AD ADG3308BCBZ-2-RL7

Low Voltage, 1.15 V to 5.5 V, 8-Channel
Bidirectional Logic Level Translators
ADG3308/ADG3308-1
FEATURES
FUNCTIONAL BLOCK DIAGRAM
VCCA
Bidirectional logic level translation
Operates from 1.15 V to 5.5 V
Low quiescent current < 1 μA
No direction pin
VCCY
A1
Y1
APPLICATIONS
A2
Y2
Low voltage ASIC level translation
Smart card readers
Cell phones and cell phone cradles
Portable communication devices
Telecommunications equipment
Network switches and routers
Storage systems (SAN/NAS)
Computing/server applications
GPS
Portable POS systems
Low cost serial interfaces
A3
Y3
A4
Y4
A5
Y5
A6
Y6
A7
Y7
A8
Y8
EN
GND
04865-001
ADG3308/ADG3308-1/
ADG3308-2
Figure 1.
GENERAL DESCRIPTION
The ADG3308/ADG3308-1/ADG3308-2 are bidirectional level
translators containing eight bidirectional channels. They can be
used in multivoltage digital system applications, such as a data
transfer between a low voltage DSP controller and a higher
voltage device. The internal architecture allows the device to
perform bidirectional level translation without an additional
signal to set the direction in which the translation takes place.
The voltage applied to VCCA sets the logic levels on the A side
of the device, and VCCY sets the levels on the Y side. For proper
operation, VCCA must always be less than VCCY. The VCCA
compatible logic signals applied to the A side of the device
appear as VCCY compatible levels on the Y side. Similarly, VCCY
compatible logic levels applied to the Y side of the device appear
as VCCA compatible logic levels on the A side.
The enable pin (EN) provides three-state operation on both the
A side and the Y side pins. When the EN pin is pulled low, the
terminals on both sides of the device are in the high impedance
state. For normal operation, EN should be driven high.
The ADG3308 is available in a compact 20-lead TSSOP and
a 20-lead LFCSP, the ADG3308-1 is available in a 20-ball
WLCSP, and the ADG3308-2 is available in a backside-coated
20-ball WLCSP. The EN pin is referred to the VCCY supply
voltage for the ADG3308 and to the VCCA supply voltage for the
ADG3308-1 and ADG3308-2.
The ADG3308/ADG3308-1/ADG3308-2 are guaranteed to
operate over the 1.15 V to 5.5 V supply voltage range and the
extended −40°C to +85°C temperature range.
PRODUCT HIGHLIGHTS
1.
Bidirectional logic level translation.
2.
Fully guaranteed over the 1.15 V to 5.5 V supply range.
3.
No direction pin.
4.
Packages: 20-lead TSSOP and 20-lead LFCSP (ADG3308),
20-ball WLCSP (ADG3308-1), and backside-coated 20-ball
WLCSP (ADG3308-2).
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2005–2007 Analog Devices, Inc. All rights reserved.
ADG3308/ADG3308-1
TABLE OF CONTENTS
Features .............................................................................................. 1
Theory of Operation ...................................................................... 16
Applications....................................................................................... 1
Level Translator Architecture ................................................... 16
Functional Block Diagram .............................................................. 1
Input Driving Requirements..................................................... 16
General Description ......................................................................... 1
Output Load Requirements ...................................................... 16
Product Highlights ........................................................................... 1
Enable Operation ....................................................................... 16
Revision History ............................................................................... 2
Power Supplies............................................................................ 16
Specifications..................................................................................... 3
Data Rate ..................................................................................... 17
Absolute Maximum Ratings............................................................ 6
Applications..................................................................................... 18
ESD Caution.................................................................................. 6
Layout Guidelines....................................................................... 18
Pin Configurations and Function Descriptions ........................... 7
Outline Dimensions ....................................................................... 19
Typical Performance Characteristics ............................................. 8
Ordering Guide .......................................................................... 20
Test Circuits..................................................................................... 12
Terminology .................................................................................... 15
REVISION HISTORY
9/07—Rev. B to Rev. C
Updated Outline Dimensions ....................................................... 19
7/07—Rev. A to Rev. B
Added Backside-Coated WLCSP Package ......................Universal
Changes to Input Driving Requirements Section ...................... 16
Updated Outline Dimensions ....................................................... 19
Changes to Ordering Guide .......................................................... 20
7/06—Rev. 0 to Rev. A
Added WLCSP Package…………………………..……Universal
Added Figure 4………………………………………………......7
Updated Outline Dimensions……………………………….…19
Changes to Ordering Guide………………………………....…19
1/05—Revision 0: Initial Version
Rev. C | Page 2 of 20
ADG3308/ADG3308-1
SPECIFICATIONS
VCCY = 1.65 V to 5.5 V, VCCA = 1.15 V to VCCY, GND = 0 V. All specifications TMIN to TMAX, unless otherwise noted. 1
Table 1.
