MITSUBISHI M61040

Smart battery protection and monitoring IC
M61040FP
DESCRIPTION
The M61040FP is intended to be used as SB: Smart Battery.
PIN configuration (Top view)
All functions needed for SB are packed to this M61040FP. The
1
20
Vreg
functions such as a detection or calculation of SB Remaining Capacity.
CFOUT
2
19
Vref
PFOUT
3
18
Reset
DFOUT
4
17
DI
16
CK
15
CS
14
Analog_out
Over Current detection circuit dedicated in M61040FP will give safety
FET on/off control independent from microcomputer control.
M61040FP
VCC
combination use with Microcomputer such as M37515 will give various
VIN_1
5
The amp gain of charge/discharge current detection circuit is controlled
VIN_2
6
by microcomputer, therefore the accuracy of SB’s Remaining Capacity
VIN_3
7
Detection becomes better than before. The reset circuit and The linear
VIN_4
8
13
CIN
regulator for Vcc / Vref of microcomputer are dedicated in M61040FP. So
VIN_12
9
12
VIN_11
10
11
VIN_10
GND
this will help easy design of power circuit design of SB.
FEATURE
20P-TSSOP
l
Built-in high gain op-amps for monitoring charge/discharge current
l
Built-in over current detection circuit for FET protection
l
All FETs are controlled by microcomputer
l
Various powers saving function to reduce total power dissipation
l
High Input Voltage Device(Absolute Maximum Rating:33V)
APPLICATION
l
Smart
Battery System
Block diagram
VIN_12
CFOUT
PFOUT
DFOUT
CIN
VCC
Vreg
Over current
detection
circuit
Series
Regulator
Vref
Delay circuit
Regulator
ON/OFF and
Reset circuit
Reset
VIN_1
CK
DI
Battery cell
Serial to
Parallel
conversion
circuit
voltage
VIN_2
detection
circuit
CS
VIN_3
Gain selector
VIN_4
Analog
_OUT
Battery cell 1-4
voltage analog
output
Multi- plexer
circuit
Offset
control
Charge/Discharge current detection circuit
GND
VIN_11
Mitsubishi Electric
(1/25)
VIN_10
Smart battery protection and monitoring IC
M61040FP
1. Explanation of terminals
Table 1.
PIN
Symbol
Functions
5
VIN 1
Battery 1 + voltage input
6
VIN 2
Battery 1 – voltage and Battery 2 + voltage input
7
VIN 3
Battery 2 – voltage and Battery 3 + voltage input
8
VIN 4
Battery 3 – voltage and Battery 4 + voltage input
9
VIN 12
Monitoring charger is connected or not
13
CIN
11
VIN 10
Connect capacitor for over current detection delay
Charge / discharge current monitor input and connects charge / discharge current
Sense resistor
12
VIN 11
Charge / discharge current monitor input and connects charge / discharge current
Sense resistor
1
VCC
Power source pin. Power from charger or battery
10
GND
Ground
20
Vreg
Linear-Regulator output for microcomputer
19
Vref
Vreg voltage output for Vreg of Microcomputer, Max 200uA / 5V
18
RESET
14
Analog OUT
4
DFOUT
Discharge FET-Drive Output. The Driver is turned off when over current detected.
2
CFOUT
Charge FET-Drive Output. The Driver is turned off by Microcomputer.
17
DI
Input of 6 bit length serial data from Microcomputer
16
CK
Input of shift clock from Microcomputer. DI’s input data is latched by low-to-high edge of
this CK
15
CS
During low signal input to this CS, data input to DI is enabled.
3
PFOUT
Reset signal output to RESET of Microcomputer
Various Analog signal outputs to AD-input of Microcomputer
Pre-charge FET-Drive Output. The Driver is turned off by Microcomputer.
Mitsubishi Electric
(2/25)
Smart battery protection and monitoring IC
M61040FP
2. Operation description
M61040 is developed for intelligent Li-ion battery pack such as SB in SBS. M61040 is suitable for Smart
Battery.
*SBS: Smart Battery System introduced by Intel and Duracell
*SB: Smart Battery which contains 3 or 4 series Li-ion battery cells.
All analog circuits are included to M61040. Therefore pair using with Microcomputer such as M37515
and small additional parts will give various functions such as battery remaining capacity detection. All
functions are described as follows:
1)Voltage Detection circuit of each Li-ion battery cells
M61040 can output each battery cell’s voltage of 3 or 4 series connection. Built-in buffer amplifier is
monitoring each battery voltage. Microcomputer can adjust the offset voltage.
2)Charge / discharge current detection circuit
In SBS, remaining capacity check function (Gas-gage function ) is necessary. To calculate accurate
remaining capacity, microcomputer must get charge / discharge current periodically. Accurate charge /
