ATMEL T7024-TRS

Features
•
•
•
•
•
•
•
•
Single 3-V Supply Voltage
High Power-added Efficient Power Amplifier (Pout Typically 23 dBm)
Ramp-controlled Output Power
Low-noise Preamplifier (NF Typically 2.1 dB)
Biasing for External PIN Diode T/R Switch
Current-saving Standby Mode
Few External Components
Packages:
– PSSO20
– QFN20 with Extended Performance
Electrostatic sensitive device.
Observe precautions for handling.
Bluetooth™/ISM
2.4-GHz FrontEnd IC
T7024
Description
The T7024 is a monolithic SiGe transmit/receive front-end IC with power amplifier,
low-noise amplifier and T/R switch driver. It is especially designed for operation in
TDMA systems like Bluetooth™ and WDCT.
Due to the ramp-control feature and a very low quiescent current, an external switch
transistor for VS is not required.
Figure 1. Block Diagram
RX_ON
PU
VS_LNA
TX
TX/RX/
standby
Control
SWITCH_OUT
R_SWITCH
RX
LNA_OUT
LNA_IN
LNA
RAMP
V1_PA
V2_PA
PA_IN
V3_PA_OUT
PA
4533D–BLURF–01/04
Pin Configuration
Figure 2. Pinning PSSO20
20 PU
1
18 LNA_OUT
GND 3
V3_PA_OUT
V3_PA_OUT
V3_PA_OUT
GND
RAMP
16 PA_IN
VS_LNA 5
T7024
GND 6
15 V1_PA
V3_PA_OUT 8
13 V2_PA
9
12 V2_PA
GND 10
11 RAMP
9
8
7
6
11
5
12
4
13
T7024
3
2
14
1
15
SWITCH_OUT
R_SWITCH
PU
RX_ON
LNA_OUT
16 17 18 19 20
14 GND
7
V3_PA_OUT
10
17 GND
LNA_IN 4
V3_PA_OUT
GND
VS_LNA
GND
LNA_IN
GND
19 RX_ON
SWITCH_OUT 2
V2_PA
V2_PA
GND
V1_PA
PA_IN
R_SWITCH
Figure 3. Pinning QFN20
Pin Description
2
Pins PSSO20
Pins QFN20
Symbol
1
4
R_SWITCH
2
5
SWITCH_OUT
3
6
GND
4
7
LNA_IN
Low-noise amplifier input
5
9
VS_LNA
Supply voltage input for low-noise amplifier
6
8
GND
7
11
V3_PA_OUT
Inductor to power supply and matching network for power amplifier output
8
12
V3_PA_OUT
Inductor to power supply and matching network for power amplifier output
9
13
V3_PA_OUT
Inductor to power supply and matching network for power amplifier output
10
10
GND
11
15
RAMP
Power ramping control input
12
16
V2_PA
Inductor to power supply for power amplifier
13
17
V2_PA
Inductor to power supply for power amplifier
14
14
GND
15
19
V1_PA
16
20
PA_IN
Power amplifier input
17
18
GND
Ground
18
1
LNA_OUT
19
2
RX_ON
20
3
PU
Slug
Slug
GND
Function
Resistor to GND sets the PIN diode current
Switched current output for PIN diode
Ground
Ground
Ground
Ground
Supply voltage for power amplifier
Low-noise amplifier output
RX active high
Power-up active high
Ground
T7024
4533D–BLURF–01/04
T7024
Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Parameters
Symbol
Value
Unit
Supply voltage
Pins VS_LNA, V1_PA, V2_PA, V3_PA_OUT
VS
6
V
Junction temperature
Tj
150
°C
Storage temperature
Tstg
-40 to +125
°C
RF input power LNA
PinLNA
5
dBm
RF input power PA
PinPA
10
dBm
Symbol
Value
Unit
Junction ambient PSSOP20, slug soldered on PCB
RthJA
19
K/W
Junction ambient QFN20, slug soldered on PCB
RthJA
27
K/W
Thermal Resistance
Parameters
Handling
Do not operate this part near strong electrostatic fields. This IC meets class 1 ESD test
requirement (HBM in accordance to EIA/JESD22-A114-A (October 97) and class A ESD
test requirement (MM) in accordance to EIA/JESD22-A115A.
Operating Range
All voltages are referred to ground (pins GND and slug). Power supply points are VS_LNA, V1_PA, V2_PA, V3_PA_OUT.
The table represents the sum of all supply currents depending on the TX/RX mode.
Parameters
Symbol
Min.
Typ.
Max.
