PHILIPS SAA5264PS

INTEGRATED CIRCUITS
DATA SHEET
SAA5264; SAA5265
10 and 1 page intelligent teletext
decoders
Preliminary specification
Supersedes data of 1999 Oct 05
File under Integrated Circuits, IC02
2000 Jan 27
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
FEATURES
The following features apply to both SAA5264 and
SAA5265:
• Complete 625 line teletext decoder in one chip reduces
printed circuit board area and cost
• Automatic detection of transmitted fastext links or
service information (packet 8/30)
GENERAL DESCRIPTION
• On-Screen Display (OSD) for user interface menus
using teletext and dedicated menu icons
The SAA5264 is a single-chip ten page 625-line World
System Teletext decoder with a high-level command
interface, and is SAFARI compatible.
• Video Programming System (VPS) decoding
• Wide Screen Signalling (WSS) decoding
The SAA5265 is a single-chip one page version of the
SAA5264.
• Pan-European, Cyrillic, Greek/Turkish and
French/Arabic character sets in each chip
Both devices are designed to minimize the overall system
cost, due to the high-level command interface offering the
benefit of a low software overhead in the TV
microcontroller.
• High-level command interface via I2C-bus gives easy
control with a low software overhead
• High-level command interface is backward compatible
to Stand-Alone Fastext And Remote Interface (SAFARI)
The SAA5264 has the following functionality:
• 625 and 525 line display
• 10 page teletext decoder with OSD, Fastext, TOP,
default and list acquisition modes
• RGB interface to standard colour decoder ICs, current
source
• Automatic channel installation support
• Versatile 8-bit open-drain Input/Output (I/O) expander,
5 V tolerant
• Closed caption acquisition and display
• Violence Chip (VChip) support.
• Single 12 MHz crystal oscillator
The SAA5265 has the following functionality:
• 3.3 V supply voltage.
• 1 Page teletext decoder with OSD, fastext and default
acquisition modes
SAA5264 features
• Automatic detection of transmitted pages to be selected
by page up and page down
• Automatic channel installation support
• 8 Page fastext decoder
• VChip support
• Table Of Pages (TOP) decoder with Basic Top Table
(BTT) and Additional Information Tables (AITs)
• No EEPROM fitted (there is no list mode feature).
• Closed caption acquisition and display
• 4 Page user-defined list mode.
2000 Jan 27
2
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
ORDERING INFORMATION
PACKAGE
TYPE NUMBER(1)
NAME
DESCRIPTION
VERSION
SAA5264PS/M3/nnnn
SDIP52
plastic shrink dual-in-line package; 52 leads (600 mil)
SOT247-1
SAA5265PS/M4/nnnn
SDIP52
plastic shrink dual-in-line package; 52 leads (600 mil)
SOT247-1
Note
1. ‘nnnn’ is a unique four digit number denoting the software version.
QUICK REFERENCE DATA
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VDDX
all supply voltages
referenced to VSS
3.0
3.3
3.6
V
IDDP
periphery supply current
note 1
1
−
−
mA
IDDC
core supply current
normal mode
−
15
18
mA
idle mode
−
4.6
6
mA
IDDA
analog supply current
normal mode
−
45
48
mA
idle mode
−
0.87
1
mA
fundamental mode
−
12
−
MHz
fxtal(nom)
nominal crystal frequency
Tamb
ambient temperature
−20
−
+70
°C
Tstg
storage temperature
−55
−
+125
°C
Note
1. Periphery supply current is dependent on external components and I/O voltage levels.
2000 Jan 27
3
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
BLOCK DIAGRAM
handbook, full pagewidth
TV CONTROL
AND
INTERFACE
I2C-bus,
general I/O
ROM
MICROCONTROLLER
(80C51)
DRAM
MEMORY
INTERFACE
SRAM
SAA5264
SAA5265
R
CVBS
DATA
CAPTURE
G
DISPLAY
B
VDS
CVBS
DATA
CAPTURE
TIMING
VSYNC
DISPLAY
TIMING
HSYNC
GSA018
Fig.1 Block diagram.
