ATMEL T7024-TRSY

Features
•
•
•
•
•
•
•
•
Single 3-V Supply Voltage
High Power-added Efficient Power Amplifier (Pout Typically 23 dBm)
Ramp-controlled Output Power
Low-noise Preamplifier (NF Typically 2.1 dB)
Biasing for External PIN Diode T/R Switch
Current-saving Standby Mode
Few External Components
Packages:
– PSSO20
– QFN20 with Extended Performance
1. Description
The T7024 is a monolithic SiGe transmit/receive front-end IC with power amplifier,
low-noise amplifier and T/R switch driver. It is especially designed for operation in
TDMA systems like Bluetooth® and WDCT.
Bluetooth/ISM
2.4-GHz
Front-End IC
T7024
Due to the ramp-control feature and a very low quiescent current, an external switch
transistor for VS is not required.
Figure 1-1.
Block Diagram
RX_ON
PU
VS_LNA
TX
TX/RX/
standby
Control
SWITCH_OUT
R_SWITCH
RX
LNA_OUT
LNA_IN
LNA
RAMP
V1_PA
V2_PA
PA_IN
V3_PA_OUT
PA
4533H–BLURF–07/07
2. Pin Configuration
Pinning PSSO20
GND
VS_LNA
GND
LNA_IN
GND
19 RX_ON
SWITCH_OUT 2
18 LNA_OUT
GND 3
10
17 GND
LNA_IN 4
V3_PA_OUT
V3_PA_OUT
V3_PA_OUT
GND
RAMP
16 PA_IN
VS_LNA 5
T7024
GND 6
2
Pinning QFN20
20 PU
R_SWITCH 1
Table 2-1.
Figure 2-2.
15 V1_PA
V3_PA_OUT 7
14 GND
V3_PA_OUT 8
13 V2_PA
V3_PA_OUT 9
12 V2_PA
GND 10
11 RAMP
9
8
7
6
11
5
12
4
T7024
13
3
2
14
1
15
SWITCH_OUT
R_SWITCH
PU
RX_ON
LNA_OUT
16 17 18 19 20
V2_PA
V2_PA
GND
V1_PA
PA_IN
Figure 2-1.
Pin Description
Pins PSSO20
Pins QFN20
Symbol
1
4
R_SWITCH
2
5
SWITCH_OUT
Function
Resistor to GND sets the PIN diode current
Switched current output for PIN diode
3
6
GND
4
7
LNA_IN
Low-noise amplifier input
Ground
5
9
VS_LNA
Supply voltage input for low-noise amplifier
6
8
GND
7
11
V3_PA_OUT
Inductor to power supply and matching network for power amplifier output
8
12
V3_PA_OUT
Inductor to power supply and matching network for power amplifier output
9
13
V3_PA_OUT
Inductor to power supply and matching network for power amplifier output
10
10
GND
Ground
Ground
11
15
RAMP
Power ramping control input
12
16
V2_PA
Inductor to power supply for power amplifier
13
17
V2_PA
Inductor to power supply for power amplifier
14
14
GND
15
19
V1_PA
Supply voltage for power amplifier
16
20
PA_IN
Power amplifier input
17
18
GND
Ground
18
1
LNA_OUT
19
2
RX_ON
20
3
PU
Slug
Slug
GND
Ground
Low-noise amplifier output
RX active high
Power-up active high
Ground
T7024
4533H–BLURF–07/07
T7024
3. Absolute Maximum Ratings
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Parameters
Symbol
Value
Unit
Supply voltage
Pins VS_LNA, V1_PA, V2_PA, V3_PA_OUT
VS
6
V
Junction temperature
Tj
150
°C
Storage temperature
Tstg
–40 to +125
°C
RF input power LNA
PinLNA
5
dBm
RF input power PA
PinPA
10
dBm
Symbol
Value
Unit
Junction ambient PSSOP20, slug soldered on PCB
RthJA
19
K/W
Junction ambient QFN20, slug soldered on PCB
RthJA
27
K/W
Electrostatic sensitive device.
Observe precautions for handling.
4. Thermal Resistance
Parameters
5. Handling
Do not operate this part near strong electrostatic fields. This IC meets class 1 ESD test requirement (HBM in accordance to EIA/JESD22-A114-A (October 97) and class A ESD test
requirement (MM) in accordance to EIA/JESD22-A115A.
