INTEGRATED CIRCUITS DATA SHEET SAA5284 Multimedia video data acquisition circuit Objective specification Supersedes data of 1997 Mar 03 File under Integrated Circuits, IC22 1998 Feb 05 Philips Semiconductors Objective specification Multimedia video data acquisition circuit CONTENTS 1 FEATURES 2 GENERAL DESCRIPTION 3 QUICK REFERENCE DATA 4 ORDERING INFORMATION 5 MAIN FUNCTIONAL BLOCKS 6 BLOCK DIAGRAM 7 PINNING INFORMATION 7.1 7.2 Pinning Pin description 8 FUNCTIONAL DESCRIPTION 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 Power supply strategy Clocking strategy Power-on reset Analog switch Analog video-to-data byte converter Packet filtering Packet buffer FIFO Host interface Interrupt support DMA support I2C-bus interface 9 LIMITING VALUES 10 QUALITY & RELIABILITY 11 CHARACTERISTICS 12 TIMING 13 APPLICATION INFORMATION 13.1 13.2 13.3 Hardware application circuit for ISA card Hardware application circuit for PCI application Software application information 14 PACKAGE OUTLINE 15 SOLDERING 15.1 15.2 15.3 15.4 Introduction Reflow soldering Wave soldering Repairing soldered joints 16 DEFINITIONS 17 LIFE SUPPORT APPLICATIONS 18 PURCHASE OF PHILIPS I2C COMPONENTS 1998 Feb 05 2 SAA5284 Philips Semiconductors Objective specification Multimedia video data acquisition circuit 1 SAA5284 FEATURES • High performance multi-standard data slicer • Intercast (Intel Corporation) compatible • Teletext (WST, Chinese teletext) (625 lines) • Teletext (US teletext, NABTS and MOJI) (525 lines) • Wide Screen Signalling (WSS), Video Programming Signal (VPS) • Single IC with few external components and small footprint QFP44 package • Closed Caption (Europe, US) • Optimized for EMC. • Data broadcast, PDC (packet 30 and 31) • User programmable data format (programmable framing code) 2 The SAA5284 is a Vertical Blanking Interval (VBI) and Full Field (FF) video data acquisition device tailored for application on PC add-in cards, PC mother-boards, set-top boxes and as a SAA5250 replacement. The IC in combination with a range of software modules will acquire most existing formats of broadcast VBI and FF data. • 2 kbytes data cache on-chip to avoid data loss and reduce host CPU overhead • Filtering of packets 30 and 31 WST/NABTS • Choice of clock frequencies, direct-in clock or crystal oscillator These associated software modules are available under licence. Scope is provided for acquiring some as yet unspecified formats. The SAA5284 incorporates all the data slicing, parallel interface, data filtering and control logic. It is controlled either by a parallel interface or I2C-bus. It can output ASCII VBI data as pixels on the digital video bus where no parallel port is available. It is available in a QFP44 package. • Parallel interface, Motorola, Intel and digital video bus • I2C-bus control • Data transport by digital video bus • Choice of programmable interrupt, DMA or polling driven • Data type selectable video line by video line, with Vertical Blanking Interval and Full Field mode 3 GENERAL DESCRIPTION QUICK REFERENCE DATA SYMBOL PARAMETER MIN. TYP. MAX. UNIT VDD supply voltage 4.5 5.0 5.5 V IDD supply current − 72 95 mA Vsync(p-p) sync voltage (peak-to-peak value) 0.1 0.3 0.6 V Vi(CVBS)(p-p) input voltage on pin CVBS0 and CVBS1 (peak-to-peak value) 0.7 1.0 1.4 V fxtal crystal frequency; see note 1 − 12.0 − MHz Tamb operating ambient temperature −20 − +70 °C Note 1. Selectable: 12, 13.5, 15 or 16 MHz. 4 ORDERING INFORMATION PACKAGE TYPE NUMBER NAME SAA5284GP 1998 Feb 05 QFP44 DESCRIPTION plastic quad flat package; 44 leads (lead length 2.35 mm); body 14 × 14 × 2.2 mm 3 VERSION SOT205-1 Philips Semiconductors Objective specification Multimedia video data acquisition circuit 5 SAA5284 7. 