MOTOROLA MC33079D

Order this document by MC33078/D
The MC33078/9 series is a family of high quality monolithic amplifiers
employing Bipolar technology with innovative high performance concepts for
quality audio and data signal processing applications. This family
incorporates the use of high frequency PNP input transistors to produce
amplifiers exhibiting low input voltage noise with high gain bandwidth
product and slew rate. The all NPN output stage exhibits no deadband
crossover distortion, large output voltage swing, excellent phase and gain
margins, low open loop high frequency output impedance and symmetrical
source and sink AC frequency performance.
The MC33078/9 family offers both dual and quad amplifier versions,
tested over the automotive temperature range and available in the plastic
DIP and SOIC packages (P and D suffixes).
• Dual Supply Operation: ± 5.0 V to ± 18 V
•
•
•
•
•
•
•
•
•
•
Ǹ
DUAL/QUAD
LOW NOISE
OPERATIONAL AMPLIFIERS
DUAL
8
8
1
1
P SUFFIX
PLASTIC PACKAGE
CASE 626
Low Voltage Noise: 4.5 nV/ Hz
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
PIN CONNECTIONS
Low Input Offset Voltage: 0.15 mV
Low T.C. of Input Offset Voltage: 2.0 µV/°C
1
Output 1
Low Total Harmonic Distortion: 0.002%
8 VCC
–
1
+
2
High Gain Bandwidth Product: 16 MHz
Inputs 1
3
High Slew Rate: 7.0 V/µs
High Open Loop AC Gain: 800 @ 20 kHz
Excellent Frequency Stability
6
–
2
+
4
VEE
7 Output 2
Inputs 2
5
(Dual, Top View)
Large Output Voltage Swing: +14.1 V/ –14.6 V
QUAD
ESD Diodes Provided on the Inputs
14
14
1
1
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
P SUFFIX
PLASTIC PACKAGE
CASE 646
Representative Schematic Diagram
(Each Amplifier)
PIN CONNECTIONS
VCC
Output 1
R2
D1
Q3
Inputs 1
Q9
Q5
Q11
D3
Neg
J1
Pos
C2
Q8
D4
R4
Q7
Q1
R1
C1
R3
Inputs 2
C3 R9
Output 2
6
*
) 12
*1
)
4
)2
*
) 10
3
*9
4
Output 4
13
11
7
8
Inputs 4
VEE
Inputs 3
Output 3
(Quad, Top View)
Q12
R6
ORDERING INFORMATION
Q5
Device
VEE
MC33078D
MC33078P
MC33079D
MC33079P
Operating
Temperature Range
TA = – 40° to +85°C
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
14
Vout
Q10
D2
3
5
Q6
Z1
VCC
R7
Q3
Amplifier
Biasing
Q2
1
2
Q4
Package
SO–8
Plastic DIP
SO–14
Plastic DIP
Rev 0
1
MC33078 MC33079
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+36
V
VIDR
(Note 1)
V
Input Voltage Range
VIR
(Note 1)
V
Output Short Circuit Duration (Note 2)
tSC
Indefinite
sec
Maximum Junction Temperature
TJ
+150
°C
Storage Temperature
Tstg
– 60 to +150
°C
Maximum Power Dissipation
PD
(Note 2)
mW
Supply Voltage (VCC to VEE)
Input Differential Voltage Range
NOTES: 1. Either or both input voltages must not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature
(TJ) is not exceeded (see Figure 1).