2000 Jan 27
4
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
PINNING
SYMBOL
PIN
TYPE
DESCRIPTION
Port 2: 8-bit programmable bidirectional port with alternative functions
P2.0/PWM
1
I/O
output for 14-bit high precision Pulse Width Modulator (PWM)
P2.1/PWM0
2
I/O
outputs for 6-bit PWMs 0 to 6
P2.2/PWM1
3
I/O
P2.3/PWM2
4
I/O
P2.4/PWM3
5
I/O
P2.5/PWM4
6
I/O
P2.6/PWM5
7
I/O
P2.7/PWM6
8
I/O
Port 3: 8-bit programmable bidirectional port with alternative functions
P3.0/ADC0
9
I/O
P3.1/ADC1
10
I/O
P3.2/ADC2
11
I/O
P3.3/ADC3
12
I/O
P3.4/PWM7
30
I/O
VSSC
13
−
inputs for the software Analog-to-Digital-Converter (ADC) facility
output for 6-bit PWM7
core ground
Port 0: 8-bit programmable bidirectional port
I2C-bus Serial Clock input to Non-Volatile RAM
SCL(NVRAM)
14
I
SDA(NVRAM)
15
I/O
I2C-bus Serial Data input/output (Non-Volatile RAM)
P0.2
16
I/O
input/output for general use
P0.3
17
I/O
input/output for general use
P0.4
18
I/O
input/output for general use
P0.5
19
I/O
8 mA current sinking capability for direct drive of Light Emitting Diodes (LEDs)
P0.6
20
I/O
P0.7
21
I/O
VSSA
22
−
analog ground
CVBS0
23
I
CVBS1
24
I
Composite Video Baseband Signal (CVBS) input; a positive-going 1 V
(peak-to-peak) input is required; connected via a 100 nF capacitor
SYNC_FILTER
25
I
sync-pulse-filter input for CVBS; this pin should be connected to VSSA via a
100 nF capacitor
IREF
26
I
reference current input for analog circuits; for correct operation a 24 kΩ resistor
should be connected to VSSA
FRAME
27
O
Frame de-interlace output synchronized with the VSYNC pulse to produce a
non-interlaced display by adjustment of the vertical deflection circuits
TEST
28
I
not available; connect this pin to VSSA
COR
29
O
contrast reduction: open-drain, active LOW output which allows selective contrast
reduction of the TV picture to enhance a mixed mode display
30
I/O
P3.4/PWM7 (described above)
VDDA
31
−
analog supply voltage (3.3 V)
B
32
O
Blue colour information pixel rate output
2000 Jan 27
input/output for general use
5
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SYMBOL
SAA5264; SAA5265
PIN
TYPE
DESCRIPTION
G
33
O
Green colour information pixel rate output
R
34
O
Red colour information pixel rate output
VDS
35
O
video/data switch push-pull output for pixel rate fast blanking
HSYNC
36
I
horizontal sync pulse input: Schmitt triggered for a Transistor Transistor Level (TTL)
version; the polarity of this pulse is programmable by register bit
TXT1.H POLARITY
VSYNC
37
I
vertical sync pulse input; Schmitt triggered for a TTL version; the polarity of this
pulse is programmable by register bit TXT1.V POLARITY
VSSP
38
−
periphery ground
VDDC
39
−
core supply voltage (+3.3 V)
OSCGND
40
−
crystal oscillator ground
XTALIN
41
I
12 MHz crystal oscillator input
XTALOUT
42
O
12 MHz crystal oscillator output
RESET
43
I
reset input; if this pin is HIGH for at least 2 machine cycles (24 oscillator periods)
while the oscillator is running, the device resets; this pin should be connected to
VDDP via a capacitor
VDDP
44
−
periphery supply voltage (+3.3 V)
Port 1: 8-bit programmable bidirectional port
P1.0
45
I/O
input/output for general use
P1.1
46
I/O
input/output for general use
P1.2
47
I/O
input/output for general use
P1.3
48
I/O
SCL
49
I
SDA
50
I/O
I2C-bus Serial Data input/output (application)
P1.4
51
I/O
input/output for general use
P1.5
52
I/O
input/output for general use
2000 Jan 27
input/output for general use
I2C-bus Serial Clock input from application
6
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
handbook, halfpage
P2.0/PWM
1
52 P1.5
P2.1/PWM0
2
51 P1.4
P2.2/PWM1
3
50 SDA
P2.3/PWM2
4
49 SCL
P2.4/PWM3
5
48 P1.3
P2.5/PWM4
6
47 P1.2
P2.6/PWM5
7
46 P1.1
P2.7/PWM6
8
45 P1.0
P3.0/ADC0
9
44 VDDP
P3.1/ADC1 10
43 RESET
P3.2/ADC2 11
42 XTALOUT
P3.3/ADC3 12
41 XTALIN
SAA5264
VSSC 13 SAA5265
40 OSCGND
SCL(NVRAM) 14
39 VDDC
SDA(NVRAM) 15
38 VSSP
P0.2 16
37 VSYNC
P0.3 17
36 HSYNC
P0.4 18
35 VDS
P0.5 19
34 R
P0.6 20
33 G
P0.7 21
32 B
VSSA 22
31 VDDA
CVBS0 23
30 P3.4/PWM7
CVBS1 24
29 COR
SYNC_FILTER 25
28 TEST
IREF 26
27 FRAME
GSA016
Fig.2 Pin configuration.