Parameter
LOGIC INPUTS/OUTPUTS
A Side
Input High Voltage 3
Input Low Voltage3
Output High Voltage
Output Low Voltage
Capacitance3
Leakage Current
Y Side
Input High Voltage3
Input Low Voltage3
Output High Voltage
Output Low Voltage
Capacitance3
Leakage Current
Enable (EN)
Input High Voltage3
ADG3308 (TSSOP, LFCSP)
ADG3308-1/ADG3308-2 (WLCSP)
Input Low Voltage3
ADG3308 (TSSOP, LFCSP)
ADG3308-1/ADG3308-2 (WLCSP)
Leakage Current
Capacitance3
Enable Time3
SWITCHING CHARACTERISTICS3
3.3 V ± 0.3 V ≤ VCCA ≤ VCCY, VCCY = 5 V ± 0.5 V
A→Y Level Translation
Propagation Delay
Rise Time
Fall Time
Maximum Data Rate
Channel-to-Channel Skew
Part-to-Part Skew
Y→A Level Translation
Propagation Delay
Rise Time
Fall Time
Maximum Data Rate
Channel-to-Channel Skew
Part-to-Part Skew
Symbol
Conditions
Min
VIHA
VIHA
VILA
VOHA
VOLA
CA
ILA, HIGH-Z
VCCA = 1.15 V
VCCA = 1.2 V to 5.5 V
VCCA − 0.3
0.65 × VCCA
VY = VCCY, IOH = 20 μA, see Figure 29
VY = 0 V, IOL = 20 μA, see Figure 29
f = 1 MHz, EN = 0, see Figure 34
VA = 0 V or VCCA, EN = 0, see Figure 31
VCCA − 0.4
VIHY
VILY
VOHY
VOLY
CY
ILY, HIGH-Z
Typ 2 Max
0.35 × VCCA
0.4
10
±1
0.65 × VCCY
0.35 × VCCY
VA = VCCA, IOH = 20 μA, see Figure 30
VA = 0 V, IOL = 20 μA, see Figure 30
f = 1 MHz, EN = 0, see Figure 35
VY = 0 V or VCCY, EN = 0, see Figure 32
VCCY − 0.4
0.4
6.8
±1
Unit
V
V
V
V
V
pF
μA
V
V
V
V
pF
μA
VIHEN
VCCA = 1.15 V
VCCA = 1.2 V to 5.5 V
0.65 × VCCY
VCCA − 0.3
0.65 × VCCA
V
V
V
VILEN
ILEN
CEN
tEN
0.35 × VCCY
0.35 × VCCA
±1
VEN = 0 V or VCCY, VA = 0 V, see Figure 33
RS = RT = 50 Ω, VA = 0 V or
VCCA (A→Y), VY = 0 V or VCCY (Y→A),
see Figure 36
V
V
μA
pF
μs
4.5
1
1.8
6
2
2
10
3.5
3.5
2
4
3
ns
ns
ns
Mbps
ns
ns
4
1
7
3
ns
ns
3
7
2
3.5
2
ns
Mbps
ns
ns
RS = RT = 50 Ω, CL = 50 pF, see Figure 37
tP, A→Y
tR, A→Y
tF, A→Y
DMAX, A→Y
tSKEW, A→Y
tPPSKEW, A→Y
50
RS = RT = 50 Ω, CL = 15 pF, see Figure 38
tP, Y→A
tR, Y→A
tF, Y→A
DMAX, Y→A
tSKEW, Y→A
tPPSKEW, Y→A
50
Rev. C | Page 3 of 20
ADG3308/ADG3308-1
Parameter
1.8 V ± 0.15 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V ± 0.3 V
A→Y Level Translation
Propagation Delay
Rise Time
Fall Time
Maximum Data Rate
Channel-to-Channel Skew
Part-to-Part Skew
Y→A Level Translation
Propagation Delay
Rise Time
Fall Time
Maximum Data Rate
Channel-to-Channel Skew
Part-to-Part Skew
1.15 V to 1.3 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V ± 0.3 V
A→Y Level Translation
Propagation Delay
Rise Time
Fall Time
Maximum Data Rate
Channel-to-Channel Skew
Part-to-Part Skew
Y→A Level Translation
Propagation Delay
Rise Time
Fall Time
Maximum Data Rate
Channel-to-Channel Skew
Part-to-Part Skew
1.15 V to 1.3 V ≤ VCCA ≤ VCCY, VCCY = 1.8 V ± 0.3 V
A→Y Level Translation
Propagation Delay
Rise Time
Fall Time
Maximum Data Rate
Channel-to-Channel Skew
Part-to-Part Skew
Y→A Level Translation
Propagation Delay
Rise Time
Fall Time
Maximum Data Rate
Channel-to-Channel Skew
Part-to-Part Skew
Symbol
Conditions
Min
Typ 2 Max
Unit
8
2
2
11
5
5
2
4
4
ns
ns
ns
Mbps
ns
ns
5
2
2
8
3.5
3.5
2
3
3
9
3
2
18
5
5
2
5
10
5
2
2
9
4
4
2
4
4
12
7
3
25
12
5
2
5
15
14
5
2.5
35
16
6.5
3
6.5
23.5
RS = RT = 50 Ω, CL = 50 pF, see Figure 37
tP, A→Y
tR, A→Y
tF, A→Y
DMAX, A→Y
tSKEW, A→Y
tPPSKEW, A→Y
50
RS = RT = 50 Ω, CL = 15 pF, see Figure 38
tP, Y→A
tR, Y→A
tF, Y→A
DMAX, Y→A
tSKEW, Y→A
50
tPPSKEW, Y→A
ns
ns
ns
Mbps
ns
ns
RS = RT = 50 Ω, CL = 50 pF, see Figure 37
tP, A→Y
tR, A→Y
tF, A→Y
DMAX, A→Y
tSKEW, A→Y
tPPSKEW, A→Y
40
ns
ns
ns
Mbps
ns
ns
RS = RT = 50 Ω, CL = 15 pF, see Figure 38
tP, Y→A
tR, Y→A
tF, Y→A
DMAX, Y→A
tSKEW, Y→A
tPPSKEW, Y→A
40
ns
ns
ns
Mbps
ns
ns
RS = RT = 50 Ω, CL = 50 pF, see Figure 37
tP, A→Y
tR, A→Y
tF, A→Y
DMAX, A→Y
tSKEW, A→Y
tPPSKEW, A→Y
25
ns
ns
ns
Mbps
ns
ns
RS = RT = 50 Ω, CL = 15 pF, see Figure 38
tP, Y→A
tR, Y→A
tF, Y→A
DMAX, Y→A
tSKEW, Y→A
tPPSKEW, Y→A
25
Rev. C | Page 4 of 20
ns
ns
ns
Mbps
ns
ns
ADG3308/ADG3308-1
Parameter
2.5 V ± 0.2 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V ± 0.3 V
A→Y Level Translation
Propagation Delay
Rise Time
Fall Time
Maximum Data Rate
Channel-to-Channel Skew
Part-to-Part Skew
Y→A Level Translation
Propagation Delay
Rise Time
Fall Time
Maximum Data Rate
Channel-to-Channel Skew
Part-to-Part Skew
POWER REQUIREMENTS
Power Supply Voltages
Quiescent Power Supply Current
Symbol
Min
Typ 2 Max
Unit
7
2.5
2
10
4
5
1.5
2
4
ns
ns
ns
Mbps
ns
ns
5
1
3
8
4
5
2
3
3
ns
ns
ns
Mbps
ns
ns
0.17
5.5
5.5
1
V
V
μA
0.27
1
μA
0.1
0.1
1
1
μA
μA
RS = RT = 50 Ω, CL = 50 pF, see Figure 37
tP, A→Y
tR, A→Y
tF, A→Y
DMAX, A→Y
tSKEW, A→Y
tPPSKEW, A→Y
60
RS = RT = 50 Ω, CL = 15 pF, see Figure 38
tP, Y→A
tR, Y→A
tF, Y→A
DMAX, Y→A
tSKEW, Y→A
60
tPPSKEW, Y→A
VCCA
VCCY
ICCA
ICCY
Three-State Mode Power Supply Current
Conditions
IHIGH-ZA
IHIGH-ZY
VCCA ≤ VCCY
VA = 0 V or VCCA, VY = 0 V or VCCY,
VCCA = VCCY = 5.5 V, EN = VCCY
VA = 0 V or VCCA, VY = 0 V or VCCY,
VCCA = VCCY = 5.5 V, EN = VCCY
VCCA = VCCY = 5.5 V, EN = 0
VCCA = VCCY = 5.5 V, EN = 0
1
Temperature range is −40°C to +85°C (B Version) for the TSSOP, the LFCSP, the WLCSP, and the backside-coated WLCSP.