12, 13.5, 15 and 16 MHz clock or oscillator options MAIN FUNCTIONAL BLOCKS 1. Input clamp and sync separator 8. FIFO access to data 2. Analog-to-digital converter 9. Interrupt and DMA support 3. Multi-standard data slicer and clock regenerator 10. Multi-standard parallel interface 4. Packet filtering; (8 and 4) Hamming correction 11. I2C-bus interface 5. On-chip data cache 12. Power-on reset. 6. Line selectable data type Figure 1 shows a block diagram of the SAA5284. 6 BLOCK DIAGRAM handbook, full pagewidth VDDA VSSA VDDX VDDD VSSD3 17 16 6 41 40 RESET VPOIN0 HREF VPOIN1 38 1 39 2 RD(1) LLC WR(1) LLC2 43 42 33 DMACK(1) DMARQ 34 36 37 35 CS0 44 SAA5284 CS1 31 INT 32 CVBS0 CVBS1 MULTI-STANDARD HOST INTERFACE 15 ANALOG SWITCH 14 PACKET BUFFER AND FRONT END CONTROL REGISTERS RDY(1) 10 SEL0 11 SEL1 5 30 to 28 3 20 to 27 8 IREF BLACK 13 12 ANALOG VIDEO TO DATA BYTE CONVERTER (DATA DEMODULATOR) 8 FIFO 9 OSCOUT OSCGND OSCIN 18 19 4 D7 to D0(1) SDA SCL VSSD1 VSSD2 MGG740 (1) Multi-functional pins, see Chapter 7. Fig.1 Block diagram. 1998 Feb 05 3 I2C-BUS INTERFACE 400 kHz SLAVE A2 to A0(1) PACKET BUFFER RAM 2 kbyte (45 packets) OSCILLATOR AND TIMING 7 PACKET FILTERING (e.g. WST packets 30/31) DENB 4 data path control Philips Semiconductors Objective specification Multimedia video data acquisition circuit 34 RD(1) 35 CS0 36 DMARQ 37 DMACK(1) 39 VPOIN1 40 VSSD3 41 VDDD 42 LLC 43 LLC2 44 CS1 handbook, full pagewidth 38 VPOIN0 Pinning RESET 1 33 WR(1) HREF 2 32 RDY(1) SDA 3 31 INT SCL 4 30 A2(1) DENB 5 29 A1(1) VDDX 6 28 A0(1) SAA5284 23 D4(1) D5(1) 22 SEL1 11 D6(1) 21 24 D3(1) D7(1) 20 SEL0 10 VSSD2 19 25 D2(1) VDDA 16 OSCGND 9 CVBS0 15 26 D1(1) CVBS1 14 OSCIN 8 IREF 13 27 D0(1) BLACK 12 OSCOUT 7 VSSA 17 7.1 PINNING INFORMATION VSSD1 18 7 SAA5284 MGG739 (1) Multi-functional pin. Fig.2 Pin configuration. 7.2 Pin description Table 1 QFP44 package The IC has a total of 44 pins; many of these are multi-functional due to the multiple host block modes of operation. SYMBOL PIN I/O RESET HREF 1 2 I I SDA SCL DENB VDDX OSCOUT 3 4 5 6 7 I/O I O − O OSCIN 8 I 1998 Feb 05 DESCRIPTION reset IC video horizontal reference signal (digital video mode only) serial data port for I2C-bus, open-drain serial clock input for I2C-bus data enable bar (for external buffers) +5 V supply oscillator output oscillator input 5 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SYMBOL SAA5284 PIN I/O OSCGND SEL0 9 10 − I SEL1 BLACK IREF 11 12 I I/O 13 14 I I reference current input; connected to VSSA via 27 kΩ resistor analog composite video input 1 CVBS0 VDDA VSSA VSSD1 15 16 17 I − − analog composite video input 0 analog +5 V supply analog ground supply 18 I digital ground supply 1 VSSD2 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 I I/O I/O I/O I/O I/O I/O I/O I/O I I I O O I digital ground supply 2 data bus 7/video data output 7 data bus 6/video data output 6 data bus 5/video data output 5 data bus 4/video data output 4 data bus 3/video data output 3 data bus 2/video data output 2 data bus 1/video data output 1 data bus 0/video data output 0 address input 0/video data input 7 address input 1/video data input 6 address input 2/video data input 5 interrupt request ready/DTACK (data acknowledge)/VBI, open-drain Intel bus Write/Motorola bus R/W/video data input 4 34 35 I I Intel bus Read/Motorola bus LDS/video data input 3 chip select 0; active LOW 36 O DMA request VPOIN0 VPOIN1 VSSD3 VDDD LLC LLC2 37 38 39 40 41 42 43 I I I − − I I DMA acknowledge/video data input 2 video data input 0 video data input 1 digital ground supply 