Unit
Supply voltage
Pins V1_PA, V2_PA and V3_PA_OUT
VS
2.7
3.0
4.6
V
Supply voltage
Pin VS_LNA
VS
2.7
3.0
5.5
V
Supply current TX
PSSO20
QFN20
IS
IS
IS
190
165
8
mA
mA
mA
IS_standby
10
µA
Supply current RX
Standby current
Ambient temperature
PU = 0
Tamb
-25
+25
+85
°C
3
4533D–BLURF–01/04
Electrical Characteristics
Test conditions (unless otherwise specified): VS = 3.0 V, Tamb = 25°C
Parameters
Test Conditions
Symbol
Min.
VS
2.7
Typ.
Max.
3.0
4.6
Unit
(1)
Power Amplifier
Supply voltage
Pins V1_PA, V2_PA, V3_PA_OUT
Supply current
TX
TX
PSSO20
QFN20
RX (PA off), VRAMP ≤0.1 V
IS_TX
IS_TX
190
165
IS_RX
10
Standby current
Standby
Frequency range
TX
f
2.4
Gain-control range
TX
∆Gp
60
42
Power gain maximum
TX, Pin PA_IN to V3_PA_OUT
Gp
28
30
Power gain minimum
TX, Pin PA_IN to V3_PA_OUT
Gp
-40
Ramping voltage maximum
TX, power gain (maximum)
Pin RAMP
VRAMP max
1.7
Ramping voltage minimum
TX, power gain (minimum)
Pin RAMP
VRAMP min
Ramping current maximum
TX, VRAMP = 1.75 V, Pin RAMP
IRAMP max
Power-added efficiency
TX
TX
Saturated output power
TX, input power = 0 dBm referred to
Pins V3_PA_OUT
Input matching(2)
TX, Pin PA_IN
Load
VSWR
<1.5:1
Output matching(2)
TX, Pins V3_PA_OUT
Load
VSWR
<1.5:1
TX, Pins V3_PA_OUT
TX, Pins V3_PA_OUT
Harmonics at Psat = 23 dBm
IS_standby
PSSO20
QFN20
1.75
10
µA
GHz
dB
33
dB
-17
dB
1.83
V
V
0.5
30
35
35
40
Psat
22
23
µA
2.5
0.1
PAE
PAE
V
mA
mA
mA
%
%
24
dBm
2 fo
-30
dBc
3 fo
-30
dBc
IS_O_standby
1
µA
RX
IS_O_RX
1
µA
TX at 100 Ω
IS_O_100
TX at 1.2 kΩ
TX at 33 kΩ
T/R Switch Driver (Current Programming by External Resistor from R_SWITCH to GND)
Standby, Pin SWITCH_OUT
Switch-out current output
TX at ∞
Low-noise Amplifier
1.7
mA
IS_O_1k2
7
mA
IS_O_33k
17
mA
IS_O_R
19
mA
(3)
Supply voltage
All, Pin VS_LNA
VS
Supply current
RX
IS
Notes:
4
2.7
3.0
5.5
V
8
9
mA
1. Power amplifier shall be unconditionally stable, maximum duty cycle 100%, true CW operation, maximum load mismatch
and duration: load VSWR = 10:1 (all phases) 10 s, ZG = 50 Ω.
2. With external matching network, load impedance 50 Ω.
3. Low-noise amplifier shall be unconditionally stable.
4. With external matching components.
5. LNA gain can be adjusted with RX_ON voltage according to Figure 19 on page 11. Please note, that for RX_ON below
1.4 V the T/R switch driver switches to TX mode.
T7024
4533D–BLURF–01/04
T7024
Electrical Characteristics (Continued)
Test conditions (unless otherwise specified): VS = 3.0 V, Tamb = 25°C
Parameters
Test Conditions
Supply current
(LNA and control logic)
TX (control logic active)
Pin VS_LNA
Standby current
Standby, Pin VS_LNA
Frequency range
RX
Symbol
Min.
IS_standby
RX, Pin LNA_IN to LNA_OUT
Gp
15
Noise figure
RX,
RX
NF
NF
Gain compression
RX, referred to Pin LNA_OUT
rd
3 -order input interception point
Input matching
(4)
Output matching
PSSO20
QFN20
RX
RX, Pin LNA_IN
(4)
Unit
0.5
mA
10
µA
2.5
GHz
16
19
dB
2.5
2.1
2.8
2.3
dB
dB
1
2.4
Power gain
Max.
IS
f
(5)
Typ.
RX Pin LNA_OUT
O1dB
-9
-7
-6
dBm
IIP3
-16
-14
-13
dBm
VSWRin
2:1
VSWRout
2:1
Logic Input Levels (RX_ON, PU)(5)
High input level
= ‘1’ Pins RX_ON and PU
ViH
2.4
VS, LNA
V
Low input level
= ‘0’
ViL
0
0.5
V
High input current
= ‘1’ ViH = 2.4 V
IiH
60
µA
Low input current
= ‘0’
IiL
0.2
µA
Notes:
40
1. Power amplifier shall be unconditionally stable, maximum duty cycle 100%, true CW operation, maximum load mismatch
and duration: load VSWR = 10:1 (all phases) 10 s, ZG = 50 Ω.