2000 Jan 27
7
SAA5264; SAA5265
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
HIGH LEVEL COMMAND INTERFACE
The I2C-bus interface is used to pass control commands and data between the SAA5264/SAA5265 and the television
microcontroller. The interface uses high-level commands, which are backward compatible with the SAFARI.
The I2C-bus transmission formats are:
Table 1
User command
I2C-BUS ADDRESS
START
Table 2
ACK
COMMAND
ACK
STOP
PARAMETER
ACK
STOP
DATA
ACK
STOP
System command
I2C-BUS ADDRESS WRITE
START
Table 3
WRITE
ACK
COMMAND
ACK
User read
START
I2C-BUS ADDRESS
READ
ACK
CHARACTER SETS
The following standard character sets are included in the SAA5264 and in the SAA5265:
Set 0 = Pan-European
Set 1 = Cyrillic
Set 2 = Greek/Turkish
Set 3 = French/Arabic
If you require any other character sets, please discuss them with your local Regional Sales Office first.
LIMITING VALUES
In accordance with Absolute Maximum Rating System (IEC 60134).
SYMBOL
PARAMETER
VDDX
all supply voltages
CONDITIONS
MIN.
MAX.
−0.5
+4.0
UNIT
V
VI
input voltage (any input)
note 1
−0.5
VDD + 0.5 or +4.1
V
VO
output voltage (any output)
note 1
−0.5
VDD + 0.5
V
IO
output current (each output)
−
10
mA
IIO(d)
diode DC input or output current
−
20
mA
Tamb
ambient temperature
−20
+70
°C
Tstg
storage temperature
−55
+125
°C
Note
1. This maximum value refers to 5 V tolerant I/Os and may be 6 V maximum but only when VDD is present.
2000 Jan 27
8
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
CHARACTERISTICS
VDD = 3.3 V ±10%; VSS = 0 V; Tamb = −20 to +70 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
VDDX
all supply voltages
referenced to VSS
3.0
3.3
3.6
V
IDDP
periphery supply
current
note 1
1
−
−
mA
IDDC
core supply current
normal mode
−
15
18
mA
IDDC(idle)
idle mode core supply
current
−
4.6
6
mA
IDDA
analog supply current
−
45
48
mA
IDDA(idle)
idle mode analog
supply current
−
0.87
1
mA
normal mode
Digital inputs
RESET (PIN 43)
VIL
LOW-level input
voltage
−
−
1.00
V
VIH
HIGH-level input
voltage
1.85
−
−
V
Vhys
Schmitt trigger input
hysteresis voltage
0.44
−
0.58
V
ILI
input leakage current
VI = 0
−
−
0.17
µA
Rpd(eq)
equivalent pull-down
resistance
VI = VDD
55.73 70.71
92.45
kΩ
HSYNC, VSYNC (PINS 36 AND 37)
VIL
LOW-level input
voltage
−
−
0.96
V
VIH
HIGH-level input
voltage
1.80
−
−
V
Vhys
Schmitt trigger input
hysteresis voltage
0.40
−
0.56
V
ILI
Input leakage current
VI = 0 to VDD
−
−
0.00
µA
Digital outputs
FRAME, VDS (PINS 27 AND 35)
VOL
LOW-level output
voltage
IOL = 3 mA
−
−
0.13
V
VOH
HIGH-level output
voltage
IOH = 3 mA
2.84
−
−
V
to(r)
output rise time
between 10% and 7.50
90%; CL = 70 pF
8.85
10.90
ns
to(f)
output fall time
between 10% and 6.70
90%; CL = 70 pF
7.97
10.00
ns
2000 Jan 27
9
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SYMBOL
PARAMETER
CONDITIONS
MIN.