3 digital +5 V supply full rate digital video clock input half rate digital video clock input CS1 44 I chip select 1; active LOW CVBS1 D7(1) D6(1) D5(1) D4(1) D3(1) D2(1) D1(1) D0(1) A0(1) A1(1) A2(1) INT RDY(1) WR(1) RD(1) CS0 DMARQ DMACK(1) DESCRIPTION oscillator ground parallel interface format select 0 parallel interface format select 1 video black level storage; connected to VSSA via 100 nF capacitor Note 1. These pins have two functions, depending on the interface mode. 1998 Feb 05 6 Philips Semiconductors Objective specification Multimedia video data acquisition circuit 8 The analog video-to-data byte converter is specifically designed to overcome the most commonly found types of distortion of a broadcast video signal. It is also fully multi-standard. The data type to be demodulated is programmable on a line-by-line basis using 4 register bits per line for lines 2 to 23 (PAL numbering), fields 1 and 2, and 4 further bits for all lines combined. FUNCTIONAL DESCRIPTION 8.1 Power supply strategy There are three separate +5 V (VDD) connections to the IC: 1. VDDA supplies the critical noise-sensitive analog front-end sections: ADC and sync separator, to reduce interference from the rest of the front-end 2. VDDX supplies all sections which take standing DC current 8.6 Packet filtering If using a slow (e.g. 80C51) microcontroller, it is necessary to reduce the amount of data acquired by SAA5284 before downloading to the microcontroller to avoid it being swamped by unwanted data. Packet filtering is available for this purpose. A common use of this would be to acquire only packet 8/30 in 625-line WST. The packet filter includes optional (8, 4) Hamming correction. 3. VDDD supplies the rest of the logic. 8.2 SAA5284 Clocking strategy The master frequency reference for the IC is a 12, 13.5, 15 or 16 MHz crystal oscillator. The tolerance on the clock frequency is 500 × 10−6 (1.5 kHz). Further specifications of the crystal are given in Table 2. 8.7 If preferred, an external 12, 13.5, 15 or 16 MHz (±1.5 kHz) frequency source may be connected to OSCIN instead of the crystal. Packet buffer Direct addressed registers (i.e. those addressed using the A0 to A2 pins) are set to 00H after power-up. All other register bits are assumed to be in random states after power-up. This is a 2 kbyte RAM which acts as a buffer for storing received packets. The first 44 bytes are reserved for control information. The rest of the RAM is divided into 44-byte rows (or packets), each holding the data received on one incoming CVBS line. In the case of a WST packet received, the data stored consists of a Magazine and Row-Address Group (2 bytes), followed by the 40 bytes of packet data. When data in other formats than WST is received, this is stored in the packet buffer in the same way. In each case, the data is preceded by two information bytes which record on which line and field the packet was received, and what the data type is. 8.4 8.8 8.3 Power-on reset The RESET pin should be held HIGH for a minimum of two clock cycles. The reset signal is passed through a Schmitt trigger internally. Analog switch Register bit selection between two video sources. 