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Symbol
Input Offset Voltage (RS = 10 Ω, VCM = 0 V, VO = 0 V)
(MC33078) TA = +25°C
TA = –40° to +85°C
(MC33079) TA = +25°C
TA = –40° to +85°C
|VIO|
Average Temperature Coefficient of Input Offset Voltage
RS = 10 Ω, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh
∆VIO/∆T
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = –40° to +85°C
IIB
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = –40° to +85°C
IIO
Common Mode Input Voltage Range (∆VIO = 5.0 mV, VO = 0 V)
VICR
Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 kΩ)
TA = +25°C
TA = –40° to +85°C
AVOL
Min
Typ
Max
—
—
—
—
0.15
—
0.15
—
2.0
3.0
2.5
3.5
—
2.0
—
—
—
300
—
750
800
—
—
25
—
150
175
±13
±14
—
90
85
110
—
—
—
Unit
mV
µV/°C
nA
nA
V
dB
Output Voltage Swing (VID = ±1.0V)
RL = 600 Ω
RL = 600 Ω
RL = 2.0 kΩ
RL = 2.0 kΩ
RL = 10 kΩ
RL = 10 kΩ
VO +
VO –
VO +
VO –
VO +
VO –
—
—
+13.2
—
+13.5
—
+10.7
–11.9
+13.8
–13.7
+14.1
–14.6
—
—
—
–13.2
—
–14
Common Mode Rejection (Vin = ±13V)
CMR
80
100
—
dB
Power Supply Rejection (Note 3)
VCC/VEE = +15 V/ –15 V to +5.0 V/ –5.0 V
PSR
80
105
—
dB
Output Short Circuit Current (VID = 1.0 V, Output to Ground)
Source
Sink
ISC
+15
–20
+29
–37
—
—
—
—
—
—
4.1
—
8.4
—
5.0
5.5
10
11
Power Supply Current (VO = 0 V, All Amplifiers)
(MC33078) TA = +25°C
(MC33078) TA = –40° to +85°C
(MC33079) TA = +25°C
(MC33079) TA = –40° to +85°C
NOTE:
2
V
mA
ID
mA
3. Measured with VCC and VEE differentially varied simultaneously.
MOTOROLA ANALOG IC DEVICE DATA
MC33078 MC33079
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, CL = 100 pF AV = +1.0)
Gain Bandwidth Product (f = 100 kHz)
Unity Gain Frequency (Open Loop)
Symbol
Min
Typ
Max
Unit
SR
5.0
7.0
—
V/µs
GBW
10
16
—
MHz
fU
—
9.0
—
MHz
Gain Margin (RL = 2.0 kΩ)
CL = 0 pF
CL = 100 pF
Am
—
—
–11
– 6.0
—
dB
Phase Margin (RL = 2.0 kΩ)
CL = 0 pF
CL = 100 pF
φm
—
—
55
40
—
Degree
s
CS
—
–120
—
dB
Power Bandwidth (VO = 27 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%)
BWp
—
120
—
kHz
Distortion (RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0)
THD
—
0.002
—
%
Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz)
|ZO|
—
37
—
Ω
Differential Input Resistance (VCM = 0 V)
RIN
—
175
—
kΩ
Differential Input Capacitance (VCM = 0 V)
CIN
—
12
—
pF
Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz)
en
—
4.5
—
nV/ √ Hz
Equivalent Input Noise Current (f = 1.0 kHz)
in
—
0.5
—
pA/ √ Hz
Channel Separation (f = 20 Hz to 20 kHz)
P D , MAXIMUM POWER DISSIPATION (mW)
Figure 1. Maximum Power Dissipation
versus Temperature
Figure 2. Input Bias Current versus
Supply Voltage
2400
2000
I IB , INPUT BIAS CURRENT (nA)
800
MC33078P & MC33079P
1600
MC33079D
1200
800
MC33078D
400
0
–55 –40 –20
200
5.0
10
15
VCC, | VEE |, SUPPLY VOLTAGE (V)
20
2.0
VCC = +15 V
VEE = –15 V
VCM = 0 V
V IO, INPUT OFFSET VOLTAGE (mV)
I IB , INPUT BIAS CURRENT (nA)
400
Figure 4. Input Offset Voltage versus Temperature
1000
600
400
200
0
–55
600
0
0
20 40 60 80 100 120 140 160
TA, AMBIENT TEMPERATURE (°C)
Figure 3. Input Bias Current versus Temperature
800
VCM = 0 V
TA = 25°C