All typical values are at TA = 25°C, unless otherwise noted.
3
Guaranteed by design; not subject to production test.
2
Rev. C | Page 5 of 20
1.15
1.65
ADG3308/ADG3308-1
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 2.
Parameter
VCCA to GND
VCCY to GND
Digital Inputs (A)
Digital Inputs (Y)
EN to GND
Operating Temperature Range
Extended Industrial Range (B Version)
Storage Temperature Range
Junction Temperature
θJA Thermal Impedance
20-Lead TSSOP
20-Lead LFCSP
20-Ball WLCSP
20-Ball Backside-Coated WLCSP
Lead Temperature, Soldering (10 sec)
IR Reflow, Peak Temperature (<20 sec)
Rating
−0.3 V to +7 V
VCCA to +7 V
−0.3 V to (VCCA + 0.3 V)
−0.3 V to (VCCY + 0.3 V)
−0.3 V to +7 V
−40°C to +85°C
−65°C to +150°C
150°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Only one absolute maximum rating may be applied at any
one time.
ESD CAUTION
78°C/W
30.4°C/W
100°C/W
100°C/W
300°C
260°C (+0°C/−5°C)
Rev. C | Page 6 of 20
ADG3308/ADG3308-1
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
ADG3308
17 Y3
A4 5
TOP VIEW
(Not to Scale)
16 Y4
A5 6
15 Y5
A6 7
14 Y6
A7 8
13 Y7
A8 9
12 Y8
EN 10
11 GND
A2
A3
A4
A5
A6
1
2
3
4
5
ADG3308
TOP VIEW
(Not to Scale)
15
14
13
12
11
Y3
Y4
Y5
Y6
Y7
2
3
4
a
VCCY
Y1
A1
VCCA
b
Y2
Y3
A3
A2
c
Y4
Y5
A5
A4
d
Y6
Y7
A7
A6
e
Y8
GND
EN
A8
THE EXPOSED PAD CAN BE TIED TO
GND OR IT CAN BE LEFT FLOATING.
DO NOT TIE IT TO VCCA OR VCCY .
ADG3308-1/
ADG3308-2
TOP VIEW
(Not to Scale)
(BALLS AT THE BOTTOM)
Figure 2. 20-Lead TSSOP
Figure 3. 20-Lead LFCSP
Figure 4. 20-Ball WLCSP
Table 3. Pin Function Descriptions
TSSOP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Pin/Ball No.
LFCSP
WLCSP
19
a4
20
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
a3
b4
b3
c4
c3
d4
d3
e4
e3
e2
e1
d2
d1
c2
c1
b2
b1
a2
a1
Mnemonic
VCCA
A1
A2
A3
A4
A5
A6
A7
A8
EN
GND
Y8
Y7
Y6
Y5
Y4
Y3
Y2
Y1
VCCY
Description
Power Supply. Power supply voltage input for the A1 I/O pin to the A8 I/O pin
(1.15 V ≤ VCCA < VCCY).
Input/Output A1. Referenced to VCCA.
Input/Output A2. Referenced to VCCA.
Input/Output A3. Referenced to VCCA.
Input/Output A4. Referenced to VCCA.
Input/Output A5. Referenced to VCCA.
Input/Output A6. Referenced to VCCA.
Input/Output A7. Referenced to VCCA.
Input/Output A8. Referenced to VCCA.
Active High Enable Input.
Ground.
Input/Output Y8. Referenced to VCCY.
Input/Output Y7. Referenced to VCCY.
Input/Output Y6. Referenced to VCCY.
Input/Output Y5. Referenced to VCCY.
Input/Output Y4. Referenced to VCCY.
Input/Output Y3. Referenced to VCCY.
Input/Output Y2. Referenced to VCCY.
Input/Output Y1. Referenced to VCCY.
Power Supply. Power supply voltage input for the Y1 I/O pin to the Y8 I/O pin
(1.65 V ≤ VCCY ≤ 5.5 V).
