VISHAY MMBD7000-V-GS18

MMBD7000-V
Vishay Semiconductors
Small Signal Switching Diode, Dual
Description
Silicon Epitaxial Planar Diode
Fast switching dual diode, especially suited for automatic insertion
3
Features
• Lead (Pb)-free component
• Component in accordance to RoHS 2002/
95/EC and WEEE 2002/96/EC
1
2
18109
e3
Mechanical Data
Case: SOT-23 Plastic case
Weight: approx. 8.8 mg
Packaging Codes/Options:
GS18 / 10 k per 13" reel (8 mm tape), 10 k/box
GS08 / 3 k per 7" reel (8 mm tape), 15 k/box
Parts Table
Part
MMBD7000-V
Ordering code
Marking
MMBD7000-V-GS18 or MMBD7000-V-GS08
Remarks
M5C
Tape and Reel
Absolute Maximum Ratings
Tamb = 25 °C, unless otherwise specified
Symbol
Value
Reverse voltage
Parameter
Test condition
VR
100
Unit
V
Forward current (continuous)
IF
200
mA
Non-repetitive peak forward
current
t=1s
IFSM
500
mA
Power dissipation
on FR-5 board
TA = 25 °C
Ptot
225
mW
Derate above 25 °C
Ptot
1.8
mW/°C
Total device dissipation
on Alumina substrate
TA = 25 °C
Ptot
300
mW
Derate above 25 °C
Ptot
2.4
mW/°C
Document Number 85736
Rev. 1.3, 07-Apr-05
www.vishay.com
1
MMBD7000-V
Vishay Semiconductors
Thermal Characteristics
Tamb = 25 °C, unless otherwise specified
Symbol
Value
Unit
Typical thermal resistance
Parameter
Test condition
RthJA
4171)
°C/W
Junction to ambient air
RthJA
5562)
mW/°/W
Maximum junction temperature
Tj
150
°C
Storage temperature range
TS
- 55 to + 150
°C
1)
Device on alumina substrate
2)
On FR-5 board
Electrical Characteristics
Tamb = 25 °C, unless otherwise specified
Parameter
Test condition
Reverse breakdown voltage
IR = 100 µA
Leakage current
VR = 50 V
VR = 100 V
Forward voltage
Symbol
Min
VBR
100
Typ.
Max
Unit
IR
1.0
µA
IR
3.0
µA
V
VR = 50 V, Tj = 125 ° C
IR
100
µA
IF = 1 mA
VF
0.55
0.70
V
IF = 10 mA
VF
0.67
0.82
V
0.75
IF = 100 mA
VF
1.10
V
Diode capacitance
VR = 0, f = 1 MHz
Ctot
1.5
pF
Reverse recovery time
IF = 10 mA to IR = 10 mA,
Irr = 1 mA, RL = 100 Ω
Irr
4.0
ns
0.175 (.007)
0.098 (.005)
0.1 (.004) max.
0.4 (.016)
0.95 (.037)
1.15 (.045)
Package Dimensions in mm (Inches)
2.6 (.102)
2.35 (.092)
0.4 (.016)
ISO Method E
3.1 (.122)
Mounting Pad Layout
2.8 (.110)
0.52 (0.020)
0.4 (.016)
3
1
0.95 (.037)
1.20(.047)
1.43 (.056)
0.9 (0.035)
2.0 (0.079)
2
0.95 (.037)
0.95 (0.037)
0.95 (0.037)
17418
www.vishay.com
2
Document Number 85736
Rev. 1.3, 07-Apr-05
MMBD7000-V
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Document Number 85736
Rev. 1.3, 07-Apr-05
www.vishay.com
3
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1