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
100
125
VCC = +15 V
VEE = –15 V
RS = 10 Ω
1.0 VCM = 0 V
AV = +1
Unit 1
Unit 2
0
Unit 3
–1.0
–2.0
–55
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
3
Figure 5. Input Bias Current versus
Common Mode Voltage
I IB, INPUT BIAS CURRENT (nA)
600
VCC = +15 V
VEE = –15 V
TA = 25°C
500
400
300
200
100
0
–15
–10
– 5.0
0
5.0
10
15
VCM, COMMON MODE VOLTAGE (V)
V ICR , INPUT COMMON MODE VOLTAGE RANGE (V)
MC33078 MC33079
Figure 6. Input Common Mode Voltage
Range versus Temperature
VCC –0
VCC –0.5
VCC –1.5
Voltage
Range
VEE +1.5
VEE +1.0
VCC –3.0
25°C
VCC –5.0
125°C
125°C
25°C
VEE +5.0
VEE +3.0
VEE +1.0
VCC = +15 V
VEE = –15 V
–55°C
0
1.0
2.0
3.0
4.0
–VCM
VEE +0.5
VEE +0
– 55
– 25
0
±5.0 V
6.0
4.0
MC33079
±15 V
4
MC33078
±5.0 V
2.0
0
– 55
±10 V
Supply Voltages
– 25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
VCC = +15 V
VEE = –15 V
RL < 100 Ω
VID = 1.0 V
Sink
40
Source
30
20
10
– 55
– 25
0
25
50
75
100
125
Figure 10. Common Mode Rejection
versus Frequency
CMR, COMMON MODE REJECTION (dB)
I CC , SUPPLY CURRENT (mA)
8.0
100
TA, AMBIENT TEMPERATURE (°C)
VCM = 0 V
RL = ∞
VO = 0 V
±10 V
75
50
Figure 9. Supply Current versus Temperature
±15 V
50
Figure 8. Output Short Circuit Current
versus Temperature
RL, LOAD RESISTANCE TO GROUND (kΩ)
10
25
TA, AMBIENT TEMPERATURE (°C)
| I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA)
Vsat , OUTPUT SATURATION VOLTAGE (V)
–55°C
VCC = +3.0 V to +15 V
VEE = –3.0 V to –15 V
∆VIO = 5.0 mV
VO = 0 V
VCC –1.0
Figure 7. Output Saturation Voltage versus
Load Resistance to Ground
VCC –1.0
+VCM
125
160
∆ VCM
140
120
CMR = 20Log
100
80
60
40
20
100
–
ADM
+
VCM
VO
∆ VO
× ADM
VCC = +15 V
VEE = –15 V
VCM = 0 V
∆VCM = ±1.5 V
TA = 25°C
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
10 M
MOTOROLA ANALOG IC DEVICE DATA
MC33078 MC33079
PSR, POWER SUPPLY REJECTION (dB)
140
∆VO/ADM
+PSR = 20Log
120
∆VO/ADM
–PSR = 20Log
∆VCC
∆VCC
∆VCC
+PSR
100
–
ADM
+
80
Figure 12. Gain Bandwidth Product
versus Supply Voltage
–PSR
∆VO
VEE
60
40
20
VCC = +15 V
VEE = –15 V
TA = 25°C
0
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
GWB, GAIN BANDWIDTH PRODUCT (MHz)
Figure 11. Power Supply Rejection
versus Frequency
30
20
10
0
5.0
10 M
1.0 M
RL = 10 kΩ
CL = 0 pF
f = 100 kHz
TA = 25°C
20
20
20
15
15
10
VCC = +15 V
VEE = –15 V
f = 100 kHz
RL = 10 kΩ
CL = 0 pF
5.0
0
–55
–25
0
25
50
75
100
–5.0
RL = 2.0 kΩ
–10
RL = 10 kΩ
10
VO –
15
Figure 15. Output Voltage versus Frequency
Figure 16. Open Loop Voltage Gain
versus Supply Voltage
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
VCC = +15 V
VCC = –15 V
RL = 2.0 kΩ
AV = +1.0
THD ≤ 1.0%
TA = 25°C
10
0
VCC |VEE| , SUPPLY VOLTAGE (V)
20
5.0
RL = 2.0 kΩ
5.0
TA, AMBIENT TEMPERATURE (°C)
25
10
VO +
RL = 10 kΩ
10
–20
5.0
125
30
15
TA = 25°C
–15
35
VO, OUTPUT VOLTAGE (Vpp )
15
Figure 14. Maximum Output Voltage
versus Supply Voltage
VO , OUTPUT VOLTAGE (Vp)
GWB, GAIN BANDWIDTH PRODUCT (MHz)
Figure 13. Gain Bandwidth Product
versus Temperature
0
10
VCC |VEE| , SUPPLY VOLTAGE (V)
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
1.0 M
10 M
20
110