Rev. C | Page 7 of 20
04865-057
A3 4
PIN 1
INDICATOR
04865-003
18 Y2
1
6
7
8
9
10
19 Y1
A2 3
A7
A8
EN
GND
Y8
A1 2
20
19
18
17
16
20 VCCY
1
04865-002
VCCA
A1
VCCA
VCCY
Y1
Y2
BALL a1
INDICATOR
ADG3308/ADG3308-1
TYPICAL PERFORMANCE CHARACTERISTICS
3.0
1.0
TA = 25°C
1 CHANNEL
0.9
CL = 50pF
2.5
0.8
VCCA = 3.3V, VCCY = 5V
0.7
2.0
0.6
ICCY (mA)
ICCA (mA)
TA = 25°C
1 CHANNEL
CL = 15pF
0.5
0.4
VCCA = 1.8V, VCCY = 3.3V
0.3
VCCA = 3.3V, VCCY = 5V
1.5
1.0
VCCA = 1.8V, VCCY = 3.3V
0.2
0.5
0.1
5
10
15
20
25
30
35
DATA RATE (Mbps)
40
45
0
04865-004
0
50
VCCA = 1.2V, VCCY = 1.8V
0
1.6
VCCA = 3.3V, VCCY = 5V
6
ICCY (mA)
30
35
40
45
50
20Mbps
5
4
0.8
10Mbps
0.6
VCCA = 1.8V, VCCY = 3.3V
3
1.0
0.4
2
VCCA = 1.2V, VCCY = 1.8V
1
5Mbps
0.2
10
15
20
25
30
35
DATA RATE (Mbps)
40
45
50
0
13
1.0
0.8
VCCA = 3.3V, VCCY = 5V
ICCA (mA)
1.5
1.0
0.6
20Mbps
0.4
10Mbps
0.2
VCCA = 1.2V, VCCY = 1.8V
10
15
20
25
30
35
40
5Mbps
0.1
45
DATA RATE (Mbps)
50
04865-006
5
73
0.5
0.3
VCCA = 1.8V, VCCY = 3.3V
0
63
0.7
2.0
0
53
TA = 25°C
1 CHANNEL
VCCA = 1.2V
VCCY = 1.8V
0.9
0.5
43
Figure 9. ICCY vs. Capacitive Load at Pin Y
for A→Y (1.2 V→1.8 V) Level Translation
TA = 25°C
1 CHANNEL
CL = 15pF
2.5
33
CAPACITIVE LOAD (pF)
Figure 6. ICCY vs. Data Rate (A→Y Level Translation)
3.0
23
04865-012
5
04865-005
1Mbps
0
0
1Mbps
13
23
33
43
CAPACITIVE LOAD (pF)
Figure 10. ICCA vs. Capacitive Load at Pin A
for Y→A (1.8 V→1.2 V) Level Translation
Figure 7. ICCA vs. Data Rate (Y→A Level Translation)
Rev. C | Page 8 of 20
53
04865-013
ICCY (mA)
25
1.2
7
ICCA (mA)
20
TA = 25°C
1 CHANNEL
VCCA = 1.2V
VCCY = 1.8V
1.4
8
0
15
Figure 8. ICCY vs. Data Rate (Y→A Level Translation)
TA = 25°C
1 CHANNEL
CL = 50pF
9
10
DATA RATE (Mbps)
Figure 5. ICCA vs. Data Rate (A→Y Level Translation)
10
5
04865-007
VCCA = 1.2V, VCCY = 1.8V
0
ADG3308/ADG3308-1
9
7
TA = 25°C
1 CHANNEL
VCCA = 1.8V
VCCY = 3.3V
8
7
TA = 25°C
1 CHANNEL
6 VCCA = 3.3V
VCCY = 5V
50Mbps
50Mbps
5
ICCA (mA)
ICCY (mA)
6
5
30Mbps
4
3
4
30Mbps
3
20Mbps
20Mbps
2
10Mbps
10Mbps
1
1
5Mbps
23
33
43
53
CAPACITIVE LOAD (pF)
63
73
0
04865-016
13
Figure 11. ICCY vs. Capacitive Load at Pin Y
for A→Y (1.8 V→3.3 V) Level Translation
5.0
4.5
4.0
33
43
CAPACITIVE LOAD (pF)
53
Figure 14. ICCA vs. Capacitive Load at Pin A
for Y→A (5 V→3.3 V) Level Translation
10
TA = 25°C
9 1 CHANNEL
DATA RATE = 50kbps
8
TA = 25°C
1 CHANNEL
VCCA = 1.8V
VCCY = 3.3V
3.5
VCCA = 1.2V, VCCY = 1.8V
7
50Mbps
3.0
RISE TIME (ns)
ICCA (mA)
23
2.5
2.0
30Mbps
1.5
6
5
4
VCCA = 1.8V, VCCY = 3.3V
3
20Mbps
1.0
2
VCCA = 3.3V, VCCY = 5V
10Mbps
0.5
1
5Mbps
23
33
43
CAPACITIVE LOAD (pF)
53
0
13
04865-017
0
13
Figure 12. ICCA vs. Capacitive Load at Pin A
for Y→A (3.3 V→1.8 V) Level Translation
33
43
53
CAPACITIVE LOAD (pF)
63
73
Figure 15. Rise Time vs. Capacitive Load at Pin Y (A→Y Level Translation)
4.0
12
TA = 25°C
1 CHANNEL
VCCA = 3.3V
10 V
CCY = 5V
23
04865-023
0
13
5Mbps
04865-021
2
50Mbps
3.5
TA = 25°C
1 CHANNEL
DATA RATE = 50kbps
VCCA = 1.2V, VCCY = 1.8V
3.0
FALL TIME (ns)
30Mbps
6
20Mbps
4
2
VCCA = 1.8V, VCCY = 3.3V
2.0
1.5
VCCA = 3.3V, VCCY = 5V
0.5
5Mbps
23
33
43
53
CAPACITIVE LOAD (pF)
63
Figure 13. ICCY vs. Capacitive Load at Pin Y
for A→Y (3.3 V→5 V) Level Translation
73
0
13
23
33
43
53
CAPACITIVE LOAD (pF)
63
73
04865-024
0
13
2.5
1.0
10Mbps
04865-020
ICCY (mA)
8
Figure 16. Fall Time vs. Capacitive Load at Pin Y (A→Y Level Translation)
Rev. C | Page 9 of 20
ADG3308/ADG3308-1
12
10
TA = 25°C
9 1 CHANNEL
DATA RATE = 50kbps
8
10
PROPAGATION DELAY (ns)
VCCA = 1.2V, VCCY = 1.8V
6
5
4
VCCA = 1.8V, VCCY = 3.3V
3
2
8
6
VCCA = 1.8V, VCCY = 3.3V
4
2
1
28
33
38
43
48
53
0
13
33
43
53
63
73
CAPACITIVE LOAD (pF)
Figure 20. Propagation Delay (tPHL) vs. Capacitive Load
at Pin Y (A→Y Level Translation)
Figure 17. Rise Time vs. Capacitive Load at Pin A (Y→A Level Translation)
9
4.0
TA = 25°C