discharge current of external sense register is monitored by built-in amp. The charger/ discharge
current is converted to Voltage value through the accurate sense resistor.
Output gain can be controlled by Microcomputer. Off-set voltage can be set lower by external parts,
therefore dynamic range of Microcomputer’s A to D converter will widen.
3) Over current detection circuit
M61040 contains over current detection circuit. The discharging FET is turned off to stop discharging
and it continues for the over current detection delay time (tIOV1) or longer, if the discharging current
becomes equal to or higher than a specified value. It is necessary for safety of Li-ion battery pack.
Delay time is set by external capacity connected to CIN. Also the voltage of CIN shows detection or
NOT detection of over current. Over current detection is controlled independently by this M61040’s
built-in hardware NOT by Microcomputer’s software control.
4) Series regulator, reference voltage
M61040 contains Low drop out series regulator. Microcomputer in SB does not need any additional
voltage regulator, MAX 20mA/5V. Also M61040 gives very accurate reference voltage as 4.85V for Vref
voltage for Microcomputer’s A to D converter.
5) Reset circuit for Microcomputer
Vreg output voltage is checked by Reset circuit of M61040. Therefore, lower voltage of Vreg issues
RESET signal to stop mull-function of Microcomputer. Also, lower voltage after long time’s left issues
RESET signal to stop mull-function of Microcomputer. This function is useful for safety of long time’s
left battery.
When charger is connected to SB, this circuit will check Vreg voltage, so if Vreg voltage is NOT
enough high, this circuit remains Low as for RESET signal to Microcomputer.
Mitsubishi Electric
(3/25)
Smart battery protection and monitoring IC
M61040FP
6) Power save function
M61040FP contains power save function to control several supply current.
The function and control method are shown as table 2.
The function of battery voltage detection circuit, Charge/Discharge detection circuit, Over current
detection circuit can be stopped as the need arises.
Control method
Battery voltage
detection circuit
Software control
(through Serial I/F)
Table 2
Charge/Discharge
detection circuit
Ο
Over current
detection circuit
Ο
Ο
Each function can be ON/OFF separately.
Enter Power Down Mode
Microcomputer issues shot-down command to M61040 after microcomputer detects that battery
voltage is too low. After this command, the DFOUT pin is set to `high` and the Vin_12pin is pulled
down by internal resistor to be set `low` and series regulator are turned off.
In the power down mode, the M61040 operation is impossible. And CFOUT, DFOUT and PFOUT
pins are set to `high`. (In this situation, both charging and discharging are forbidden. )
At this time, supply current becomes max. 1.0µA , so drops of battery voltage is prevented.
Mitsubishi Electric
(4/25)
Smart battery protection and monitoring IC
M61040FP
VIN12
VCC
CFOUT
GND level
DFOUT
Control signal
from I/F circuit
in discharging
Vreg
PFOUT
VIN1
Series
Regulator
Vref
Regulator
ON/OFF Control
Reset Circuit
CK
DI
Serial to Parallel
M61040FP
RESET
conversion
CS
circuit
Figure1. Function after detecting over-discharge
Resume from Power Down Mode
After entering Power Down mode, the series regulator will begin operation when charger is
connected(VIN_12 pin is high). The RESET will output low to high signal when Vreg is over reset level
voltage. Microcomputer will begin operation and send command to resume M61040 from Power Down
mode.
7) Conditioning Circuit
M61040 have a discharge circuit of each cells. It is available for drop of cell voltage for safety purpose.
And to shorten the difference voltage among the cells . It can extend the battery pack life.
Mitsubishi Electric
(5/25)
Smart battery protection and monitoring IC
M61040FP
3. Absolute Maximum Ratings
ITEM
SYMBOL
Absolute maximum rating
Supply voltage
Power dissipation
Operating temperature range
Storage temperature range
Table 3
CONDITION
RATINGS
UNIT
Vabs
33
V
Vcc
30
V
PD
750
mW
Topr1
− 20 ∼ + 85
°C
Tstg
− 40 ∼ + 125
°C
4.Electrical Characteristics
Table 4
(Ta=25°C VCC=14V ,unless otherwise noted)
ITEM
SYMBOL
CONDITION
Min.
Typ.
Max.
UNIT