SAA5264; SAA5265
TYP.
MAX.
UNIT
COR (OPEN-DRAIN OUTPUT, PIN 29)
VOL
LOW-level output
voltage
IOL = 3 mA
−
−
0.14
V
VOH(pu)
HIGH-level pull-up
output voltage
IOL = −3 mA;
push-pull
2.84
−
−
V
VIL
LOW-level input
voltage
−
−
0.00
V
VIH
HIGH-level input
voltage
0.00
−
5.50
V
ILI
input leakage current
VI = 0 to VDD
−
−
0.12
µA
to(r)
output rise time
between 10% and 7.20
90%; CL = 70 pF
8.64
11.10
ns
to(f)
output fall time
between 10% and 4.90
90%; CL = 70 pF
7.34
9.40
ns
Digital input/outputs
SCL(NVRAM), SDA(NVRAM), P0.4, P0.7, P1.0, P1.1, P2.1 TO P2.7, P3.0 TO P3.4
(PINS 14, 15, 18, 21, 45, 46, 2 TO 12, 30)
VIL
LOW-level input
voltage
−
−
0.98
V
VIH
HIGH-level input
voltage
1.78
−
−
V
Vhys
Schmitt trigger input
hysteresis voltage
0.41
−
0.55
V
ILI
input leakage current
VI = 0 to VDD
−
−
0.01
µA
VOL
LOW-level output
voltage
IOL = 4 mA
−
−
0.18
V
VOH
HIGH-level output
voltage
IOH = −4 mA
push-pull
2.81
−
−
V
to(r)
output rise time
between 10% and 6.50
90%; CL = 70 pF
push-pull
8.47
10.70
ns
to(f)
output fall time
between 10% and 5.70
90%; CL = 70 pF
7.56
10.00
ns
P1.2, P1.3, P2.0 (PINS 47, 48, 1)
VIL
LOW-level input
voltage
−
−
0.99
V
VIH
HIGH-level input
voltage
1.80
−
−
V
Vhys
Schmitt trigger input
hysteresis voltage
0.42
−
0.56
V
ILI
input leakage current
−
−
0.02
µA
2000 Jan 27
VI = 0 to VDD
10
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SYMBOL
PARAMETER
CONDITIONS
MIN.
SAA5264; SAA5265
TYP.
MAX.
UNIT
VOL
LOW-level output
voltage
IOL = 4 mA
−
−
0.17
V
VOH
HIGH-level output
voltage
IOH = −4 mA
push-pull
2.81
−
−
V
to(r)
output rise time
between 10% and 7.00
90%; CL = 70 pF
push-pull
8.47
10.50
ns
to(f)
output fall time
between 10% and 5.40
90%; CL = 70 pF
7.36
9.30
ns
P0.5, P0.6 (PINS 19, 20)
VIL
LOW-level input
voltage
−
−
0.98
V
VIH
HIGH-level input
voltage
1.82
−
−
V
ILI
input leakage current
−
−
0.11
µA
Vhys
Schmitt trigger input
hysteresis voltage
0.42
−
0.58
V
VOL
LOW-level output
voltage
IOL = 8 mA
−
−
0.20
V
VOH
HIGH-level output
voltage
IOH = −8 mA
push-pull
2.76
−
−
V
to(r)
output rise time
between 10% and 7.40
90%; CL = 70 pF
push-pull
8.22
8.80
ns
to(f)
output fall time
between 10% and 4.20
90%; CL = 70 pF
4.57
5.20
ns
VI = 0 to VDD
P1.4, P1.5 (OPEN-DRAIN) (PINS 51, 52)
VIL
LOW-level input
voltage
−
−
1.08
V
VIH
HIGH-level input
voltage
1.99
−
−
V
Vhys
Schmitt trigger input
hysteresis voltage
0.49
−
0.60
V
ILI
input leakage current
VI = 0 to VDD
−
−
0.13
µA
VOL
LOW-level output
voltage
IOL = 8 mA
−
−
0.35
V
to(f)
output fall time
between 10% and 69.70 83.67
90%; CL = 70 pF
103.30
ns
2000 Jan 27
11
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SYMBOL
PARAMETER
CONDITIONS
MIN.
SAA5264; SAA5265
TYP.
MAX.