8 1 CHANNEL
DATA RATE = 50kbps
PROPAGATION DELAY (ns)
3.0
2.5
VCCA = 1.2V, VCCY = 1.8V
2.0
VCCA = 1.8V, VCCY = 3.3V
1.5
VCCA = 3.3V, VCCY = 5V
1.0
0.5
7
VCCA = 1.2V, VCCY = 1.8V
6
5
4
3
VCCA = 1.8V, VCCY = 3.3V
2
VCCA = 3.3V, VCCY = 5V
1
18
23
28
33
38
43
CAPACITIVE LOAD (pF)
48
53
0
13
04865-026
13
23
28
33
38
43
48
53
CAPACITIVE LOAD (pF)
Figure 21. Propagation Delay (tPLH) vs. Capacitive Load
at Pin A (Y→A Level Translation)
Figure 18. Fall Time vs. Capacitive Load at Pin A (Y→A Level Translation)
9
14
TA = 25°C
1 CHANNEL
8 DATA RATE = 50kbps
TA = 25°C
1 CHANNEL
12 DATA RATE = 50kbps
PROPAGATION DELAY (ns)
VCCA = 1.2V, VCCY = 1.8V
10
8
6
18
04865-029
TA = 25°C
1 CHANNEL
3.5 DATA RATE = 50kbps
FALL TIME (ns)
23
04865-028
23
04865-025
18
CAPACITIVE LOAD (pF)
VCCA = 1.8V, VCCY = 3.3V
4
VCCA = 3.3V, VCCY = 5V
2
VCCA = 1.2V, VCCY = 1.8V
7
6
5
4
VCCA = 1.8V, VCCY = 3.3V
3
VCCA = 3.3V, VCCY = 5V
2
1
0
13
23
33
43
53
CAPACITIVE LOAD (pF)
63
73
0
04865-027
PROPAGATION DELAY (ns)
VCCA = 3.3V, VCCY = 5V
VCCA = 3.3V, VCCY = 5V
0
13
0
VCCA = 1.2V, VCCY = 1.8V
Figure 19. Propagation Delay (tPLH) vs. Capacitive Load
at Pin Y (A→Y Level Translation)
13
18
23
28
33
38
43
CAPACITIVE LOAD (pF)
48
53
Figure 22. Propagation Delay (tPHL) vs. Capacitive Load
at Pin A (Y→A Level Translation)
Rev. C | Page 10 of 20
04865-030
RISE TIME (ns)
7
TA = 25°C
1 CHANNEL
DATA RATE = 50kbps
ADG3308/ADG3308-1
TA = 25°C
DATA RATE = 25Mbps
CL = 50pF
1 CHANNEL
400mV/DIV
Figure 23. Eye Diagram at Y Output
(1.2 V→1.8 V Level Translation, 25 Mbps)
CL = 50pF
1 CHANNEL
5ns/DIV
TA = 25°C
DATA RATE = 50Mbps
CL = 50pF
1 CHANNEL
1V/DIV
Figure 24. Eye Diagram at A Output
(1.8 V→1.2 V Level Translation, 25 Mbps)
500mV/DIV
Figure 27. Eye Diagram at Y Output
(3.3 V→5 V Level Translation, 50 Mbps)
TA = 25°C
DATA RATE = 50Mbps
CL = 15pF
1 CHANNEL
CL = 50pF
1 CHANNEL
3ns/DIV
04865-039
TA = 25°C
DATA RATE = 50Mbps
3ns/DIV
04865-041
200mV/DIV
Figure 26. Eye Diagram at A Output
(3.3 V→1.8 V Level Translation, 50 Mbps)
04865-038
TA = 25°C
DATA RATE = 25Mbps
3ns/DIV
800mV/DIV
Figure 25. Eye Diagram at Y Output
(1.8 V→3.3 V Level Translation, 50 Mbps)
3ns/DIV
Figure 28. Eye Diagram at A Output
(5 V→3.3 V Level Translation, 50 Mbps)
Rev. C | Page 11 of 20
04865-042
5ns/DIV
04865-040
04865-037
400mV/DIV
TA = 25°C
DATA RATE = 50Mbps
CL = 15pF
1 CHANNEL
ADG3308/ADG3308-1
TEST CIRCUITS
EN
ADG3308/
ADG3308-1 /
ADG3308-2
VCCA
0.1µF
VCCY
VCCA
0.1µF
0.1µF
Ax
ADG3308/
ADG3308-1 /
ADG3308-2
VCCY
0.1µF
Yx
K2
Yx
Ax
K1
GND
EN
IOH
K
A
04865-047
GND
04865-043
IOL
Figure 29. VOH/VOL Voltages at Pin A
ADG3308/
ADG3308-1 /
ADG3308-2
VCCA
0.1µF
K2
Ax
Figure 33. EN Pin Leakage Current
EN
VCCY
VCCA
0.1µF
ADG3308/
ADG3308-1 /
ADG3308-2
EN
VCCY
Yx
Ax
Yx
K1
GND
CAPACITANCE
METER
GND
04865-048
IOH
04865-044
IOL
Figure 30. VOH/VOL Voltages at Pin Y
VCCA
0.1µF
EN
ADG3308/
ADG3308-1 /
ADG3308-2
VCCA
VCCY
ADG3308/
ADG3308-1 /
ADG3308-2
EN
VCCY
0.1µF
Ax
A
Figure 34. Capacitance at Pin A
Yx
Ax
Yx
K
Figure 31. Three-State Leakage Current at Pin A
VCCA
0.1µF
ADG3308/
ADG3308-1 /
ADG3308-2
Figure 35. Capacitance at Pin Y
EN
VCCY
0.1µF
Yx
A
GND
K
04865-046
Ax
GND
Figure 32. Three-State Leakage Current at Pin Y
Rev. C | Page 12 of 20
CAPACITANCE
METER
04865-049
04865-045
GND
ADG3308/ADG3308-1
A→Y DIRECTION
VCCA
0.1µF
+
10µF
ADG3308/
ADG3308-1 /
ADG3308-2
VCCY
+
10µF
0.1µF
1MΩ
Ax
VA
K1
Yx
VY
K2
50pF
1MΩ
SIGNAL SOURCE
EN
Z0 = 50Ω
RS
GND
VEN
RT
50Ω
50Ω
Y→A DIRECTION
VCCA
0.1µF
+
10µF
VCCY
ADG3308/
ADG3308-1 /
ADG3308-2
+
10µF
0.1µF
1MΩ
K1
Ax
VA
Yx
VY
K2
15pF
SIGNAL SOURCE
1MΩ
EN
Z0 = 50Ω
RS
GND
VEN
RT
50Ω
50Ω
VEN
tEN1
VCCY
0V
VCCA /VCCY
VA/VY
0V
VCCY /VCCA
90%
VY/VA
tEN2
0V
VA/VY
VCCA /VCCY
0V
VCCY /VCCA
VY/VA
10%
0V
NOTES
1. tEN IS WHICHEVER IS LARGER BETWEEN tEN1 AND tEN2
IN BOTH A→Y AND Y→A DIRECTIONS.