30
V
Circuit
TOTAL
Supply voltage
Vcc
Supply current 1
Isup1
Voltage monitor ,V / R , reset ON
Current monitor O N
105
200
280
µA
7
Supply current 2
Isup2
Voltage monitor ,V / R , reset ON
Current monitor OFF
65
120
165
µA
7
Ips
Regulator ON, Non-loading,
Reset circuit ON, Others OFF
35
60
85
µA
7
Ipd
All operation stop, V I N 1 2 = G N D


0.5
µA
7
Supply current
(at Power save mode)
Supply current
(at Power Down mode)
REGULATOR
Output voltage
Vreg
Iout=20mA
5.145
5.2
5.295
V
3
Input and output voltage
Vdif0
Iout=20mA

0.3
0.8
V
3
Iout=20mA

100
200
mV
3
I o u t = 5 0 µA ∼ 2 0 m A

30
45
mV
3
Difference
VOLTAGE
REFERENCE
Linear regulation
∆V o u t 1 0
V C C = 6 . 2∼ 24V
Load regulation
∆V o u t 2 0
VCC=6.2V
Input voltage
VIN 0
VCC voltage


30
V
Output voltage
Vref
I o u t = 2 0 0 µA
4.818
4.85
4.917
V
4
Load stability
∆V o u t 2 1

5
45
mV
4
VCL− 0.02
0.2
VCL+ 0.02
V
8
VCC
×0.6
3
VCC
3
VCC
×1.4
3
V
8
7
10
15
mse
c
5
150
250
350
µsec
8
Over current inhibit
V C C = 6 . 2 V I o u t = 5 0 ∼ 200µA
Vcl
OVER CURRENT
DETECTION
Detection voltage 1
Over current inhibit
detection voltage 2
Over current inhibit
detection delay time1
Over current inhibit
detection delay time 2
Vch
Load short detection
Tvcl
C I C T = 0 . 0 1 µF
Tvch
Mitsubishi Electric
(6/25)
Smart battery protection and monitoring IC
M61040FP
Table 4
(Ta=25°C VCC=14V ,unless otherwise noted)
ITEM
SYMBOL
CONDITION
DETECTION
BATTERY VOLTAGE
Min.
Typ.
Max.
UNIT
Circuit
mV
5
CHARGE/DISCHARGE
CURRENT DETECTION
Input Offset voltage
Voff1
31
208
385
Voltage gain 1
Gamp1
0.99
1.0
1.01
Output source current
Isource1
150


µA
10
Output sink current
Isink1
150


µA
10
Vref − V o f f 1
4.45


V
5,6
0.2
2
3.8
V
5
Detection voltage of
battery cell
G a i n = 2 0 0 selected
5
INTERFACE
RESET
CIRCUIT
CONDITIONING
Input Offset voltage
Voff2
Voltage gain21
Gain21
38.4
40
41.6
V
5
Voltage gain22
Gain22
96
100
104
V
5
Voltage gain23
Gain23
192
200
208
V
5
Output source current
Isource2
150