6. Operating Range
All voltages are referred to ground (pins GND and slug). Power supply points are VS_LNA, V1_PA, V2_PA, V3_PA_OUT.
The table represents the sum of all supply currents depending on the TX/RX mode.
Parameters
Symbol
Min.
Typ.
Max.
Unit
Supply voltage
Pins V1_PA, V2_PA and V3_PA_OUT
VS
2.7
3.0
4.6
V
Supply voltage, pin VS_LNA
VS
2.7
3.0
5.5
V
Supply current TX, PSSO20
QFN20
Supply current RX
IS
IS
IS
190
165
8
mA
mA
mA
IS_standby
10
µA
Standby current, PU = 0
Ambient temperature
Tamb
–25
+25
+85
°C
3
4533H–BLURF–07/07
7. Electrical Characteristics
Test conditions (unless otherwise specified): VS = 3.0V, Tamb = 25°C
Parameters
Power Amplifier
Test Conditions
Symbol
Min.
VS
2.7
Typ.
Max.
3.0
4.6
Unit
(1)
Supply voltage
Pins V1_PA, V2_PA, V3_PA_OUT
Supply current
TX, PSSO20
TX, QFN20
IS_TX
IS_TX
RX (PA off), VRAMP ≤ 0.1V
IS_RX
10
µA
IS_standby
10
µA
2.5
GHz
Standby current
Standby
190
165
Frequency range
TX
f
2.4
Gain-control range
TX
∆Gp
60
42
Power gain maximum
TX, pin PA_IN to V3_PA_OUT
Gp
28
30
Power gain minimum
TX, pin PA_IN to V3_PA_OUT
Gp
–40
Ramping voltage maximum
TX, power gain (maximum)
Pin RAMP
VRAMP max
1.7
Ramping voltage minimum
TX, power gain (minimum)
Pin RAMP
VRAMP min
Ramping current maximum
TX, VRAMP = 1.75V, pin RAMP
IRAMP max
Power-added efficiency
TX, PSSO20
TX, QFN20
PAE
PAE
30
35
35
40
Saturated output power
TX, input power = 0 dBm referred to
pins V3_PA_OUT
Psat
22
23
Input matching(2)
TX, pin PA_IN
Load
VSWR
< 1.5:1
Output matching(2)
TX, pins V3_PA_OUT
Load
VSWR
< 1.5:1
TX, pins V3_PA_OUT
TX, pins V3_PA_OUT
Harmonics at Psat = 23 dBm
1.75
V
mA
mA
dB
33
dB
–17
dB
1.83
V
0.1
V
0.5
mA
%
%
24
dBm
2 fo
–30
dBc
3 fo
–30
dBc
IS_O_standby
1
µA
RX
IS_O_RX
1
µA
TX at 100Ω
IS_O_100
T/R Switch Driver (Current Programming by External Resistor from R_SWITCH to GND)
Standby, pin SWITCH_OUT
Switch-out current output
IS_O_1k2
7
mA
TX at 33 kΩ
IS_O_33k
17
mA
IS_O_R
19
mA
(3)
Supply voltage
All, pin VS_LNA
VS
Supply current
RX
IS
Notes:
mA
TX at 1.2 kΩ
TX at ∞
Low-noise Amplifier
1.7
2.7
3.0
5.5
V
8
9
mA
1. Power amplifier shall be unconditionally stable, maximum duty cycle 100%, true CW operation, maximum load mismatch
and duration: load VSWR = 10:1 (all phases) 10s, ZG = 50Ω.
2. With external matching network, load impedance 50Ω.
3. Low-noise amplifier shall be unconditionally stable.
4. With external matching components.
5. LNA gain can be adjusted with RX_ON voltage according to Figure 9-16 on page 11. Please note, that for RX_ON below
1.4V the T/R switch driver switches to TX mode.
4
T7024
4533H–BLURF–07/07
T7024
7. Electrical Characteristics (Continued)
Test conditions (unless otherwise specified): VS = 3.0V, Tamb = 25°C
Parameters
Test Conditions
Supply current
(LNA and control logic)
TX (control logic active)
Pin VS_LNA
Standby current
Standby, pin VS_LNA
Frequency range
RX
Symbol
Min.