Figure 36. Enable Time
Rev. C | Page 13 of 20
04865-050
VEN
0V
VCCY
ADG3308/ADG3308-1
SIGNAL
SOURCE
RS
+
10µF
0.1µF
Z0 = 50Ω V
A
EN
ADG3308/
ADG3308-1 /
ADG3308-2
VCCA
VCCY
Ax
Yx
VY
RT
50Ω
50Ω
+
10µF
0.1µF
50pF
GND
VA
50%
tF, A→Y
04865-051
90%
50%
10%
tP, A→Y
tP, A→Y
VY
tR, A→Y
Figure 37. Switching Characteristics (A→Y Level Translation)
VCCA
+
0.1µF
VA
10µF
ADG3308/
ADG3308-1 /
ADG3308-2
EN
VCCY
+
10µF
0.1µF
Ax
Yx
VY
Z0 = 50Ω
RS
50Ω
RT
50Ω
15pF
SIGNAL
SOURCE
GND
VY
50%
tP, Y→A
tF, Y→A
tP, Y→A
tR, Y→A
Figure 38. Switching Characteristics (Y→A Level Translation)
Rev. C | Page 14 of 20
04865-052
90%
50%
10%
VA
ADG3308/ADG3308-1
TERMINOLOGY
DMAX, A→Y
Guaranteed data rate when translating logic levels in the A→Y
direction under the driving and loading conditions specified in
Table 1.
VIHA
Logic input high voltage at Pin A1 to Pin A8.
VILA
Logic input low voltage at Pin A1 to Pin A8.
tSKEW, A→Y
Difference between propagation delays on any two channels
when translating logic levels in the A→Y direction.
VOHA
Logic output high voltage at Pin A1 to Pin A8.
VOLA
Logic output low voltage at Pin A1 to Pin A8.
CA
Capacitance measured at Pin A1 to Pin A8 (EN = 0).
tPPSKEW, A→Y
Difference in propagation delay between any one channel and
the same channel on a different part (under same driving/
loading conditions) when translating in the A→Y direction.
ILA, HIGH-Z
Leakage current at Pin A1 to Pin A8 when EN = 0 (high
impedance state at Pin A1 to Pin A8).
tP, Y→A
Propagation delay when translating logic levels in the Y→A
direction.
VIHY
Logic input high voltage at Pin Y1 to Pin Y8.
tR, Y→A
Rise time when translating logic levels in the Y→A direction.
VILY
Logic input low voltage at Pin Y1 to Pin Y8.
tF, Y→A
Fall time when translating logic levels in the Y→A direction.
VOHY
Logic output high voltage at Pin Y1 to Pin Y8.
DMAX, Y→A
Guaranteed data rate when translating logic levels in the Y→A
direction under the driving and loading conditions specified in
Table 1.
VOLY
Logic output low voltage at Pin Y1 to Pin Y8.
CY
Capacitance measured at Pin Y1 to Pin Y8 (EN = 0).
tSKEW, Y→A
Difference between propagation delays on any two channels
when translating logic levels in the Y→A direction.
ILY, HIGH-Z
Leakage current at Pin Y1 to Pin Y8 when EN = 0 (high
impedance state at Pin Y1 to Pin Y8).
VIHEN
Logic input high voltage at the EN pin.
tPPSKEW, Y→A
Difference in propagation delay between any one channel and
the same channel on a different part (under same driving/
loading conditions) when translating in the Y→A direction.
VILEN
Logic input low voltage at the EN pin.
VCCA
VCCA supply voltage.
CEN
Capacitance measured at EN pin.
VCCY
VCCY supply voltage.
ILEN
Enable (EN) pin leakage current.
ICCA
VCCA supply current.
tEN
Three-state enable time for Pin A1 to Pin A8/Pin Y1 to Pin Y8.
ICCY
VCCY supply current.
tP, A→Y
Propagation delay when translating logic levels in the A→Y
direction.
IHIGH-ZA
VCCA supply current during three-state mode (EN = 0).
tR, A→Y
Rise time when translating logic levels in the A→Y direction.
IHIGH-ZY
VCCY supply current during three-state mode (EN = 0).
tF, A→Y
Fall time when translating logic levels in the A→Y direction.
Rev. C | Page 15 of 20
ADG3308/ADG3308-1
THEORY OF OPERATION
The ADG3308/ADG3308-1/ADG3308-2 level translators allow
the level shifting necessary for data transfer in a system where
multiple supply voltages are used. The device requires two
supplies, VCCA and VCCY (VCCA ≤ VCCY). These supplies set the
logic levels on each side of the device. When driving the A pins,
the device translates the VCCA compatible logic levels to VCCY
compatible logic levels available at the Y pins. Similarly, because
the device is capable of bidirectional translation, when driving
the Y pins the VCCY compatible logic levels are translated to the
VCCA compatible logic levels available at the A pins. When
EN = 0, the A1 pin to the A8 pin and the Y1 pin to the Y8 pin
are three-stated. When EN is driven high, the ADG3308/
ADG3308-1/ADG3308-2 go into normal operation mode and
perform level translation.