µA
9
Output sink current
Isink2
150


µA
9
DI input H voltage
VDIH
3.5

Vreg
V
1
DI input L voltage
VDIL
0

0.5
V
1
CS input H voltage
VCSH
3.5

Vreg
V
1
CS input L voltage
VC SL
0

0.5
V
1
CK input H voltage
VCKH
3.5

Vreg
V
1
CK input L voltage
VC KL
0

0.5
V
1
Detection voltage1
Vdet −
3.045
3.25
3.475
V
2
Release voltage1
Vdet +
4.16
4.2
4.27
V
2
VIN 1 resistor
RINV1
4.4
12
27
KΩ
6
VIN 2 resistor
RINV2
4.4
12
27
KΩ
6
VIN 3 resistor
RINV3
4.4
12
27
KΩ
6
VIN 4 resistor
RINV4
4.4
12
27
KΩ
6
Reference period
CK
TSDI
THDI
DI
TSCS
THCS
CS
Figure 3 Interface Timing
Mitsubishi Electric
(7/25)
Smart battery protection and monitoring IC
M61040FP
5.
Measurement circuit
CFOUT
PFOUT
DFOUT
VIN 12
VCC
14V
VREG
5V
VIN 1
VREF
VIN 2
RESET
VIN 3
M61040FP
IDI
DI
VIN 4
ICK
CK
GND
ICS
CS
VIN 10
ANALOG OUT
VIN 11
TEST0
A
CIN
TEST1
A
A
Circuit 1
CFOUT
PFOUT
DFOUT
VIN 12
VCC
VREG
VIN 1
VREF
VIN 2
1MΩ
V
RESET
VIN 3
M61040FP
DI
VIN 4
V
CK
GND
CS
VIN 10
ANALOG OUT
VIN 11
TEST0
TEST1
CIN
Circuit 2
CFOUT
PFOUT
DFOUT
VIN 12
VCC
V
VREG
VIN 1
VREF
VIN 2
RESET
VIN 3
M61040FP
DI
VIN 4
CK
GND
CS
VIN 10
ANALOG OUT
VIN 11
TEST0
TEST1
CIN
Circuit 3
Figure 4- 1
Mitsubishi Electric
(8/25)
4.7uF
V
↓
Smart battery protection and monitoring IC
M61040FP
4.7uF
CFOUT
PFOUT
DFOUT
VIN 12
VCC
VREG
VIN 1
5V
VREF
VIN 2
RESET
VIN 3
M61040FP
DI
VIN 4
↓
V
CK
GND
CS
VIN 10
ANALOG OUT
VIN 11
TEST0
TEST1
CIN
Circuit 4
V
CFOUT
PFOUT
DFOUT
VIN 12
VCC
VREG
VIN 1
V1
VIN 2
V2
RESET
VIN 3
V3
M61040FP
DI
VIN 4
V4
Data Input
0.5V↔ 3.5V
CK
GND
CS
VIN 10
ANALOG OUT
VIN 11
TEST0
V
4.7uF
VREF
TEST1
V
CIN
↓
Circuit 5
I1
A
CFOUT
PFOUT
DFOUT
V1
V IN 12
V CC
I2
A
VREG
V IN 1
V2
RESET
V IN 3
I3
A
M61040FP
DI
V IN 4
CK
GND
V3
CS
V IN 10
I4
A
4.7uF
VREF
V IN 2
ANALOG OUT
V IN 11
TEST1
TEST2
CIN
V4
Circuit 6
Figure 4- 2
Mitsubishi Electric
(9/25)
Data Input
0.5V↔ 3.5V
Smart battery protection and monitoring IC
M61040FP
Measuring Ipd:
Except above :
Ipd, Ips, Isup2, Isup1
ON
OFF
Measuring Ipd:
Except above :
PFOUT
CFOUT
A
ON
OFF
DFOUT
VIN 12
VCC
VREG
VIN 1
VREF
VIN 2
RESET
VIN 3
M61040FP
DI
VIN 4
Data Input
0V↔ 5V
CK
GND
CS
VIN 10
ANALOG OUT
VIN 11
TEST1
CIN
TEST2
Circuit 7
V
CFOUT
PFOUT
DFOUT
V IN 12
V CC
14V
VREG
V IN 1
V
VREF
V IN 2
RESET
V IN 3
M61040FP
4.7uF
DI
V IN 4
CK
GND
CS
V IN 10
ANALOG OUT
V IN 11
TEST0
TEST1
CIN
Circuit 8
CFOUT
PFOUT
DFOUT
VIN 12
VCC
14V
VREG
VIN 1
4.7uF
VREF
VIN 2
RESET
VIN 3
M61040FP
DI
VIN 4
Data Input
0.5V↔ 3.5V
CK
GND
Isink
CS
VIN 10
ANALOG OUT
VIN 11
TEST1
TEST2
CIN
Circuit 9
Figure 4- 3
Mitsubishi Electric
(10/25)
A
Isource
Smart battery protection and monitoring IC
M61040FP
CFOUT
PFOUT
DFOUT
VIN 12
VCC
V1
V2
V3
V4
VREG
VIN 1
4.7uF
VREF
VIN 2
RESET
VIN 3
M61040FP
DI
VIN 4
Data Input
0.5V↔ 3.5V
CK
GND
Isink
CS
VIN 10
ANALOG OUT
VIN 11
TEST1
TEST2
CIN
Circuit 10
Figure 4- 4
Mitsubishi Electric
(11/25)
A
Isource
Smart battery protection and monitoring IC
M61040FP
6. Block diagram description
(1) Battery voltage detection circuit
The M61040 battery voltage detection circuit is shown in figure 5.
This circuit is composed of switch, buffer amplifier, reference voltage section and logic circuit.
Microcomputer selects detecting voltage before logic circuit controls the connection of switches.
This connection decides which cell voltage(Vbat1,Vbat2,Vbat3,Vbat4) should be output from Analog
out pin. Besides offset voltage can be output.
In Power Down mode, supply current in this block is close to zero because all switches are off.
NOTE:
Regard 50µs as the standard of settling time by voltage change in this block.
VIN 1
S11
Vat1
VIN 2
S22
S21
Vat2
Switch Control
VIN 3
S32
From Serial to Parallel
conversion circuit
Logic Circuit
Vat3
S31
VIN 4
Vat4
S42
S41
V I N 10
To Multiplexer circuit
Vref
S02
GND
S01
Figure 5. Battery voltage detection circuit
Mitsubishi Electric
(12/25)
Smart battery protection and monitoring IC
M61040FP
(2) Charge / discharge current detection circuit
The Charge/Discharge current detection circuit is shown in figure 6. This circuit is composed of
offset voltage adjustment circuit, buffer amplifier and resistor network.
The pre-amplifier amplifies the voltage of sense resistance to the voltage based on GND. The
voltage gain can be selected by microcomputer commands.
Buffer amplifier does an impedance translation between input and output.
Vreg = 5.2V
Charge current
Monitor
AMP2
To Multiplexer
circuit
+
AMP3 R
+
RC3
−
−
RC1
R