UNIT
Analog inputs
CVBS0 AND CVBS1(PINS 23 AND 24)
Vsync
sync voltage
amplitude
0.1
0.3
0.6
V
Vi(v)(p-p)
video input voltage
(peak-to-peak value)
0.7
1.0
1.4
V
Zsource
source impedance
0
−
250
Ω
VIH
HIGH-level input
voltage
3.0
−
VDDA +0.3
V
Ci
input capacitance
−
−
10
pF
−
24
−
kΩ
IREF (PIN 26)
RIREF
resistance from IREF
to VSSA
resistor
tolerance = 2%
ADC0 TO ADC3 (PINS 9 TO 12)
VIH
HIGH-level input
voltage
−
−
VDDA
V
Ci
input capacitance
−
−
10
pF
Analog outputs
B, G AND R (PINS 32 TO 34)
Io(bl)
output current
(black level)
VDDA = 3.3 V
−10
−
+10
µA
Io(max)
output current
(maximum intensity)
VDDA = 3.3 V
intensity level
code = 15 (Dec)
6.0
6.67
7.3
mA
Io(70%max)
output current
(70% of maximum
intensity)
VDDA = 3.3 V
intensity level
code = 0 (Dec)
4.2
4.7
5.1
mA
RL
load resistance (to
VSSA)
resistor
tolerance = 5%
−
150
−
Ω
CL
load capacitance
−
−
15
pF
−
100
−
nF
0.35
0.55
0.75
V
Analog input/output
SYNC_FILTER (PIN 25)
Cstg
storage capacitor
(to VSSA)
Vsync(nom) sync filter level
voltage with nominal
sync amplitude
2000 Jan 27
12
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SYMBOL
PARAMETER
CONDITIONS
MIN.
SAA5264; SAA5265
TYP.
MAX.
UNIT
Crystal oscillator
XTALIN (PIN 41)
VIL
LOW-level input
voltage
VSSA
−
−
V
VIH
HIGH-level input
voltage
−
−
VDDA
V
Ci
input capacitance
−
−
10
pF
−
−
10
pF
−
12
−
MHz
−
−
30
pF
XTALOUT (PIN 42)
Co
output capacitance
Crystal specification; notes 2 and 3
fxtal(nom)
nominal frequency
CL
load capacitance
Cmot
motional capacitance
Tamb = 25 °C
−
−
20
fF
Rxtal
crystal resonance
resistance
Tamb = 25 °C
−
−
60
Ω
Cosc
capacitance at
XTALIN, XTALOUT
Tamb = 25 °C
−
2C L – C chip – C stray −
Cxtal(hold)
crystal holder
capacitance
Tamb = 25 °C
−
−
C osc C chip C stray pF
35 – ----------- – ------------- – --------------2
2
2
Txtal
crystal temperature
range
−20
+25
+85
Xj
adjustment tolerance
−
−
±50 × 10−6
Xd
drift
−
−
±100 × 10−6
fundamental
mode
Tamb = 25 °C
pF
°C
Notes
1. Periphery supply current is dependent on I/O external components and voltage levels.
2. Crystal order number 4322 143 05561. If crystal 4322 143 05561 is not used, then the formulae in the crystal
specification should be used.
3. Cosc may need to be reduced from the initially selected value. Cchip = 7 pF, the mean of the capacitances due to the
chip at XTALIN and at XTALOUT. Cstray is a value for the mean of the stray capacitances due to the external circuit
at XTALIN and XTALOUT. The maximum value for Cxtal(hold) is to ensure start-up.
2000 Jan 27
13
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
I2C-BUS CHARACTERISTICS
FAST-MODE I2C-bus
SYMBOL
UNIT
PARAMETER
MIN.
MAX.
fSCL
SCL clock frequency
0
400
kHz
tBUF
bus free time between a STOP and START condition
1.3
−
µs
tHD;STA
hold time START condition; after this period, the first clock
pulse is generated
0.6
−
µs
tLOW
SCL LOW time
1.3
−
µs
tHIGH
SCL HIGH time
0.6
−
µs
tSU;STA
set-up time repeated START
0.6
−
µs
tHD;DAT
data hold time; notes 1 and 2
0
0.9
µs
tSU;DAT
data set-up time; note 3
100
−
ns
tr
rise time SDA and SCL; note 4
20
300
ns
tf
fall time SDA and SCL; note 4
20
300
ns
tSU;STO
set-up time STOP condition
0.6
−
µs
Cb
capacitive load of each bus line
−
400
pF
Notes
1. A device must internally provide a hold time of at least 300 ns for the SDA signal (referenced to the VIHmin of the
SCL signal) in order to bridge the undefined region of the falling edge of SCL.