LEVEL TRANSLATOR ARCHITECTURE
The ADG3308/ADG3308-1/ADG3308-2 consist of eight
bidirectional channels. Each channel can translate logic levels
in either the A→Y or the Y→A direction. They use a one-shot
accelerator architecture, ensuring excellent switching characteristics. Figure 39 shows a simplified block diagram of a
bidirectional channel.
VCCA
VCCY
INPUT DRIVING REQUIREMENTS
To ensure correct operation of the ADG3308/ADG3308-1/
ADG3308-2, the circuit that drives the input of the device
should be able to ensure rise/fall times of less than 3 ns when
driving a load consisting of a 6 kΩ resistor in parallel with the
input capacitance of the ADG3308/ADG3308-1/ADG3308-2
channel.
OUTPUT LOAD REQUIREMENTS
The ADG3308/ADG3308-1/ADG3308-2 level translators are
designed to drive CMOS-compatible loads. If current-driving
capability is required, it is recommended to use buffers between
the ADG3308/ADG3308-1/ADG3308-2 outputs and the load.
ENABLE OPERATION
The ADG3308/ADG3308-1/ADG3308-2 provide three-state
operation at the A I/O pins and the Y I/O pins by using the
enable (EN) pin, as shown in Table 4.
Table 4. Truth Table
EN
0
1
1
2
T1
T2
6kΩ
T4
U2
ONE-SHOT GENERATOR
U4
Y
N
U3
T3
High impedance state.
In normal operation, the ADG3308/ADG3308-1/ADG3308-2 perform level
translation.
POWER SUPPLIES
04865-053
P
A
A I/O Pins
High-Z1
Normal operation2
When EN = 0, the ADG3308/ADG3308-1/ADG3308-2 enter
into three-state mode. In this mode, the current consumption
from both the VCCA and VCCY supplies is reduced, allowing the
user to save power, which is critical, especially in batteryoperated systems. The EN input pin can only be driven with
VCCY compatible logic levels for the ADG3308, whereas the
ADG3308-1/ADG3308-2 can be driven with either VCCA- or
VCCY compatible logic levels.
6kΩ
U1
Y I/O Pins
High-Z1
Normal operation2
Figure 39. Simplified Block Diagram of an
ADG3308/ADG3308-1/ADG3308-2 Channel
The logic level translation in the A→Y direction is performed
using a level translator (U1) and an inverter (U2), whereas the
translation in the Y→A direction is performed using the U3
inverter and U4 inverter. The one-shot generator detects a rising
or falling edge present on either the A side or the Y side of the
channel. It sends a short pulse that turns on the PMOS transistors
(T1 and T2) for a rising edge, or the NMOS transistors (T3 and
T4) for a falling edge. This charges/discharges the capacitive load
faster, resulting in fast rise and fall times.
For proper operation of the device, the voltage applied to the
VCCA must always be less than or equal to the voltage applied
to VCCY. To meet this condition, the recommended power-up
sequence is VCCY first and then VCCA. The ADG3308/ADG3308-1/
ADG3308-2 operate properly only after both supply voltages
reach their nominal values. It is not recommended to use the part
in a system where, during power-up, VCCA may be greater than
VCCY due to a significant increase in the current taken from the
VCCA supply. For optimum performance, the VCCA and VCCY pins
should be decoupled to GND as close as possible to the device.
The inputs of the unused channels (A or Y) should be tied to
their corresponding VCC rail (VCCA or VCCY) or to GND.
Rev. C | Page 16 of 20
ADG3308/ADG3308-1
DATA RATE
The maximum data rate at which the device is guaranteed to
operate is a function of the VCCA and VCCY supply voltage
combination and the load capacitance. It represents the maximum
frequency of a square wave that can be applied to the I/O pins,
ensuring that the device operates within the data sheet
specifications in terms of output voltage (VOL and VOH) and
power dissipation (the junction temperature does not exceed the
value specified under the Absolute Maximum Ratings section).
Table 5 shows the guaranteed data rates at which the ADG3308/
ADG3308-1/ADG3308-2 can operate in both directions (A→Y
level translation or Y→A level translation) for various VCCA and
VCCY supply combinations.
Table 5. Guaranteed Data Rates 1
VCCA
1.2 V (1.15 V to 1.3 V)
1.8 V (1.65 V to 1.95 V)
2.5 V (2.3 V to 2.7 V)
3.3 V (3.0 V to 3.6 V)
5 V (4.5 V to 5.5 V)
1
1.8 V (1.65 V to 1.95 V)
25 Mbps
2.5 V (2.3 V to 2.7 V)
30 Mbps
45 Mbps
VCCY
3.3 V (3.0 V to 3.6 V)
40 Mbps
50 Mbps
60 Mbps
The load capacitance used is 50 pF when translating in the A→Y direction and 15 pF when translating in the Y→A direction.
Rev. C | Page 17 of 20
5 V (4.5 V to 5.5 V)
40 Mbps
50 Mbps
50 Mbps
50 Mbps
ADG3308/ADG3308-1
APPLICATIONS
The ADG3308/ADG3308-1/ADG3308-2 are designed for digital
circuits that operate at different supply voltages; therefore, logic
level translation is required. The lower voltage logic signals are
connected to the A pins, and the higher voltage logic signals to
the Y pins. The ADG3308/ADG3308-1/ADG3308-2 can provide
level translation in both directions (A→Y or Y→A) on all eight
channels, eliminating the need for a level translator IC for each
direction. The internal architecture allows the ADG3308/
ADG3308-1/ADG3308-2 to perform bidirectional level
translation without an additional signal to set the direction in
which the translation is made. It also allows simultaneous data
flow in both directions on the same part, for example, when two
channels translate in the A→Y direction while the other two
translate in the Y→A direction. This simplifies the design by
eliminating the timing requirements for the direction signal
and reduces the number of ICs used for level translation.