From Serial to Parallel
conversion circuit
RC2
R
RD1
R
Discharge current
Monitor
−
RD2
+
RD3
−
+
AMP1
From Serial to Parallel
conversion circuit
AMP4
Offset voltage
Adjustment circuit
VIN 10
VIN 11
GND
Rsence
Figure 6. Charge / discharge current detection circuit
The offset voltage can be compensated by adjustment circuit.
The function in detecting discharge current is shown in figure 7. The differential voltage of sense
resistor is input to +(plus) terminal of AMP 1 when discharge current is flowing in sense resistor.
Selecting high voltage gain by microcomputer’s command is capable of monitoring very little
discharge current accurately.
The differential voltage of sense resistor is input to -(minus) terminal of AMP 2 when charge current
is flowing in sense resistor. The methods of detecting in charging are the same as in discharging
except that AMP2 reverses input voltage before outputting.
NOTE: Regard 500µs as the standard of settling time by voltage change in this block.
Vb = Idis × Rsens × Gain
From I/F circuit
+
RC3
AMP2
−
RC1
RC2
RD1
−
AMP1
+
RD2
Va = Idis × Rsens × Gain
VIN 11
RD3
VIN 10
Rsence
Charge current Icha Discharge current Idis
Figure 7.Charge/Discharge current detection
Mitsubishi Electric
(13/25)
Smart battery protection and monitoring IC
M61040FP
(3) Over current detection circuit
The over current detection circuit is shown in Figure 8. This circuit is composed of comparator, reference
voltage and delay circuit.
It can be got high accuracy over current detection by adjusting detection voltage with sense resistor.
Microcomputer can detect the over current status through monitoring “CIN_1” pin.
Besides this block contains load-short detection circuit. This circuit detects load-short with VIN_12 pin and
protects faster than over current detection.
DF OUT
VIN 12
To Microcomputer
−
Delay
circuit
Battery
+
V ref1
CIN
VIN 11
VIN 10
Rsense
Figure 8.Over current detection circuit
(4) Voltage regulator and
reference voltage
VCC
Voltage regulator and reference circuit are
shown in Figure 9. Pch MOS transistor is
used for output driver.
VREF1
−
M1
Vreg
+
ON/OFF
The output voltage can be adjusted by
VREF2
R1
M61040 itself. So the external resistor is not
−
required.
R2
M1
+
NOTE:
ON/OFF
There is a diode put between Vcc and
R3
Vreg terminal to prevent the invert current
R4
from damaging this IC when Vcc voltage is
Serial to Parallel conversion circuit
higher than Vreg voltage. So please always
keep Vreg voltage lower than Vcc+0.3V.
Figure 9 Voltage regulator circuit
Set a condenser on output to suppress input
changes or load changes.
Mitsubishi Electric
(14/25)
Vref
Smart battery protection and monitoring IC
M61040FP
(5) Reset circuit
The M61040 reset circuit is shown in Figure
Vreg
10. This circuit is composed of comparator,
R1
reference voltage section and breeder resistor.
+
The reset output is Nch open drain structure
RESET
−
so the reset delay time depends on external
R2
CR value.
Vref1
The reset circuit monitors Vreg output to
Rh
prevent microcomputer abnormal operation
when Vcc voltage goes down abnormally.
GND
Figure 10. Reset circuit
(6) Conditioning Circuit
The M61040 conditioning circuit is
VIN 1
shown in Figure 11. This circuit is
composed of switch, resistor and
S60
V1
logic circuit.
R60
According to the serial data from
VIN 2
microcomputer, the logic circuit can
S61
individually control the switches (S60,
S61 …
etc.) to do individual cell
V2
discharge to a select voltage.
R61
This circuit is capable of making all
Switch Control
VIN 3
sells discharge at the same time.
S62
Logic circuit
V3
R62
VIN 4
S63
Serial to Parallel conversion
circuit
V4
R63
GND
Figure.11. Conditioning Circuit
Mitsubishi Electric
(15/25)
Smart battery protection and monitoring IC
M61040FP
7. Digital data format
MSB
First
Last
DI
LSB
6 Bit shift resistor
CK
D5
CS
D4
Address
D3
D2
D1
Decoder
Latch
Latch
Latch
Latch
Latch
Latch
MPX
MPX
MPX
MPX
MPX
MPX
*1
*2
Offset
adjustment
Vreg,Vref Multiplexer
control
control
FET,VR
control
*1 : Charge, discharge current detection
*2 : Battery voltage output
Figure 12 Serial to Parallel Conversion circuit
8. Data timing Example
MSB
LSB
DI
D0
D0
D1
D2
D3
D4
CK
CS
Figure 13. Serial to parallel timing chart
Mitsubishi Electric
(16/25)
D5
Smart battery protection and monitoring IC
M61040FP
9. Data Timing
Table 5.
ADDRESS
ESTABLISHMENT DATA
DATA
CONTENTS
D5
D4
D3
D2
D1
D0
Reset
0
0
0