8.5 FIFO hardware is provided to manage the ‘read’ address for the host processor, i.e. data is read repeatedly from the same 8-bit port, and appears byte-serially in the order of reception. The read address can be reset to the start of the packet buffer (the first 44-byte packet), back to the start of the current packet, or incremented to the start of the next packet. Analog video-to-data byte converter This section comprises a line and field sync separator, a video clamp, an ADC and a custom adaptive digital filter with DPLL based timing circuit. Table 2 FIFO Crystal characteristics SYMBOL PARAMETER MIN. TYP. MAX. UNIT C1 series capacitance − 18.5 − fF C2 parallel capacitance − 4.9 − pF Rr resonant resistance − − 50 Ω Xa ageing − − 5 × 10−6 Xj Xd 1998 Feb 05 − adjustment tolerance − drift 7 − − per year 25 × 10−6 − 25 × 10−6 − Philips Semiconductors Objective specification Multimedia video data acquisition circuit 8.9 Host interface 8.10 The SAA5284 has a multi-standard 8-bit I/O interface. To reduce the amount of host I/O space used, the parallel interface has only 3 address inputs (A0, A1 and A2). An extended addressing (pointer) scheme and the data FIFO are used to allow access to the full set of SAA5284 registers and the full span of the packet buffer. SAA5284 Interrupt support The host interface provides comprehensive support for interrupt generation. The interrupt may be programmed to occur when a particular number of packets of VBI data are available in the cache RAM. The interrupts can be further controlled to occur on a specific line in the TV frame. The interrupts can also be self masking if required. As well as the 8 data I/O lines and 3 address lines, there are the following control signals: RD (read LOW), WR (write LOW), CS0 (chip select LOW), CS1(second chip select LOW), INT (interrupt request), DMARQ (DMA request), DMACK (DMA acknowledge) and RDY (ready). 8.11 DMA support Burst and demand mode DMA are supported. In burst mode, the number of packets to transfer can be defined. An interrupt can be generated when DMA is finished. This can be self masking. In order to maintain compatibility with Motorola and Intel type buses, two control signals SEL0 and SEL1 are provided to configure the host interface. These signals allow configuration of the host interface to work with the Motorola or Intel style interfaces. 8.12 I2C-bus interface The I2C-bus interface functions as a slave receiver or transmitter at up to 400 kHz. The I2C-bus address is selectable as 20H or 22H. All functionality is available using the I2C-bus although with a slower data transfer speed. It is possible to use the I2C-bus in all modes. The host interface has a digital video mode. Digital video mode may be used to allow the SAA5284 to pass decoded VBI data into a system using the digital video bus. 9 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER MIN. MAX. UNIT VDD supply voltage (all supplies) −0.3 +6.5 V VI(max) input voltage (any input) −0.3 VDD + 0.5 V VO(max) output voltage (any output) −0.3 VDD + 0.5 V ∆VDDD−DDA−DDX supply voltage difference between VDDD, VDDA and VDDX − 0.25 V IIOK DC input or output diode current − 20 mA IO(max) output current (any output) − 10 mA Tstg storage temperature −55 +125 °C Tamb operating ambient temperature −20 +70 °C 10 QUALITY & RELIABILITY In accordance with “SNW-FQ-611-E”. 1998 Feb 05 8 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SAA5284 11 CHARACTERISTICS Tamb = −20 to +70 °C; VDD = 4.5 to 5.5 V; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Power supply VDDn supply voltage 4.5 5.0 5.5 V IDD(tot) total supply current − 72 95 mA IDDD digital supply current − 32 42 mA IDDA analog supply current − 40 53 mA Inputs CVBS0 and CVBS1 Vsync(p-p) sync voltage (peak-to-peak value) 0.1 0.3 0.6 V Vburst(p-p) colour burst voltage (peak-to-peak value) 0 0.3 0.4 V Vi(vid)(p-p) video input voltage (peak-to-peak value) 0.7 1.0 1.4 V Vi(data)(p-p) teletext data input voltage (peak-to-peak value) 0.29 0.46 0.71 V Zsource source impedance − − 250 Ω Vi(sw) input switching level of sync separator 1.5 1.8 2.1 V Zi