100
RL = 2.0 kΩ
f ≤ 10 Hz
∆VO = 2/3 (VCC –VEE)
TA = 25°C
90
80
5.0
10
15
VCC |VEE| , SUPPLY VOLTAGE (V)
20
5
MC33078 MC33079
110
50
105
| Z O |, OUTPUT IMPEDANCE ( Ω )
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
f ≤ 10 Hz
∆VO = –10 V to +10 V
100
95
90
–55
–25
0
25
50
75
10 kΩ
–
VOM
+
100 Ω
Measurement Channel
100
10
AV = 1000
0
1.0 k
125
Drive Channel
VCC = +15 V
VEE = –15 V
RL = 2.0 KΩ
∆VOD = 20 Vpp
TA = 25°C
MC33079
110
10
100
∆VOA
∆VOM
CS = 20 Log
1.0 k
f, FREQUENCY (Hz)
10 k
0.1
10 M
10
AV = 100
Vin
–
+
10 kΩ
AV = 10
VO
2.0 kΩ
AV = 1.0
0.005
2.0
–
VO
+
2.0 kΩ
100
1.0 k
f, FREQUENCY (Hz)
10 k
100 k
Figure 22. Slew Rate versus Supply Voltage
AV = 1000
0.05
0.01
VCC = +15 V
VEE = –15 V
VO = 1.0 Vrms
TA = 25°C
10
RA
6
1.0 M
0.001
100 k
SR, SLEW RATE (V/ µ s)
THD, TOTAL HARMONIC DISTORTION (%)
VCC = +15 V
VEE = –15 V
0.5 f = 2.0 kHz
TA = 25°C
0.1
1.0
100 k
AV = 1.0
0.01
1.0
0
AV = 10
1.0
Figure 21. Total Harmonic Distortion
versus Output Voltage
0.001
10 k
AV = 100
Figure 20. Total Harmonic Distortion
versus Frequency
140
120
20
Figure 19. Channel Separation
versus Frequency
150
100 Ω
30
f, FREQUENCY (Hz)
MC33078
130
100
VCC = +15 V
VEE = –15 V
VO = 0 V
TA = 25°C
40
TA, AMBIENT TEMPERATURE (°C)
160
CS, CHANNEL SEPARATION (dB)
Figure 18. Output Impedance
versus Frequency
THD, TOTAL HARMONIC DISTORTION (%)
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
Figure 17. Open Loop Voltage Gain
versus Temperature
3.0
4.0
5.0
6.0
7.0
VO, OUTPUT VOLTAGE (Vrms)
8.0
9.0
Falling
Rising
6.0
4.0
2.0
8.0
Vin = 2/3 (VCC –VEE)
TA = 25°C
0
5.0
–
∆Vin
+
VO
2.0 kΩ
10
15
VCC |VEE| , SUPPLY VOLTAGE (V)
20
MOTOROLA ANALOG IC DEVICE DATA
MC33078 MC33079
Figure 24. Voltage Gain and Phase
versus Frequency
SR, SLEW RATE (V/ µ s)
8.0
A VOL , OPEN LOOP VOLTAGE GAIN (dB)
10
VCC = +15 V
VEE = –15 V
∆Vin = 20 V
Falling
Rising
6.0
–
∆Vin
4.0
2.0
–55
–25
VO
+
2.0 kΩ
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
120
100
80
40
135
20
20
–55°C
30
8.0
125°C
125°C
6.0
40
50
4.0
VCC = +15 V
VEE = –15 V
VO = 0 V
2.0
0
25°C
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
180
10 M
–55°C
60
∆Vin
125°C
VO
+
25°C
CL
– 55°C
60
40
VCC = +15 V
VEE = –15 V
∆Vin = 100 mV
20
Gain
1
10
0
10
70
1000
100
100
1.0 k
10 k
CL, OUTPUT LOAD CAPACITANCE (pF)
CL, OUTPUT LOAD CAPACITANCE (pF)
Figure 27. Input Referred Noise Voltage and
Current versus Frequency
Figure 28. Total Input Referred Noise Voltage
versus Source Resistance
100
80
10
VCC = +15 V
VEE = –15 V
TA = 25°C
50
30
20
10
8.0
5.0
Voltage
3.0
2.0
Current
1.0
10
100
1.0 k
f, FREQUENCY (Hz)
10 k
MOTOROLA ANALOG IC DEVICE DATA
0.1
100 k
Vn, REFERRED NOISE VOLTAGE (nV/ √ Hz)
e n , INPUT REFERRED NOISE VOLTAGE ( nV/ √ Hz )
100
–
80
os, OVERSHOOT (%)
Phase
25°C
φ m, PHASE MARGIN (DEGREES)
10
i n, INPUT REFERRED NOISE CURRENT ( pA/ √ Hz )
A m , OPEN LOOP GAIN MARGIN (dB)
CL
10
10
100
0
VO
+
2.0 kΩ
90
Figure 26. Overshoot versus Output
Load Capacitance
14
12 Vin
Phase
Gain
Figure 25. Open Loop Gain Margin and
Phase Margin versus Load Capacitance
–
45
60
0
1.0
125
0
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