Battery voltage output
0
0
1



Refer to table 6.
Offset adjustment
0
1
0



Refer to table 7.
Charge/discharge current detection
0
1
1



Refer to table 8.
FET control
1
0
0



Refer to table 9.
Multiplexer select
1
0
1



Refer to table 10.
Conditioning circuit
1
1
0



Refer to table 11.
Regulator
Over current control
1
1
1



Refer to table 12.
Table 6 Battery voltage output
OUTPUT VOLTAGE
D2
D1
D0
DETAIL
0
0
0
V1
0
0
1
V2
0
1
0
V3
0
1
1
V4
1
0
0
Connect to VIN_2
Offset voltage output
1
0
1
Connect to VIN_3
Offset voltage output
1
1
0
Connect to VIN_4
Offset voltage output
1
1
1
Connect to VIN_10
•V1 battery voltage output when system reset
Offset voltage output
Table 7 Offset voltage control section of discharge current monitor amplifier
OUTPUT
D2
D1
D0
Offset voltage value
0
0
0
No offset (0V)
0
0
1
1V
0
1
0
2.1V
0
1
1
3.1V
1
0
0
3.7V
1
0
1
1V
1
1
0
1V
1
1
1
1V
•No offset voltage when system reset
Mitsubishi Electric
(17/25)
Smart battery protection and monitoring IC
M61040FP
Table 8 Charge and discharge current detection
D0
MODE
D2
D1
0
0
0
AMP stop, resistor open
0
0
1
gain x40 output
0
1
0
gain x100 output
0
1
1
gain x200 output
1
0
0
AMP stop, resistor open
1
0
1
Offset output (x40)
1
1
0
Offset output (x100)
OUTPUT
AMP Operation stop, Current save
AMP Operation stop, Current save
1
1
1
Offset output (x200)
sAmplifier operation is stopped when system reset
Table 9 FET regulator control
FET CONNECTION TERMINAL
D2
D1
D0
CFOUT terminal
DFOUT terminal
PFOUT terminal
0
0
0
High
High
High
0
0
1
High
High
Low
0
1
0
High
Low
High
0
1
1
High
Low
Low
1
0
0
Low
High
High
1
0
1
Low
High
Low
1
1
0
Low
Low
High
1
1
1
Low
Low
Low
sCFOUT, DFOUT and PFOUT are high when system reset
(Over current detection is disable when DFOUT is high)
Table. 10 Multiplexer control
D2
D1
D0
OUTPUT
0
0
0
open output (floating) select
0
0
1
open output (floating) select
0
1
0
open output (floating) select
0
1
1
open output (floating) select
1
0
0
Charge current output select
1
0
1
Discharge current output select
1
1
0
Battery voltage output select
1
1
1
GND output select
sMultiplexer output is floating when system reset
Mitsubishi Electric
(18/25)
Smart battery protection and monitoring IC
M61040FP
Table.11 Conditioning Circuit
D2
D1
D0
OUTPUT
0
0
0
OPEN
0
0
1
V1 Conditioning (Short VIN_1 and VIN_2)
0
1
0
V2 Conditioning (Short VIN_2 and VIN_3)
0
1
1
V3 Conditioning (Short VIN_3 and VIN_4)
1
0
0
V4 Conditioning (Short VIN_4 and GND)
1
0
1
V1 ~ V4 Conditioning (Discharge All cells)
1
1
0
OPEN
1
1
1
OPEN
sConditioning circuit is floating when system reset
Table.12 Regulator, Over Current detection control
OUTPUT
D2
D1
D0
Regulator
0
0
0
ON
Over Current detection circuit
ON
∗
∗
0
0
1
OFF(GND Output) 1
0
1
0
ON
Capacity Delay terminal L fix
0
1
1
ON
Capacity Delay terminal H fix
1
0
0
Don′
t Care
Don′
t Care
1
0
1
Don′
t Care
Don′
t Care
1
1
0
Don′
t Care
Don′
t Care
1
1
1
1
Don′
t Care
Don′
t Care
sThe regulator output is enable when system reset
∗
1 All functions of M61040 are stooped. But if the charger is connected then M61040 will not
enter power down mode.
Mitsubishi Electric
(19/25)
Smart battery protection and monitoring IC
M61040FP
10. Timing chart
CFOUT(V)
VIN 11(V)