input impedance 2.5 5.0 − kΩ Ci input capacitance − − 10 pF external resistor to VSSA − 27 − kΩ Input IREF RIREF Inputs RESET, HREF, SEL0, SEL1, A0, A1, A2, WR, RD, CS0, CS1, DMACK, VPOIN1, VPOIN0, LLC and LLC2 VIL LOW-level input voltage −0.3 − +0.8 VIH HIGH-level input voltage 2.0 − VDD + 0.5 V ILI input leakage current −10 − +10 µA Ci input capacitance − − 10 pF VIL LOW-level input voltage −0.5 − +1.5 V VIH HIGH-level input voltage 3.0 − VDD + 0.5 V ILI input leakage current Vi = 0 to VDD −10 − +10 Ci input capacitance − 10 pF ti(r) input rise time VIL(min) to VIH(max); fi(SCL) = 100 kHz 50 − 1000 ns VIL(min) to VIH(max); fi(SCL) = 400 kHz 50 − 300 ns VIL(max) to VIH(min); fi(SCL) = 100 kHz 50 − 300 ns VIL(max) to VIH(min); fi(SCL) = 400 kHz Vi = 0 to VDD V Input SCL µA ti(f) input fall time 50 − 300 ns fi(SCL) input clock frequency 0 − 400 kHz CL load capacitance − − 400 pF 1998 Feb 05 9 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SYMBOL PARAMETER SAA5284 CONDITIONS MIN. TYP. MAX. UNIT Input/output SDA (open-drain) VIL LOW-level input voltage −0.5 − +1.5 VIH HIGH-level input voltage 3.0 − VDD + 0.5 V ILI input leakage current VI = 0 to VDD −10 − +10 Ci input capacitance − 10 pF ti(r) input rise time VIL(min) to VIH(max); fi(SCL) = 100 kHz 50 − 1000 ns VIL(min) to VIH(max); fi(SCL) = 400 kHz 50 − 300 ns ti(f) VOL input fall time LOW-level output voltage to(f) output fall time CL load capacitance V µA VIL(max) to VIH(min); fi(SCL) = 100 kHz 50 − 300 ns VIL(max) to VIH(min); fi(SCL) = 400 kHz 50 − 300 ns IOL = 3 mA 0 − 0.4 V IOL = 6 mA 0 − 0.6 V between 3 and 1.5 V; IOL = 3 mA 50 − 250 ns − − 400 pF − 100 − nF −0.3 − +0.8 V Input/output BLACK CBLACK storage capacitance to VSSA Inputs/outputs D7 to D0 VIL LOW-level input voltage 2.0 − VDD + 0.5 V −10 − +10 µA − − 10 pF VIH HIGH-level input voltage ILI input leakage current Ci input capacitance VOL LOW-level output voltage IOL = +1.6 mA 0 − 0.4 V VOH HIGH-level output voltage IOH = −0.2 mA 2.4 − VDD V CL load capacitance − − tbf pF to(r) output rise time into CL 0.6 to 2.2 V − − tbf ns to(f) output fall time into CL 2.2 to 0.6 V − − tbf ns VIN = 0 to VDD Outputs INT, DENB and DMARQ VOL LOW-level output voltage IOL = +1.6 mA 0 − 0.4 V VOH HIGH-level output voltage IOH = −0.2 mA 2.4 − VDD V CL load capacitance − − tbf pF to(r) output rise time into CL 0.6 to 2.2 V − − tbf ns to(f) output fall time into CL 2.2 to 0.6 V − − tbf ns RDY (open-drain); note 1 VOL LOW-level output voltage CL load capacitance to(r) output rise time into CL to(f) output fall time into CL 1998 Feb 05 0 − 0.4 V − − tbf pF 0.6 to 2.2 V − − tbf ns 2.2 to 0.6 V − − tbf ns IOL = +1.6 mA 10 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SYMBOL PARAMETER SAA5284 CONDITIONS MIN. TYP. MAX. UNIT I2C-bus timings (see note 2 and Fig.8) fi(SCL) SCL input clock frequency tLOW SCL LOW time tHIGH SCL HIGH time tSU;DAT data set-up time tHD;DAT data hold time tSU;STO set-up time STOP condition tBUF bus free time fi(SCL) = 100 kHz 0 − 100 kHz fi(SCL) = 400 kHz 0 − 400 kHz fi(SCL) = 100 kHz 4.7 − − µs fi(SCL) = 400 kHz 1.3 − − µs fi(SCL) = 100 kHz 4.0 − − µs fi(SCL) = 400 kHz 0.6 − − µs fi(SCL) = 100 kHz 250 − − ns fi(SCL) = 400 kHz 100 − − ns fi(SCL) = 100 kHz 0 − − µs fi(SCL) = 400 kHz 0 − − µs fi(SCL) = 100 kHz 4.7 − − µs fi(SCL) = 400 kHz 0.6 − − µs fi(SCL) = 100 kHz 4.7 − − µs fi(SCL) = 400 kHz 1.3 − − µs fi(SCL) = 100 kHz 4.0 − − µs fi(SCL) = 400 kHz 0.6 − − µs tSU;STA set-up time repeated START fi(SCL) = 100 kHz 4.7 − − µs fi(SCL) = 400 kHz 0.6 − − µs tr rise time (SDA and SCL) fi(SCL) = 100 kHz − − 1000 ns fi(SCL) = 400 kHz − − 300 ns fi(SCL) = 100 kHz − − 