2. With external matching network, load impedance 50 Ω.
3. Low-noise amplifier shall be unconditionally stable.
4. With external matching components.
5. LNA gain can be adjusted with RX_ON voltage according to Figure 19 on page 11. Please note, that for RX_ON below
1.4 V the T/R switch driver switches to TX mode.
Control Logic for LNA and T/R Switch Driver
Operation Mode
PU
RX_ON
Standby
0
0
TX
1
0
RX
1
1
5
4533D–BLURF–01/04
Typical Operating
Characteristics
Figure 4. LNA (PSSO20): Gain and Noise Figure versus Frequency
20
8
7
Gain
6
5
NF
10
4
3
5
NF (dB)
Gain (dB)
15
2
1
0
2000
2200
2400
2600
0
3000
2800
Frequency (MHz)
Figure 5. LNA (N20): Gain and Noise Figure versus Frequency
25
5
20
4
15
3
NF
10
2
5
1
0
2000
2200
2400
2600
NF (dB)
Gain (dB)
Gain
0
3000
2800
Frequency (MHz)
Figure 6. LNA: NF and Gain versus Temperature
2.5
2.0
NF
VS = 3 V
Relative gain,
relative NF (dB)
1.5
1.0
0.5
0.0
-0.5
Gain
-1.0
-1.5
-2.0
-2.5
-40
-20
0
20
40
60
80
Temperature (°C)
6
T7024
4533D–BLURF–01/04
T7024
Figure 7. LNA: Typical Switch-out Current versus Rswitch
20
IS_O(mA)
16
12
8
4
0
1
10
100
1000
10000
100000
1000000
10000000
Rswitch(Ω)
Figure 8. PA (PSSO20): Output Power and PAE versus Supply
50
250
40
220
PAE
30
190
Pout
20
160
f = 2.4 GHz
Vramp = 1.75 V
PinPA = 0 dBm
10
130
0
2.7
3.1
3.5
3.9
IS_TX (mA)
Pout (dBm), PAE (%)
I_S_TX
4.3
100
4.7
Supply Voltage (V)
Figure 9. PA (PSSO20): Output Power and PAE versus Ramp Voltage
50
250
200
Pout
10
150
-10
100
IS_TX (mA)
Pout (dBm), PAE (%)
PAE
30
f = 2.4 GHz
VS = 3 V
PinPA = 0 dBm
I_S_TX
-30
50
-50
0
1.2
1.4
1.6
1.8
2.0
Vramp (V)
7
4533D–BLURF–01/04
Figure 10. PA (PSSO20): Output Power and PAE versus Input Power
250
PAE
Gain
30
200
20
150
IS_TX (mA)
Pout (dBm), PAE (%), Gp (dB)
40
I_S_TX
10
100
VS = 3 V
f = 2.4 GHz
Vramp = 1.75 V
PinPA = 0 dBm
0
50
Pout
-10
-40
0
-30
-20
-10
0
10
Input Power (dBm)
Figure 11. PA (PSSO20): Output Power and PAE versus Frequency
250
I_S_TX
40
200
PAE
30
150
Pout
20
100
VS = 3 V
Vramp = 1.7 V
PinPA = 0 dBm
10
0
2400
2420
IS_TX (mA)
Pout (dBm), PAE (%)
50
2440
2460
50
0
2500
2480
Frequency (MHz)
Figure 12. PA (QFN20): Output Power and PAE versus Supply Voltage
250
40
220
PAE
I_S_TX
30
190
Pout
20
f = 2.4 GHz
Vramp = 1.8 V
PinPA = 0 dBm
10
130
0
2.7
3.1
3.5
3.9
160
IS_TX (mA)
Pout (dBm), PAE (%)
50
4.3
100
4.7
Supply Voltage (V)
8
T7024
4533D–BLURF–01/04
T7024
Figure 13. PA (QFN20) Output Power and PAE versus Ramp Voltage
50
250
Pout
30
200
10
150
-10
100
IS_TX (mA)
Pout (dBm), PAE (%)
PAE
f = 2.4 GHz
VS = 3 V
PinPA = 0 dBm
I_S_TX
-30
50
-50
0
1.2
1.4
1.6
1.8
2.0
Vramp (V)
50
300
PAE
40
250
Gain
30
20
200
150
I_S_TX
10
IS_TX (mA)
Pout (dBm), PAE (%), Gp (dB)
Figure 14. PA (QFN20): Output Power and PAE versus Input Power
100
VS = 3 V
f = 2.4 GHz
Vramp = 1.8 V
PinPA = 0 dBm
0
50
Pout
-10
-40
0
-30
-20
-10
0
10
Input Power (dBm)
Figure 15. PA (QFN20): Output Power and PAE versus Frequency
50
250
200
I_S_TX
30
150
Pout
20
VS = 3 V
Vramp = 1.8 V
PinPA = 0 dBm
10
0
2400
100
IS_TX (mA)
Pout (dBm), PAE (%)
PAE
40
50
2420
2440
2460
2480
0
2500
Frequency (MHz)
9
4533D–BLURF–01/04