2. The maximum tHD;DAT has only to be met if the device does not stretch the LOW period of the SCL signal (tLOW(SCL)).
3. A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tSU;DAT ≥250 ns
must then be met. This will automatically be the case if the device does not stretch tLOW(SCL). If such a device does
stretch tLOW(SCL), it must output the next data bit to the SDA line tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according
to the standard-mode I2C-bus specification) before the SCL line is released.
4. Cb = total capacitance of one bus line in pF.
2000 Jan 27
14
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
EMC GUIDELINES
Using a device socket would increase the area and
therefore increase the inductance of the external bypass
loop.
Optimization of circuit return paths and minimization of
common mode emission will be assisted by using a double
sided Printed Circuit Board (PCB) with low inductance
ground plane.
To provide a high-impedance to any high frequency
signals on the VDD supplies to the IC, a ferrite bead or
inductor can be connected in series with the supply line
close to the decoupling capacitor. To prevent signal
radiation, pull-up resistors of signal outputs should not be
connected to the VDD supply on the IC side of the ferrite
bead or inductor.
On a single-sided PCB a local ground plane under the
whole IC should be present as shown in Fig.3. This should
have the widest possible connection between the PCB
ground and bulk electrolytic decoupling capacitor.
Preferably, the PCB local ground plane connection should
not be connected to other grounds on route to the PCB
ground. Do not use wire links. Wire links cause ground
inductance which increases ground bounce.
OSCGND should only be connected to the crystal load
capacitors and not to any other ground connection.
Distances to physical connections of associated active
devices should be as short as possible.
The supply pins can be decoupled at the ground pin plane
below the IC. This is easily achieved by using surface
mount capacitors, which, at high frequency, are more
effective than components with leads.
handbook, full pagewidth
GND +3.3 V
SAA5264; SAA5265
PCB output tracks should have close proximity, mutually
coupled, ground return paths.
electrolytic decoupling capacitor (2 µF)
ferrite beads
VDDA
VDDC
VSSP
VDDP
other
GND
connections
under-IC GND plane
under-IC GND plane
GND connection
note: no wire links
VSSC
VSSA
Fig.3 Power supply connections for EMC.
2000 Jan 27
SM decoupling capacitors (10 to 100 nF)
15
IC
MBK979
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
QUALITY AND RELIABILITY
This device will meet Philips Semiconductors general quality specification for business group “Consumer Integrated
Circuits SNW-FQ-611-Part E”. The principal requirements are shown in Tables 4 to 7.
Group A
Table 4
Acceptance tests per lot; note 1
TEST
REQUIREMENTS
Mechanical
Electrical
cumulative target: <80 ppm
cumulative target: <100 ppm
Note
1. ppm = fraction of defective devices, in parts per million.
Group B
Table 5
Processability tests (by package family)
TEST
REQUIREMENTS
Solderability
Mechanical
Solder heat resistance
0/16 on all lots
0/15 on all lots
0/15 on all lots
Group C
Table 6
Reliability tests (by package family); note 1
TEST
CONDITIONS
168 hours at Tj = 150 °C
temperature, humidity, bias 1000 hours;
Tamb = 85 °C, 85% RH (or equivalent test)
Temperature cycling performance Tstg(min) to Tstg(max)
Operational life
Humidity life
REQUIREMENTS
<1000 FPM at Tj = 150 °C
<2000 FPM
<2000 FPM
Note
1. FPM = fraction of devices failing at test condition, in Failures Per Million.
Table 7
Reliability tests (by device type)
TEST
ESD and latch-up
2000 Jan 27
CONDITIONS
ESD Human body model 100 pF, 1.5 kΩ
ESD Machine model 200 pF, 0 Ω
latch-up
16
REQUIREMENTS
2000 V
200 V
100 mA, 1.5 × VDD
(absolute maximum)
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
P2.3/PWM2
user ports
P2.4/PWM3
P2.5/PWM4
P2.6/PWM5
P2.7/PWM6
P3.0/ADC0
P3.1/ADC1
VDD
A0
VDD
A1
RC
EEPROM
P3.2/ADC2
P3.3/ADC3
VSSC
17
A2
PCF8582E SCL
SCL(NVRAM)
VSS
SDA
SDA(NVRAM)
P0.2
P0.3
VDD
P0.4
1 kΩ
P0.5
P0.6
1 kΩ
P0.7
VSSA
CVBS
CVBS
100 nF
CVBS0
100 nF
CVBS1
SYNC_FILTER
100 nF
2
51
3
50
4
49
5
48
6
47
7
46
8
45
9
44
10
43
11
42
12
41
13
14
SAA5264
SAA5265
40
39
15
38
16
37
17
36
18
35
19
34
20
33
21
32
22
31
23
30
24
29
25
28
26
27
24 kΩ
Fig.4 Application diagram.