300 ns fi(SCL) = 400 kHz − − 300 ns tHD;STA tf hold time START condition fall time (SDA and SCL) Notes 1. ESD protection of this pin falls below the Philips General Quality Specification (GQS). Therefore it is recommended that a diode is connected from pin RDY to VDDD. 2. The I2C-bus interface pins SDA and SCL may pull the data and clock lines below 3 V while the digital power supply VDDD is in the range 0.4 to 0.8 V. 1998 Feb 05 11 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SAA5284 12 TIMING handbook, full pagewidth t0 A2 to A0 valid address t1 D7 to D0 t2 valid data 3-state 3-state t4 t3 CS0 or CS1 t7 RD t5 t6 RDY MGK145 A(1) B(2) (1) Event A occurs when RD + CS0 + CS1 = 0 (boolean). (2) Event B occurs when RD + CS0 + CS1 = 1 (boolean). Fig.3 Intel mode interface read cycle timing. Table 3 Intel-mode interface read cycle timing (12 MHz clock) SYMBOL DESCRIPTION MIN. MAX. UNIT t0 minimum cycle time 333 833 ns t1 address set-up time before event A 0 − ns t2 address hold time after event B 0 − ns t3 data settling time 88 712 ns t4 data hold time after event B 0 − ns t5 time from event A until RDY goes LOW 83 170 ns t6 RDY LOW time 83 530 ns t7 event B to next event A time 83 − ns 1998 Feb 05 12 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SAA5284 handbook, full pagewidth t0 A2 to A0 valid address t1 t2 D7 to D0 valid data t4 t3 CS0 or CS1 t7 WR t5 t6 RDY MGK146 A(1) B(2) (1) Event A occurs when WR + CS0 + CS1 = 0 (boolean). (2) Event B occurs when WR + CS0 + CS1 = 1 (boolean). Fig.4 Intel mode interface write cycle timing. Table 4 Intel-mode interface write cycle timing (12 MHz clock) SYMBOL DESCRIPTION MIN. MAX. UNIT t0 minimum cycle time 333 833 ns t1 address set-up time 0 − ns t2 address hold time 0 − ns t3 data set-up time, note 1 0 − ns t4 data hold time 0 − ns t5 RDY set-up time 83 170 ns t6 RDY LOW time 83 530 ns t7 event B to next event A time 83 − ns Note 1. Legacy AT bus PCs may not satisfy this requirement as they are not ISA compatible. An application fix is available in the “SAA5284 Users Guide”. 1998 Feb 05 13 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SAA5284 handbook, full pagewidth DMARQ t2 t1 DMACK t3 CS (same signal as DMACK) t4 t5 t6 RD(1) t7 valid data D7 to D0 valid data MGK147 (1) Read data pipelined, so no RD LOW to data valid set-up time. Fig.5 Intel mode interface DMA cycle timing. Table 5 Intel-mode interface DMA cycle timing (12 MHz clock) SYMBOL DESCRIPTION MIN. 0 MAX. − UNIT t1 DMARQ to DMACK ns t2 RD LOW to DMARQ LOW 0 212 ns t3 cycle time 252 − ns t4 DMACK to RD active − 0 ns ns t5 data set-up time 0 90(1) t6 data hold time 83 − ns t7 data hold from DMACK HIGH 0 83 ns Note 1. This timing will be up to 3 clock cycles for the first read in DMA transfer. 1998 Feb 05 14 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SAA5284 handbook, full pagewidth t0 valid address A2 to A0 t1 D7 to D0 t2 3-state valid data 3-state t3 CS1 or CS0 t7 R/W LDS t4 t6 t5 DTACK MGK148 A (1) B (2) (1) Event A occurs when LDS + CS0 + CS1 = 0 (boolean). (2) Event B occurs when LDS + CS0 + CS1 = 1 (boolean). Fig.6 Motorola mode interface read cycle timing. Table 6 Motorola-mode interface read cycle timing (12 MHz clock) SYMBOL DESCRIPTION MIN. MAX. UNIT t0 minimum cycle time 333 833 ns t1 address set-up time before event A 0 − ns t2 address hold time after event B 0 − ns t3 data hold time from event B 0 − ns t4 data settling time 88 712 ns t5 data valid to DTACK LOW 83 170 ns t6 LDS HIGH to DTACK HIGH 83 212 ns t7 delay between cycles 83 − ns 1998 Feb 05 15 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SAA5284 handbook, full pagewidth t0 