IS_standby
RX, pin LNA_IN to LNA_OUT
Gp
15
Noise figure
RX, PSSO20
RX, QFN20
NF
NF
Gain compression
RX, referred to pin LNA_OUT
rd
3 -order input interception point
Input matching
RX
(4)
RX, pin LNA_IN
Output matching(4)
RX, pin LNA_OUT
Logic Input Levels (RX_ON, PU)
0.5
mA
10
µA
2.5
GHz
16
19
dB
2.5
2.1
2.8
2.3
dB
dB
O1dB
–9
–7
–6
dBm
IIP3
–16
–14
–13
dBm
VSWRin
2:1
VSWRout
2:1
(5)
High input level
= ‘1’ pins RX_ON and PU
ViH
2.4
Low input level
= ‘0’
ViL
0
High input current
= ‘1’ ViH = 2.4V
IiH
Low input current
= ‘0’
IiL
Notes:
Unit
1
2.4
Power gain
Max.
IS
f
(5)
Typ.
VS, LNA
40
V
0.5
V
60
µA
0.2
µA
1. Power amplifier shall be unconditionally stable, maximum duty cycle 100%, true CW operation, maximum load mismatch
and duration: load VSWR = 10:1 (all phases) 10s, ZG = 50Ω.
2. With external matching network, load impedance 50Ω.
3. Low-noise amplifier shall be unconditionally stable.
4. With external matching components.
5. LNA gain can be adjusted with RX_ON voltage according to Figure 9-16 on page 11. Please note, that for RX_ON below
1.4V the T/R switch driver switches to TX mode.
8. Control Logic PA and LNA/Antenna Switch Driver
PU
RX_ON
Ramp(1)
PA
LNA
Antenna Switch Driver
Operation Mode
0
0
0
off
off
off
standby
0
0
1
on
off
off
(2)
0
1
0
off
on
off
(3)
0
1
1
on
on
off
(4)
1
0
0
off
off
on
(4)
1
0
1
on
off
on
TX
1
1
0
off
on
off
RX
1
1
1
on
on
off
(5)
Notes:
1. “0” = VRAMP ≤ 0.1V, “1” = VRAMP typically 1.75V, 1.3V < VRAMP < 1.83V controls gain and output power, compare Figure 9-6
on page 7 and Figure 9-10 on page 9
2. Only for special operation, e.g. only PA operation, no LNA/switch driver operation
3. Only for special operation, e.g. no switch driver operation
4. Only for special operation
5. Only for special operation, e.g. separate TX/RX antennas, TX and RX operation at the same time
5
4533H–BLURF–07/07
9. Typical Operating Characteristics
Figure 9-1.
LNA (PSSO20): Gain and Noise Figure versus Frequency
20
8
7
Gain
6
5
NF
10
4
3
5
NF (dB)
Gain (dB)
15
2
1
0
2000
2200
2400
2600
0
3000
2800
Frequency (MHz)
Figure 9-2.
LNA (N20): Gain and Noise Figure versus Frequency
25
5
20
4
15
3
NF
10
2
5
1
0
2000
2200
2400
2600
NF (dB)
Gain (dB)
Gain
0
3000
2800
Frequency (MHz)
Figure 9-3.
LNA: NF and Gain versus Temperature
2.5
2.0
NF
VS = 3 V
Relative gain,
relative NF (dB)
1.5
1.0
0.5
0.0
-0.5
Gain
-1.0
-1.5
-2.0
-2.5
-40
-20
0
20
40
60
80
Temperature (°C)
6
T7024
4533H–BLURF–07/07
T7024
Figure 9-4.
LNA: Typical Switch-out Current versus Rswitch
20
IS_O(mA)
16
12
8
4
0
1
10
100
1000
10000
100000
1000000
10000000
Rswitch(Ω)
Figure 9-5.
PA (PSSO20): Output Power and PAE versus Supply
50
250
40
220
PAE
30
190
Pout
20
160
f = 2.4 GHz
Vramp = 1.75 V
PinPA = 0 dBm
10
130
0
2.7
3.1
3.5
3.9
IS_TX (mA)
Pout (dBm), PAE (%)
I_S_TX
4.3
100
4.7
Supply Voltage (V)
Figure 9-6.
PA (PSSO20): Output Power and PAE versus Ramp Voltage
50
250
200
Pout
10
150
-10
100
IS_TX (mA)
Pout (dBm), PAE (%)
PAE
30
f = 2.4 GHz
VS = 3 V
PinPA = 0 dBm
I_S_TX
-30
50
-50
0
1.2
1.4
1.6
1.8
2.0
Vramp (V)
7
4533H–BLURF–07/07
PA (PSSO20): Output Power and PAE versus Input Power
Pout (dBm), PAE (%), Gp (dB)
40
250
PAE
Gain
30
200
20
150
I_S_TX
10
100
VS = 3 V
f = 2.4 GHz
Vramp = 1.75 V
PinPA = 0 dBm
0
IS_TX (mA)
Figure 9-7.