100nF
ADG3308/
ADG3308-1 /
ADG3308-2
VCCY
GND
Y1
A1
1.8V
I/OL1
I/OH2
Y2
A2
I/OL2
I/OH3
Y3
A3
I/OL3
I/OH4
Y4
A4
I/OL4
I/OH5
Y5
A5
I/OL5
I/OH6
Y6
A6
I/OL6
I/OH7
Y7
A7
I/OL7
I/OH8
Y8
A8
I/OL8
CS
EN
GND
GND
100nF
Y1
ADG3308/
ADG3308-1 /
ADG3308-2
VCCY
100nF
VCCA
A1
I/OL1
1.8V
1.8V
A1
I/OL1
Y2
A2
I/OL2
Y3
A3
I/OL3
Y4
A4
I/OL4
Y5
A5
I/OL5
Y6
A6
I/OL6
Y7
A7
I/OL7
I/OH2
Y2
A2
I/OL2
Y8
A8
I/OL8
I/OH3
Y3
A3
I/OL3
EN
GND
GND
I/OH4
Y4
A4
I/OL4
I/OH5
Y5
A5
I/OL5
I/OH6
Y6
A6
I/OL6
I/OH7
Y7
A7
I/OL7
I/OH8
Y8
A8
I/OL8
EN
GND
GND
Figure 41. 1.8 V to 3.3 V Level Translation Circuit
Using the Three-State Feature
LAYOUT GUIDELINES
04865-056
GND
PERIPHERAL
DEVICE
MICROPROCESSOR/
MICROCONTROLLER/
DSP
ADG3308/
ADG3308-1 /
ADG3308-2
VCCA
Y1
04865-055
3.3V
I/OH1
100nF
PERIPHERAL
DEVICE 2
VCCY
VCCA
I/OH1
PERIPHERAL
DEVICE 1
MICROPROCESSOR/
MICROCONTROLLER/
DSP
3.3V
Figure 40 shows an application where a 3.3 V microprocessor
can read or write data to and from a 1.8 V peripheral device
using an 8-bit bus.
100nF
100nF
Figure 40. 1.8 V to 3.3 V 8-Bit Level Translation Circuit
When the application requires level translation between
a microprocessor and multiple peripheral devices, the
ADG3308/ADG3308-1/ADG3308-2 I/O pins can be threestated by setting EN = 0. This feature allows the ADG3308/
ADG3308-1/ADG3308-2 to share the data buses with other
devices without causing contention issues. Figure 41 shows an
application where a 3.3 V microprocessor is connected to 1.8 V
peripheral devices using the three-state feature.
As with any high speed digital IC, the printed circuit board
layout is important in the overall performance of the circuit. Care
should be taken to ensure proper power supply bypass and
return paths for the high speed signals. Each VCC pin (VCCA and
VCCY) should be bypassed using low effective series resistance
(ESR) and effective series inductance (ESI) capacitors placed as
close as possible to the VCCA and VCCY pins. The parasitic inductance of the high speed signal track can cause significant overshoot.
This effect can be reduced by keeping the length of the tracks as
short as possible. A solid copper plane for the return path
(GND) is also recommended.
Rev. C | Page 18 of 20
ADG3308/ADG3308-1
OUTLINE DIMENSIONS
6.60
6.50
6.40
20
11
4.50
4.40
4.30
6.40 BSC
1
10
PIN 1
0.65
BSC
1.20 MAX
0.15
0.05
COPLANARITY
0.10
0.30
0.19
0.20
0.09
0.75
0.60
0.45
8°
0°
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MO-153-AC
Figure 42. 20-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-20)
Dimensions shown in millimeters
0.60 MAX
4.00
BSC SQ
0.60 MAX
15
PIN 1
INDICATOR
20
16
1
PIN 1
INDICATOR
3.75
BCS SQ
0.50
BSC
2.25
2.10 SQ
1.95
EXPOSED
PAD
(BOTTOM VIEW)
5
TOP VIEW
SEATING
PLANE
12° MAX
10
6
0.25 MIN
0.80 MAX
0.65 TYP
0.30
0.23
0.18
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1
Figure 43. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
4 mm × 4 mm Body, Very Thin Quad
(CP-20-1)
Dimensions shown in millimeters
Rev. C | Page 19 of 20
082207-B
1.00
0.85
0.80
0.75
0.60
0.50
11
ADG3308/ADG3308-1
0.65
0.59
0.53
2.06
2.00
1.94
3
4
2
1
A
A1 BALL
IDENTIFIER
2.56
2.50
2.44
B
0.50 BSC
PITCH
C
D
0.36
0.32
0.28
E
0.28
0.24
0.20
BOTTOM VIEW
(BALL SIDE UP)
070606- A
TOP VIEW
(BALL SIDE DOWN)
Figure 44. 20-Ball Wafer Level Chip Scale Package [WLCSP]
(CB-20-2)
Dimensions shown in millimeters
2.06
2.00
1.94
0.042
0.040
0.037
0.645
0.585
0.525
4
3
2
1
A
2.56
2.50
2.44
B
0.50 BSC
PITCH
C
D
0.36
0.32
0.28
0.28
0.24
0.20
TOP VIEW
(BALL SIDE DOWN)
E
BOTTOM VIEW
(BALL SIDE UP)
081707-B
A1 BALL
IDENTIFIER
Figure 45. Backside-Coated 20-Ball Wafer Level Chip Scale Package [WLCSP]
(CB-20-3)
Dimensions shown in millimeters
ORDERING GUIDE
Model
ADG3308BRUZ 1
ADG3308BRUZ-REEL1
ADG3308BRUZ-REEL71
ADG3308BCPZ-REEL1
ADG3308BCPZ-REEL71
ADG3308BCBZ-1-RL71
ADG3308BCBZ-1-REEL1
ADG3308BCBZ-2-RL71
ADG3308BCBZ-2-REEL1
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
20-Lead Thin Shrink Small Outline Package [TSSOP]
20-Lead Thin Shrink Small Outline Package [TSSOP]
20-Lead Thin Shrink Small Outline Package [TSSOP]
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
20-Ball Wafer Level Chip Scale Package [WLCSP]
20-Ball Wafer Level Chip Scale Package [WLCSP]
Backside-Coated 20-Ball Wafer Level Chip Scale Package [WLCSP]
Backside-Coated 20-Ball Wafer Level Chip Scale Package [WLCSP]
Package Option
RU-20
RU-20
RU-20
CP-20-1
CP-20-1
CB-20-2
CB-20-2
CB-20-3
CB-20-3
Z = RoHS Compliant Part.
©2005–2007 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D04865-0-9/07(C)
T
T
Rev. C | Page 20 of 20