TA = 25°C
φ, EXCESS PHASE (DEGREES)
Figure 23. Slew Rate versus Temperature
1000
100
VCC = +15 V
VEE = –15 V
f = 1.0 kHz
TA = 25°C
Vn(total) = (inRs)2
Ǹ
) en2 ) 4KTRS
10
1.0
10
100
1.0 k
10 k
100 k
1.0 M
RS, SOURCE RESISTANCE (Ω)
7
MC33078 MC33079
Figure 29. Phase Margin and Gain Margin versus
Differential Source Resistance
14
Am, GAIN MARGIN (dB)
12
10
R1
8.0
6.0
4.0
2.0
0
60
Gain
R2
50
Phase
–
+
40
VO
30
VCC = +15 V
VEE = –15 V
RT = R1 +R2
AV = +100
VO = 0 V
TA = 25°C
20
10
10
100
1.0 k
10 k
φ m , PHASE MARGIN (DEGREES)
70
0
100 k
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
Figure 31. Noninverting Amplifier Slew Rate
V O , OUTPUT VOLTAGE (5.0 V/DIV)
V O , OUTPUT VOLTAGE (5.0 V/DIV)
Figure 30. Inverting Amplifier Slew Rate
VCC = +15 V
VEE = –15 V
AV = –1.0
RL = 2.0 kΩ
CL = 100 pF
TA = 25°C
VCC = +15 V
VEE = –15 V
AV = +1.0
RL = 2.0 kΩ
CL = 100 pF
TA = 25°C
t, TIME (2.0 µs/DIV)
t, TIME (2.0 µs/DIV)
Figure 33. Low Frequency Noise Voltage
versus Time
e n , INPUT NOISE VOLTAGE (100 nV/DIV)
V O , OUTPUT VOLTAGE (5.0 V/DIV)
Figure 32. Noninverting Amplifier Overshoot
VCC = +15 V
VEE = –15 V
RL = 2.0 kΩ
CL = 100 pF
AV = +1.0
TA = 25°C
t, TIME (200 µs/DIV)
8
VCC = +15 V
VEE = –15 V
BW = 0.1 Hz to 10 Hz
TA = 25°C
t, TIME (1.0 sec/DIV)
MOTOROLA ANALOG IC DEVICE DATA
MC33078 MC33079
Figure 34. Voltage Noise Test Circuit
(0.1 Hz to 10 Hzp–p)
0.1 µF
10 Ω
100 kΩ
–
2.0 kΩ
+
D.U.T.
+
1/2
4.7 µF
4.3 kΩ
Scope
×1
Rin = 1.0 MΩ
MC33078
–
100 kΩ
Voltage Gain = 50,000
22 µF
2.2 µF
110 kΩ
24.3 kΩ
0.1 µF
Note: All capacitors are non–polarized.
MOTOROLA ANALOG IC DEVICE DATA
9
MC33078 MC33079
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
8
5
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
–B–
1
4
F
–A–
NOTE 2
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
C
J
–T–
N
SEATING
PLANE
D
M
K
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
G
H
0.13 (0.005)
T A
M
B
M
M
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
D
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
8
5
0.25
H
E
M
B
M
1
4
h
B
e
X 45 _
q
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
10
M
C B
S
A
S
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.18
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
MOTOROLA ANALOG IC DEVICE DATA
MC33078 MC33079
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
14
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
8
B
1
7
A
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
C
J
N
H
G
D
SEATING
PLANE
K
M
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
8
–B–
1
P 7 PL
0.25 (0.010)
7
G
M
F
–T–
0.25 (0.010)
M
K
D 14 PL
M
T B
S
MOTOROLA ANALOG IC DEVICE DATA
M
R X 45 _
C
SEATING
PLANE
B
A
S
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.62 BSC
0_
10_
0.39
1.01
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
14
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.300 BSC
0_
10_
0.015
0.039
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.228
0.244
0.010
0.019
11
MC33078 MC33079
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
12
◊
*MC33078/D*
MOTOROLA ANALOG IC DEVICE
DATA
MC33078/D