50
Pout
-10
-40
0
-30
-20
-10
0
10
Input Power (dBm)
PA (PSSO20): Output Power and PAE versus Frequency
Pout (dBm), PAE (%)
50
250
I_S_TX
40
200
PAE
30
150
Pout
20
100
VS = 3 V
Vramp = 1.7 V
PinPA = 0 dBm
10
0
2400
2420
2440
2460
IS_TX (mA)
Figure 9-8.
50
0
2500
2480
Frequency (MHz)
PA (QFN20): Output Power and PAE versus Supply Voltage
Pout (dBm), PAE (%)
50
250
40
220
PAE
I_S_TX
30
190
Pout
20
f = 2.4 GHz
Vramp = 1.8 V
PinPA = 0 dBm
10
130
0
2.7
3.1
3.5
3.9
160
IS_TX (mA)
Figure 9-9.
4.3
100
4.7
Supply Voltage (V)
8
T7024
4533H–BLURF–07/07
T7024
Figure 9-10. PA (QFN20) Output Power and PAE versus Ramp Voltage
50
250
Pout
30
200
10
150
-10
100
IS_TX (mA)
Pout (dBm), PAE (%)
PAE
f = 2.4 GHz
VS = 3 V
PinPA = 0 dBm
I_S_TX
-30
50
-50
0
1.2
1.4
1.6
1.8
2.0
Vramp (V)
50
300
PAE
40
250
Gain
30
20
200
150
I_S_TX
VS = 3 V
f = 2.4 GHz
Vramp = 1.8 V
PinPA = 0 dBm
10
IS_TX (mA)
Pout (dBm), PAE (%), Gp (dB)
Figure 9-11. PA (QFN20): Output Power and PAE versus Input Power
100
0
50
Pout
-10
-40
0
-30
-20
-10
0
10
Input Power (dBm)
Figure 9-12. PA (QFN20): Output Power and PAE versus Frequency
50
250
200
I_S_TX
30
150
Pout
20
VS = 3 V
Vramp = 1.8 V
PinPA = 0 dBm
10
0
2400
100
IS_TX (mA)
Pout (dBm), PAE (%)
PAE
40
50
2420
2440
2460
2480
0
2500
Frequency (MHz)
9
4533H–BLURF–07/07
Figure 9-13. LNA: Supply Current versus Temperature
Supply current (mA)
8.0
7.8
7.6
7.4
7.2
7.0
6.8
6.6
6.4
6.2
6.0
-40
-20
0
20
40
60
80
Temperature (°C)
Figure 9-14. PA (PSSO20): Supply Current versus Iramp and Temperature
Supply current (mA)
200
180
160
-40°C
140
120
40°C
100
0°C
80
60
40
80°C
20
0
0.1
1.0
10.0
100.0
1000.0
Iramp (µA)
Figure 9-15. PA (PSSO20, QFN20): Pout versus VRAMP and Temperature
30
f = 2.4 GHz
VS = 3 V
Pin = 0 dBm
20
Pout (dBm)
5
10
25
0
-15
80
-10
-40°C
-20
1.0
1.2
1.4
1.6
1.8
Vramp (V)
10
T7024
4533H–BLURF–07/07
T7024
Figure 9-16. (PSSO20, QFN20): LNA Gain (dB) versus RX_ON (V)
20.0
15.0
10.0
Gain (dB)
5.0
VS = 3 V
0.0
-5.0
-10.0
-15.0
-20.0
-25.0
1.0
1.5
2.0
2.5
3.0
RX_ON (V)
10. Input/Output Circuits
Figure 10-1. Input Circuit PA_IN/V1_PA
V1_PA
PA_IN
GND
Figure 10-2. Input Circuit RAMP/V1_PA
V1_PA
RAMP
11
4533H–BLURF–07/07
Figure 10-3. Input Circuit V2_PA
V2_PA
GND
Figure 10-4. Input/Output Circuit V3_PA_OUT
V3_PA_OUT
GND
Figure 10-5. Input Circuit SWITCH_OUT/R_SWITCH
V1_PA
SWITCH_OUT
R_SWITCH
GND
12
T7024
4533H–BLURF–07/07
T7024
Figure 10-6. Input Circuit LNA_IN/VS_LNA
VS_LNA
LNA_IN
GND
Figure 10-7. Input Circuit PU/RX_ON
VS_LNA
LNA_IN /
PU
Figure 10-8. Output Circuit LNA_OUT
VS_LNA
LNA_OUT
GND
13
4533H–BLURF–07/07
Figure 10-9. Typical Application T7024 (PSSO20 Package)
LNA OUT
PA IN
5.6nH
V1_PA
3.9nH
RX ON
3p3
V2_PA
PU
3.9p
20
19
18
17
16
15
14
13
12
11
PA ramp
1
2
3
4
5
6