Battery voltage(V)
10-1. Discharge sequence
5
4
3
2
1
0
Vbat4 reaches the over-charge voltage.
From low voltage
(Vbat1,Vbat2,Vbat3,Vbat4)
Charge Period
0.15
0.1
0.05
0
− 0.05
− 0.1
− 0.15
Discharging
Charging
20
15
Command from Microcomputer
10
Charge Start
Off in initializing
Command from Microcomputer
0
PFOUT(V)
Charge Stop
5
20
15
10
Off in initializing
Command from Microcomputer
5
Command from Microcomputer
Pre-charge stop
Pre-charge Start
0
DFOUT(V)
20
15
10
Off in initializing
Charge Start
5
Command from Microcomputer
Vreg RESET Supply Voltage(V)
20
Analog out(V)
0
5
VIN_12pin
15
10
VDDpin
5
VIN_1pin
0
5
RESET
Vreg
Charger connected
0
Microcomputer starts
operations.
Gain 40
Gain 200
Pre-charge current
Monitor
Charge current
Monitor
0
Bat1
Monitor
Bat3
Bat2
Monitor
Monitor
Bat4
Monitor
∗Testing in constant voltage
Fig.14
Mitsubishi Electric
(20/25)
Smart battery protection and monitoring IC
M61040FP
VIN 11(V)
Battery Voltage(V)
10-2. Discharge sequence
5
4
3
2
1
0
0.15
0.1
0.05
0
− 0.05
− 0.1
− 0.15
Discharge Period
Self discharge period
From high voiltage
(Vbat1,Vbat2,Vbat3,Vbat4)
Vbat4 reaches the over-discharge
voltage.
Discharge Discharge Start
Discharge Stop
Charge
CFOUT(V)
20
15
Command from
Microcomputer
10
5
Command from
Microcomputer
0
PFOUT(V)
20
15
10
Command from
Microcomputer
5
Command from
Microcomputer
0
DFOUT(V)
20
15
Off in power-down mode
10
Discharge stop
5
Command from
Microcomputer
Supply Voltage(V)
20
Vreg RESET
0
5
15
VIN_1pin
10
VIN 12pin:
5
VDDpin
Pulled down to GND
in discharge forbidden
0
RESET
Vreg
System stop
Command from
Microcomputer
Analog out(V)
0
5
0
Gain 200
Gain 40
Discharge current
Monitor
Bat1 Bat2
Bat3
Monitor Monitor Monitor Bat4
Monitor
Fig.15
Mitsubishi Electric
(21/25)
Smart battery protection and monitoring IC
M61040FP
VIN 11(V)
Battery Voltage(V)
10-3. Over current detection sequence
5
4
Vbat1=Vbat2=Vbat3=Vbat4
3
2
1
0
0.4
0.3
0.2
0.1
0
− 0.1
− 0.2
− 0.3
− 0.4
Rash Current
Generation
Discharge
Over-current
Generation
Load Short
Rash Current
Generation
Over-current
Generation
Charge
20
CFOUT(V)
Load Short
Discharge stop
Discharge Stop
Discharge Stop
Discharge Stop
15
10
5
0
PFOUT(V)
20
15
10
5
0
DFOUT(V)
20
Discharge Stop
Discharge Stop
15
10
5
Supply Voltage(V)
20
Vreg RESET
0
5
15
VDD pin
10
5
VIN_1pin
VIN_12 pin
0
RESET VCC
Analog out(V)
0
5
Gain 40
Discharge current
Monitor
0
Fig.16
Mitsubishi Electric
(22/25)
Smart battery protection and monitoring IC
M61040FP
11. Application circuit
D2
D1
RPF2
PFET
CFET
RPF1
+ terminal
CVCC
RIN12
RCF1
VCC
RCF2
CFOUT
DFET
RPF3
DFOUT
PFOUT
VDD
CREF
CIN1
VREG
RIN2
RRESET
RESET
RESET
M37515
CREG
CRESET
AD IN1
CK
AD IN2
RIN3
VIN 3
CIN3
RIN4
VIN 4
Battery 3
VIN 4
CIN4
Battery 4
CS
RCS
GND
DI
RDI
DGNDAGND
CIN
VIN 11
VIN 10
GND
RIN11
CICT
− terminal
Battery 2
VIN 3
CK
CS
DI
VIN 2
CIN2
ANALOG OUT
RCK
Battery 1
VIN 2
2nd Protect
M61040FP
Vref
VREF
VIN 1
VIN 1
VIN 12
COUT
Vcc
RIN1
CIN11
RSENCE
Fig.17
Mitsubishi Electric
(23/25)
CT
Smart battery protection and monitoring IC
M61040FP
Table.13 Fixed Number
Symbol
Components
Purpose
Recommend
min.
max.
Please take
dissipation.
Please take
dissipation.
care
N.B.
the
maximum
power
care
the
maximum
power
D1
Diode
Supply voltage



