain bandwidth product vs.
emitter current
Ta=25˚C
−0.5
−0.2
IC/IB=50
−0.1
20
10
−0.05
−0.2
−0.5 −1
−2
−5
−10 −20
−50 −100
COLLECTOR CURRENT : IC (mA)
Fig.17 Collector-emitter saturation
voltage vs. collector current ( I )
Fig.16 DC current gain vs. collector
current ( II )
TRANSITION FREQUENCY : fT (MHz)
lC/lB=10
−0.5 −1
COLLECTOR CURRENT : IC (mA)
Fig.15 DC current gain vs. collector
current ( I )
−4
Fig.14 Grounded emitter output
characteristics ( II )
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
−0.5 −1
−3
Fig.13 Grounded emitter output
characteristics ( I )
50
−0.2
−2
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
25˚C
100
−1
0
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Ta=100˚C
200
IB=0
−2.0
500
VCE=−5V
−3V
−1V
Ta=25˚C
DC CURRENT GAIN : hFE
500
−0.4
0
Fig.12 Grounded emitter propagation
characteristics
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
−80
Ta=25˚C
IB=0
−0.2 −0.4 −0.6 −0.8 −1.0 −1.2 −1.4 −1.6
BASE TO EMITTER VOLTAGE : VBE (V)
DC CURRENT GAIN : hFE
−100
−31.5
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE
: Cib (pF)
−0.1
−35.0
Ta=25˚C
COLLECTOR CURRENT : IC (mA)
−20
−10
VCE=−6V
Ta=100˚C
25˚C
−40˚C
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : Ic (mA)
−50
20
Ta=25˚C
f=1MHz
IE=0A
IC=0A
Cib
10
Co
b
5
2
-0.5
-1
-2
-5
-10
-20
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.20 Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
Rev.A
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.1