P1.4
SDA
SDA
SCL
SCL
P1.3
P1.2
P1.1
P1.0
VDDP
VDD
RESET
VDD
XTALOUT
XTALIN
10 µF
VDD
12 MHz
56 pF
OSCGND
VDDC
VSSP
47
µF
100
nF
VDD
VSYNC
field flyback
HSYNC
line flyback
VDS
R
G
B
VDDA
P3.4/PWM7
VDD
150
Ω
VDD
COR
TEST
FRAME
GSA035
Preliminary specification
Bi-directional ports have been configured as open-drain. Output ports have been configured as push-pull.
P1.5
SAA5264; SAA5265
IREF
52
Philips Semiconductors
P2.2/PWM1
1
10 and 1 page intelligent teletext decoders
P2.0/PWM
P2.1/PWM0
VDD
APPLICATION INFORMATION
handbook, full pagewidth
2000 Jan 27
VDD
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
PACKAGE OUTLINE
seating plane
SDIP52: plastic shrink dual in-line package; 52 leads (600 mil)
SOT247-1
ME
D
A2
L
A
A1
c
e
Z
b1
(e 1)
w M
MH
b
27
52
pin 1 index
E
1
26
0
5
10 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
min.
A2
max.
b
b1
c
D (1)
E (1)
e
e1
L
ME
MH
w
Z (1)
max.
mm
5.08
0.51
4.0
1.3
0.8
0.53
0.40
0.32
0.23
47.9
47.1
14.0
13.7
1.778
15.24
3.2
2.8
15.80
15.24
17.15
15.90
0.18
1.73
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
SOT247-1
2000 Jan 27
REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
95-03-11
99-12-27
MS-020
18
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
The total contact time of successive solder waves must not
exceed 5 seconds.
SOLDERING
Introduction to soldering through-hole mount
packages
The device may be mounted up to the seating plane, but
the temperature of the plastic body must not exceed the
specified maximum storage temperature (Tstg(max)). If the
printed-circuit board has been pre-heated, forced cooling
may be necessary immediately after soldering to keep the
temperature within the permissible limit.
This text gives a brief insight to wave, dip and manual
soldering. A more in-depth account of soldering ICs can be
found in our “Data Handbook IC26; Integrated Circuit
Packages” (document order number 9398 652 90011).
Wave soldering is the preferred method for mounting of
through-hole mount IC packages on a printed-circuit
board.
Manual soldering
Apply the soldering iron (24 V or less) to the lead(s) of the
package, either below the seating plane or not more than
2 mm above it. If the temperature of the soldering iron bit
is less than 300 °C it may remain in contact for up to
10 seconds. If the bit temperature is between
300 and 400 °C, contact may be up to 5 seconds.
Soldering by dipping or by solder wave
The maximum permissible temperature of the solder is
260 °C; solder at this temperature must not be in contact
with the joints for more than 5 seconds.
Suitability of through-hole mount IC packages for dipping and wave soldering methods
SOLDERING METHOD
PACKAGE
DIPPING
DBS, DIP, HDIP, SDIP, SIL
WAVE
suitable(1)
suitable
Note
1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.
2000 Jan 27
19
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
SAA5264; SAA5265
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
PURCHASE OF PHILIPS I2C COMPONENTS
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the
components in the I2C system provided the system conforms to the I2C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
2000 Jan 27
20
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
NOTES
2000 Jan 27
21
SAA5264; SAA5265
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
NOTES
2000 Jan 27
22
SAA5264; SAA5265
Philips Semiconductors
Preliminary specification
10 and 1 page intelligent teletext decoders
NOTES
2000 Jan 27
23
SAA5264; SAA5265
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 3341 299, Fax.+381 11 3342 553
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 69
© Philips Electronics N.V. 2000
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
753504/02/pp24
Date of release: 2000
Jan 27
Document order number:
9397 750 06789