7
8
9
10
T7024
harm. termination
1p5
R1 is selected
with DIL-switch
Pin-diode replaced
by LED on
application-board
14
R1
1.8p
15nH
LNA IN
V3_PA
VS_LNA
Switch Out
PA OUT
0p8
Blocking capacitors
depending on application
T7024
4533H–BLURF–07/07
T7024
Figure 10-10. Typical Application T7024 (QFN20 Package)
LNA OUT
PA IN
V1_PA
V2_PA
2.2p
1
2
3
4
5
RX ON
PU
R1 is selected
with DIL-switch
3p3
1p
R1
Var
20 19 18 17 16
15
14
T7024 13
12
11
6 7 8 9 10
PA ramp
harm. termination
2p2
0p8
1.8p
18nH
LNA IN
Pin-diode replaced by
LED on application-board
Switch Out
V3_PA
VS_LNA
PA OUT
blocking capacitors
depending on application
11. Ordering Information
Extended Type Number
Package
Remarks
T7024-TRSY
PSSO20
Tube, Pb-free
830 pcs.
T7024-TRQY
PSSO20
Taped and reeled, Pb-free
4000 pcs.
T7024-PGPM
QFN20
Taped and reeled
Pb free, halogen free
1500 pcs.
T7024-PGQM
QFN20
Taped and reeled
Pb free, halogen free
6000 pcs.
Demoboard-T7024-PGM
QFN20
Evaluation board QFN
1
Evaluation board PSSO
1
Demoboard-T7024-TR
PSSO20
MOQ
15
4533H–BLURF–07/07
12. Package Information
∅ 0.4 A B
2.15
Package: PSSO20
Dimensions in mm
2.6
6.75 max.
6.45±0.15
6.7 max.
4.4±0.1
0.15 A
C
0.25
0.12
0.575
0.18 max.
0.05+0.09
1.3
B
5.4±0.2
(20x)
0.65
5.85
20
A
11
technical drawings
according to DIN
specifications
Drawing-No.: 6.543-5078.01-4
Issue: 1; 05.06.01
1
16
10
T7024
4533H–BLURF–07/07
T7024
13. Package Information PB Free
Package: QFN 20 - 5 x 5
Exposed pad 3.1 x 3.1
Dimensions in mm
Not indicated tolerances ± 0.05
0.9±0.1
5
+0
3.1
0.05-0.05
16
20
20
15
1
1
11
0.6
0.28
5
5
10
technical drawings
according to DIN
specifications
6
0.65 nom.
Drawing-No.: 6.543-5094.01-4
2.6
Issue: 1; 19.12.02
17
4533H–BLURF–07/07
14. Recommended PCB Land Pattern
Figure 14-1. Recommended PCB Land Pattern
B
E
D
A
C
F
Table 14-1.
Recommended PCB Land Pattern Signs
Sign
A
Description
Size
Distance of vias
1.6 mm
B
Size of slug pattern
3.1 mm
C
Distance slug to pins
0.33 mm
D
Diameter of vias
1 mm
E
Width of pin pattern
0.3 mm
F
Distance of pin pattern
0.33 mm
15. Revision History
Please note that the following page numbers referred to in this section refer to the specific revision
mentioned, not to this document.
18
Revision No.
History
4533H-BLURF-07/07
• Put datasheet in a new template
• Page 1: Block diagram changed
• Page 13: Figure 10-8 changed
T7024
4533H–BLURF–07/07
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054
Saint-Quentin-en-Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Product Contact
Web Site
www.atmel.com
Technical Support
Sales Contact
[email protected] www.atmel.com/contacts
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2007 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
4533H–BLURF–07/07