valid address A2 to A0 t1 D7 to D0 t2 3-state valid data 3-state t3 CS1 or CS0 t7 R/W t4 LDS t6 t5 DTACK (1) MGK149 B(2) A (1) Event A occurs when LDS + CS0 + CS1 = 0 (boolean). (2) Event B occurs when LDS + CS0 + CS1 = 1 (boolean). Fig.7 Motorola mode interface write cycle timing. Table 7 Motorola-mode interface write cycle timing (12 MHz clock) SYMBOL DESCRIPTION MIN. MAX. UNIT t0 minimum cycle time 333 417 ns t1 address set-up time before event A 0 − ns t2 address hold time after event B 0 − ns t3 data hold time from event B 0 − ns t4 data set-up time 0 − ns t5 DTACK set-up time − 212 ns t6 LDS HIGH to DTACK HIGH 83 212 ns t7 delay between cycles 83 − ns 1998 Feb 05 16 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SAA5284 tr handbook, full pagewidth tHIGH tf tLOW SCL tHD;STA tSU;DAT tSU;STA tHD;DAT tSU;STO SDA MGG741 tBUF Fig.8 I2C-bus timing diagram. handbook, full pagewidth VPOIN t0 VPOOUT t1 t2 t3 CS0 or CS1 t4 LLC LLC2 MGK150 Fig.9 Digital video mode interface timing. Table 8 Digital video mode interface timing with 13.5 MHz clock and 27 MHz LLC SYMBOL DESCRIPTION MIN. TYP. MAX. UNIT t0 VPOIN set-up time 4 5 6 ns t1 VPOOUT set-up time 8 10 22 ns t2 CS HIGH to VPOOUT 3-state 6 10 25 ns t3 CS LOW to VPOOUT enabled 9 11 16 ns t4 clock qualifier set-up time − 1.1 − ns 1998 Feb 05 17 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SAA5284 13 APPLICATION INFORMATION 13.3 13.1 PC application software is available providing two levels of interface. At a low level a VxD based driver offers generic packet gathering and buffering. Full support is provided for ISA based applications with facility for PCI based applications. Higher level support is provided by a series of DLLs. These perform normal teletext display generation and page management. Hardware application circuit for ISA card A typical application circuit diagram (for the ISA card application) is shown in Fig.10. 13.2 Hardware application circuit for PCI application This PCI application is based around the Philips SAA7146 video to PCI bridge IC. SAA7146 has a ‘Data Expansion Bus Interface’ (DEBI) which is an Intel/Motorola style 16-bit parallel interface. This is used to facilitate communications to SAA5284. The application circuit diagram is shown in Fig.11. 1998 Feb 05 18 Software application information Philips Semiconductors Objective specification Multimedia video data acquisition circuit handbook, full pagewidth VDDD = +5 V VDDA = +5 V VDDA 100 nF BLACK VSSA = 0 V 27 kΩ 75 Ω IREF VDDD 16 41 VDDX 6 12 D7 20 21 13 CVBS0 CVBS0 100 nF CVBS1 OSCIN 8 22 pF SAA5284 OSCGND SCL 9 HREF LLC LLC2 VPOIN1 VPOIN0 RDY(2) WR 33 RESET 1 DENB 5 38 40 18 19 11 VSSA VSSD3 VSSD1 VSSD2 SEL1 10 44 SEL0 CS1 VSSA = 0 V VSSD = 0 V B1 B8 B7 B6 supply decoupling VDDA n.c. VDDD +5 V B5 B4 B3 100 nF B2 10 µF VSSD B0 11 B9 VSSA n.c. CS0 35 17 10 µF RESET 39 VSSD = 0 V 100 nF IOR DACKx DMACK(3) 37 43 I/O RDY DMARQ 36 42 IRQx IOW RD 34 2 A2 INT 32 4 A1 A2 30 3 A0 A1 31 SDA D0 A0 29 7 D1 D0 28 OSCOUT D2 D1 26 12 MHz(1) 22 pF D3 D2 27 75 Ω D4 D3 24 14 D5 D4 25 CVBS1 D6 D5 22 15 D7 D6 23 100 nF VSSA = 0 V SAA5284 9 1 19 18 17 16 15 14 13 2 ADDRESS DECODER e.g. PLUS153 or 74 SERIES LOGIC 3 4 5 6 7 12 8 10 0V GND VSSD = 0 V I0 I1 I2 I3 I4 I5 I6 I7 AEN A3 A4 A5 A6 A7 A8 A9 20 VCC VDDD = 5 V MGG742 (1) Option of 13.5, 15 and 16 MHz or direct feed from external clock. (2) A diode to VDDD is recommended for ESD protection. (3) Pin DMACK must be connected to VDDD if DMA is not used. Fig.10 Application circuit diagram for ISA card. 1998 Feb 05 19 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... VDDA 100 nF VSSA = 0 V 27 kΩ 75 Ω IREF 100 nF