D2
Diode
Supply voltage



DFET
CFET
PFET
RCF1
RCF2
RPF1
Pch MOSFET
Pch MOSFET
Nch MOSFET
Resistor
Resistor
Resistor



1MΩ
100kΩ
1MΩ



100kΩ

100kΩ



3MΩ
1MΩ
3MΩ






RPF2
Resistor
1kΩ



RPF3
RIN1
Resistor
Resistor
100kΩ
10Ω


1MΩ
1kΩ

CIN1
Capacitor
0.22µF

1.0µF
RIN2
Resistor
1kΩ

10kΩ
CIN2
Capacitor
0.22µF

1.0µF
RIN3
Resistor
1kΩ

10kΩ
CIN3
Capacitor
0.22µF

1.0µF
RIN4
Resistor
1kΩ

10kΩ
CIN4
Capacitor
0.22µF

1.0µF
CICT
RIN12
Capacitor
Resistor
0.01µF
10kΩ

300Ω
0.47µF
200kΩ


CVCC
Capacitor
0.22µF



RSENCE
Sensing
resistor
20mΩ



RIN11
Resistor
100Ω

1kΩ
CIN11
Capacitor
0.1µF

1.0µF
CREG
Capacitor
4.7µF
0.47µF

CREF
Capacitor
Discharge control
Charge control
Precharge control
Pull down resistor
Current limit
Pull down resistor
Precharge current
control
Current limit
Measure for ESD
Measure for ripples of
power supply
Measure for ESD
Measure for ripples of
power supply
Measure for ESD
Measure for ripples of
power supply
Measure for ESD
Measure for ripples of
power supply
Set up delay time
Measure for ESD
Measure for ripples of
power supply
Charge/discharge
current monitor
Measure for ripples of
power supply
Measure for ripples of
power supply
Eliminate the voltage
noise
Eliminate the voltage
noise
Set up delay time
Set up delay time
Pull down resistor
Pull down resistor
Pull down resistor
4.7µF


RRESET
CRSET
RCK
RCS
RDI
Resistor
Capacitor
Resistor
Resistor
Resistor
47KΩ
0.1µF



10kΩ

100kΩ
100kΩ
100kΩ
Mitsubishi Electric
(24/25)


∗
∗
2)Please set up same value as RIN2,CIN2
2)Please set up same value as RIN2,CIN2

3MΩ






∗
3)It is necessary that you adjust a delay time for
MCU.



Smart battery protection and monitoring IC
M61040FP
12. Package dimensions
6.6 ±0.2
20
11
6.4 ±0.3
4.4 ±0.2
0.5 ±0.2
10
1
0.17 ±0.05
1.00 ±0.05
1.1max.
0.65
0.2 ±0.1
0 ∼ 0.1
Unit :mm
Figure.18
Mitsubishi Electric
(25/25)