Figure 16. LNA: Supply Current versus Temperature
Supply current (mA)
8.0
7.8
7.6
7.4
7.2
7.0
6.8
6.6
6.4
6.2
6.0
-40
-20
0
20
40
60
80
Temperature (°C)
Figure 17. PA (PSSO20): Supply Current versus Iramp and Temperature
Supply current (mA)
200
180
160
-40°C
140
120
40°C
100
0°C
80
60
40
80°C
20
0
0.1
1.0
10.0
100.0
1000.0
Iramp (µA)
Figure 18. PA (PSSO20, QFN20): Pout versus Vramp and Temperature
30
f = 2.4 GHz
VS = 3 V
Pin = 0 dBm
20
Pout (dBm)
5
10
25
0
-15
80
-10
-40°C
-20
1.0
1.2
1.4
1.6
1.8
Vramp (V)
10
T7024
4533D–BLURF–01/04
T7024
Figure 19. (PSSO20, QFN20): LNA Gain (dB) versus RX_ON (V)
20.0
15.0
10.0
Gain (dB)
5.0
VS = 3 V
0.0
-5.0
-10.0
-15.0
-20.0
-25.0
1.0
1.5
2.0
2.5
3.0
RX_ON (V)
Input/Output Circuits
Figure 20. Input Circuit PA_IN/V1_PA
V1_PA
PA_IN
GND
Figure 21. Input Circuit RAMP/V1_PA
V1_PA
RAMP
11
4533D–BLURF–01/04
Figure 22. Input Circuit V2_PA
V2_PA
GND
Figure 23. Input/Output Circuit V3_PA_OUT
V3_PA_OUT
GND
Figure 24. Input Circuit SWITCH_OUT/R_SWITCH
V1_PA
SWITCH_OUT
R_SWITCH
GND
12
T7024
4533D–BLURF–01/04
T7024
Figure 25. Input Circuit LNA_IN/VS_LNA
VS_LNA
LNA_IN
GND
Figure 26. Input Circuit PU/RX_ON
VS_LNA
LNA_IN /
PU
Figure 27. Output Circuit LNA_OUT
VS_LNA
LNA_OUT
GND
13
4533D–BLURF–01/04
Figure 28. Typical Application T7024 (PSSO20 Package)
LNA OUT
PA IN
5.6nH
V1_PA
3.9nH
RX ON
3p3
V2_PA
PU
3.9p
20
19
18
17
16
15
14
13
12
11
PA ramp
1
2
3
4
5
6
7
8
9
10
T7024
harm. termination
1p5
R1 is selected
with DIL-switch
Pin-diode replaced
by LED on
application-board
14
R1
1.8p
15nH
LNA IN
V3_PA
VS_LNA
Switch Out
PA OUT
0p8
Blocking capacitors
depending on application
T7024
4533D–BLURF–01/04
T7024
Figure 29. Typical Application T7024 (QFN20 Package)
LNA OUT
PA IN
V1_PA
V2_PA
2.2p
1
2
3
4
5
RX ON
PU
R1 is selected
with DIL-switch
3p3
1p
R1
Var
20 19 18 17 16
15
14
T7024 13
12
11
6 7 8 9 10
PA ramp
harm. termination
2p2
0p8
1.8p
18nH
LNA IN
Pin-diode replaced by
LED on application-board
Switch Out
VS_LNA
V3_PA
PA OUT
blocking capacitors
depending on application
15
4533D–BLURF–01/04
Ordering Information
Extended Type Number
Package
Remarks
MOQ
T7024-TRS
PSSO20
Tube
830 pcs.
T7024-TRQ
PSSO20
Taped and reeled
4000 pcs.
T7024-PGP
QN20
Taped and reeled
1500 pcs.
T7024-PGQ
QFN20
Taped and reeled
6000 pcs.
Package Information
16
T7024
4533D–BLURF–01/04
T7024
17
4533D–BLURF–01/04
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard
warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any
errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and
does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are
granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use
as critical components in life support devices or systems.
© Atmel Corporation 2004. All rights reserved.
Atmel ® and combinations thereof are the registered trademarks of Atmel Corporation or its subsidiaries.
The Bluetooth name and the Bluetooth trademarks are owned By Bluetooth SIG, and are used by Atmel Corporation under license.
Other terms and product names may be the trademarks of others.
Printed on recycled paper.
4533D–BLURF–01/04