CVBS0 100 nF CVBS1 CVBS0 CVBS1 12 MHz(1) 22 pF OSCOUT 20 22 pF OSCGND +5 V HREF LLC 100 nF 10 µF LLC2 VPOIN1 VSSA VSSD 20 21 13 22 15 24 14 26 0V 8 28 29 VPOIN0 XAD7 D6 XAD6 D5 XAD5 D4 XAD4 D3 XAD3 D2 XAD2 D1 XAD1 D0 XAD0 A0 1Q A1 2Q A2 3Q 3 35 4 31 32 2 33 42 34 43 36 37 39 1 38 40 18 19 16 2 15 3 132 131 130 129 126 125 124 123 1D 2D 74HCT75 30 9 17 VSSD = 0 V D7 7 SAA5284 SCL VDDD 10 µF DEBI PORT 6 25 SDA 100 nF 41 12 23 OSCIN supply decoupling VDDA 16 SAA7145 SAA7146 VDDX 27 75 Ω VSSA = 0 V BLACK VDDD 11 VSSA VSSD3 VSSD1 VSSD2 SEL1 10 44 5 CS0 10 13 LE 6 3D 4D 4 7 LE INT ALE XIRQ RDY RDY WR WRN RD RDN DMARQ DMACK RESET DENB SEL0 CS1 n.c. VDDD 114 118 117 116 115 5 kΩ VDDD RESET 23 n.c. MGG744 Fig.11 Application circuit diagram for PCI application. SAA5284 (1) Option of 13.5, 15 and 16 MHz or LLC2 from the SAA7111 if in 13.5 MHz mode. Objective specification VSSA = 0 V VSSD = 0 V Philips Semiconductors VDDD = +5 V Multimedia video data acquisition circuit handbook, full pagewidth 1998 Feb 05 VDDA = +5 V Philips Semiconductors Objective specification Multimedia video data acquisition circuit SAA5284 14 PACKAGE OUTLINE QFP44: plastic quad flat package; 44 leads (lead length 2.35 mm); body 14 x 14 x 2.2 mm SOT205-1 c y X 33 A 23 34 22 ZE e E HE A A2 (A 3) A1 wM θ bp Lp pin 1 index 44 L 12 detail X 1 11 ZD e v M A wM bp D B HD v M B 0 5 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HD HE L Lp v w y mm 2.60 0.25 0.05 2.3 2.1 0.25 0.50 0.35 0.25 0.14 14.1 13.9 14.1 13.9 1 19.2 18.2 19.2 18.2 2.35 2.0 1.2 0.3 0.15 0.1 Z D (1) Z E (1) 2.4 1.8 2.4 1.8 θ o 7 0o Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC SOT205-1 133E01A 1998 Feb 05 JEDEC EIAJ EUROPEAN PROJECTION ISSUE DATE 95-02-04 97-08-01 21 Philips Semiconductors Objective specification Multimedia video data acquisition circuit If wave soldering cannot be avoided, for QFP packages with a pitch (e) larger than 0.5 mm, the following conditions must be observed: 15 SOLDERING 15.1 Introduction • A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. • The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011). 15.2 Reflow soldering Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C. Reflow soldering techniques are suitable for all QFP packages. The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our “Quality Reference Handbook” (order code 9397 750 00192). A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. 15.4 Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 50 and 300 seconds depending on heating method. Typical reflow peak temperatures range from 215 to 250 °C. Wave soldering Wave soldering is not recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices. CAUTION Wave soldering is NOT applicable for all QFP packages with a pitch (e) equal or less than 0.5 mm. 1998 Feb 05 Repairing soldered joints Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. 15.3 SAA5284 22 Philips Semiconductors Objective specification Multimedia video data acquisition circuit SAA5284 16 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. 17 LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 18 PURCHASE OF PHILIPS I2C COMPONENTS Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011. 1998 Feb 05 23 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580/xxx France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2870, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777 For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com © Philips Electronics N.V. 1997 SCA53 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 655102/00/02/pp24 Date of release: 1998 Feb 05 Document order number: 9397 750 02768