Order this document by LM833/D The LM833 is a standard low–cost monolithic dual general–purpose operational amplifier employing Bipolar technology with innovative high–performance concepts for audio systems applications. With high frequency PNP transistors, the LM833 offers low voltage noise (4.5 nV/ Hz ), 15 MHz gain bandwidth product, 7.0 V/µs slew rate, 0.3 mV input offset voltage with 2.0 µV/°C temperature coefficient of input offset voltage. The LM833 output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source/sink AC frequency response. The LM833 is specified over the automotive temperature range and is available in the plastic DIP and SO–8 packages (P and D suffixes). For an improved performance dual/quad version, see the MC33079 family. • • • • • • • • DUAL OPERATIONAL AMPLIFIER SEMICONDUCTOR TECHNICAL DATA Low Voltage Noise: 4.5 nV/ ǸHz 8 1 High Gain Bandwidth Product: 15 MHz N SUFFIX PLASTIC PACKAGE CASE 626 High Slew Rate: 7.0 V/µs Low Input Offset Voltage: 0.3 mV Low T.C. of Input Offset Voltage: 2.0 µV/°C Low Distortion: 0.002% Excellent Frequency Stability 8 Dual Supply Operation 1 D SUFFIX PLASTIC PACKAGE CASE 751 (SO–8) PIN CONNECTIONS Output 1 MAXIMUM RATINGS Rating Supply Voltage (VCC to VEE) Input Differential Voltage Range (Note 1) Symbol Value Unit VS +36 V VIDR 30 V VIR ±15 Output Short Circuit Duration (Note 2) tSC Indefinite Operating Ambient Temperature Range TA –40 to +85 °C Operating Junction Temperature TJ +150 °C Storage Temperature Tstg –60 to +150 °C Maximum Power Dissipation (Notes 2 and 3) PD 500 mW Input Voltage Range (Note 1) 2 3 VCC 7 Output 2 6 2 VEE 4 Inputs 2 5 (Top View) ORDERING INFORMATION Device Operating Temperature Range LM833D Package Plastic DIP LM833N TA = – 40° to +85°C Motorola, Inc. 1996 MOTOROLA ANALOG IC DEVICE DATA 1 8 Inputs 1 V NOTES: 1. Either or both input voltages must not exceed the magnitude of VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see power dissipation performance characteristic). 3. Maximum value at TA ≤ 85°C. 1 SO–8 Rev 0 1 LM833 ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristic Symbol Min Typ Max Unit VIO – 0.3 5.0 mV ∆VIO/∆T – 2.0 – µV/°C Input Offset Current (VCM = 0 V, VO = 0 V) IIO – 10 200 nA Input Bias Current (VCM = 0 V, VO = 0 V) IIB – 300 1000 nA Common Mode Input Voltage Range VICR – –12 +14 –14 +12 – V Large Signal Voltage Gain (RL = 2.0 kΩ, VO = ±10 V AVOL 90 110 – dB Output Voltage Swing: RL = 2.0 kΩ, VID = 1.0 V RL = 2.0 kΩ, VID = 1.0 V RL = 10 kΩ, VID = 1.0 V RL = 10 kΩ, VID = 1.0 V VO+ VO– VO+ VO– 10 – 12 – 13.7 –14.1 13.9 –14.7 – –10 – –12 Common Mode Rejection (Vin = ±12 V) CMR 80 100 – dB Power Supply Rejection (VS = 15 V to 5.0 V, –15 V to –5.0 V) PSR 80 115 – dB ID – 4.0 8.0 mA Unit Input Offset Voltage (RS = 10 Ω, VO = 0 V) Average Temperature Coefficient of Input Offset Voltage RS = 10 Ω, VO = 0 V, TA = Tlow to Thigh V Power Supply Current (VO = 0 V, Both Amplifiers) AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.) Characteristic Symbol Min Typ Max Slew Rate (Vin = –10 V to +10 V, RL = 2.0 kΩ, AV = +1.0) SR 5.0 7.0 – V/µs GBW 10 15 – MHz Unity Gain Frequency (Open Loop) fU – 9.0 – MHz Unity Gain Phase Margin (Open Loop) θm – 60 – Deg Equivalent Input Noise Voltage (RS = 100 Ω, f = 1.0 kHz) en – 4.5 – nVń ǸHz Equivalent Input Noise Current (f = 1.0 kHz) in – 0.5 – pAń ǸHz Power Bandwidth (VO = 27 Vpp, RL = 2.0 kΩ, THD ≤ 1.0%) BWP – 120 – kHz Distortion (RL = 2.0 kΩ, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD – 0.002 – % CS – –120 – dB Gain Bandwidth Product (f = 100 kHz) Channel Separation (f = 20 Hz to 20 kHz) Figure 2. Input Bias Current versus Temperature 800 1000 IIB , INPUT BIAS CURRENT (nA) PD , MAXIMUM POWER DISSIPATION (mW) Figure 1. Maximum Power Dissipation versus Temperature 600 400 200 0 –50 2 0 50 100 TA, AMBIENT TEMPERATURE (°C) 150 800 VCC = +15 V VEE = –15 V VCM = 0 V 600 400 200 0 –55 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 MOTOROLA ANALOG IC DEVICE DATA LM833 Figure 3. Input Bias Current versus Supply Voltage Figure 4. Supply Current versus Supply Voltage 10 TA = 25°C IS , SUPPLY CURRENT (mA) I IB , INPUT BIAS CURRENT (nA) 800 600 400 200 0 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 8.0 6.0 VEE 2.0 0 AVOL, DC VOLTAGE GAIN (dB) AVOL, DC VOLTAGE GAIN (dB) 100 95 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 100 90 80 5.0 125 100 45 80 20 VCC = +15 V VEE = –15 V RL = 2.0 kΩ TA = 25°C Gain 135 0 1.0 10 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA 90 1.0 M 180 10 M GBW, GAIN BANDWIDTH PRODUCT (MHz) 0 Phase 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 20 Figure 8. Gain Bandwidth Product versus Temperature ∅ , EXCESS PHASE (DEGREES) AVOL, OPEN LOOP VOLTAGE GAIN (dB) 120 40 20 RL = 2.0 kΩ TA = 25°C Figure 7. Open Loop Voltage Gain and Phase versus Frequency 60 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 110 105 –25 5.0 Figure 6. DC Voltage Gain versus Supply Voltage VCC = +15 V VEE = –15 V RL = 2.0 kΩ 90 –55 VO + Figure 5. DC Voltage Gain versus Temperature 110 RL = ∞ TA = 25°C 4.0 0 20 VCC IS 20 15 10 5.0 0 –55 VCC = +15 V VEE = –15 V f = 100 kHz –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 3 LM833 Figure 9. Gain Bandwidth Product versus Supply Voltage Figure 10. Slew Rate versus Temperature GBW, GAIN BANDWIDTH PRODUCT (MHz) 30 10 SR, SLEW RATE (V/ µs) f = 100 kHz TA = 25°C 20 10 0 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 8.0 Falling Rising 6.0 VCC = +15 V VEE = –15 V RL = 2.0 kΩ AV = +1.0 4.0 2.0 –55 20 Figure 11. Slew Rate versus Supply Voltage SR, SLEW RATE (V/ µ s) 8.0 RL = 2.0k Ω AV = +1.0 TA = 25°C Falling 4.0 + – Vin 2.0 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) VO RL 100 125 35 Rising 6.0 – + Figure 12. Output Voltage versus Frequency VO, OUTPUT VOLTAGE (Vpp ) 10 –25 Vin VO RL 30 25 20 VCC = +15 V VEE = –15 V RL = 2.0 kΩ THD 1.0% TA = 25°C 15 v 10 5.0 0 5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 0 20 10 VO, OUTPUT VOLTAGE (Vpp ) 20 15 RL = 10 kΩ TA = 25°C VO + 10 5.0 0 –5.0 –10 VO – –15 –20 5.0 4 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V) 1.0 k 10 k 1.0 M f, FREQUENCY (Hz) 10 M 100 k Figure 14. Output Saturation Voltage versus Temperature V sat , OUTPUT SATURATION VOLTAGE |V| Figure 13. Maximum Output Voltage versus Supply Voltage 100 20 15 +Vsat –Vsat 14 VCC = +15 V VEE = –15 V RL = 10 kΩ 13 –55 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 100 125 MOTOROLA ANALOG IC DEVICE DATA LM833 PSR, POWER SUPPLY REJECTION (dB) 140 ∆VCC VCC = +15 V VEE = –15 V TA = 25°C 120 – ADM + 100 80 Figure 16. Common Mode Rejection versus Frequency CMR, COMMON MODE REJECTION (dB) Figure 15. Power Supply Rejection versus Frequency –PSR ∆VO ∆VEE +PSR 60 40 20 +PSR = 20 Log –PSR = 20 Log 0 100 1.0 k ( ( ∆VO/ADM ∆VCC ∆VO/ADM ∆VEE ) ) 10 k 100 k f, FREQUENCY (Hz) 1.0 M 160 140 CMR = 20 Log 80 60 40 1.0 k – + VCC = +15 V VEE = –15 V RL = 2.0 kΩ TA = 25°C VO RL 0.01 VO = 1.0 Vrms 10 M VO = 3.0 Vrms 100 1.0 k 10 k VCC = +15 V VEE = –15 V RS = 100 Ω TA = 25°C 2.0 1.0 10 100 k Figure 19. Input Referred Noise Current versus Frequency 100 2.0 100 VCC = +15 V VEE = –15 V TA = 25°C 1.0 0.7 0.5 0.4 0.3 100 1.0 k f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA 10 k 1.0 k f, FREQUENCY (Hz) 10 k 100 k Figure 20. Input Referred Noise Voltage versus Source Resistance e n, INPUT NOISE VOLTAGE (nV/√ Hz ) i n , INPUT NOISE CURRENT (pA/√ Hz ) 1.0 M 5.0 f, FREQUENCY (Hz) 0.2 10 10 k 100 k f, FREQUENCY (Hz) 10 e n, INPUT NOISE VOLTAGE (nV/√ Hz ) THD, TOTAL HARMONIC DISTORTION (%) VCC = +15 V VEE = –15 V VCM = 0 V ∆VCM = ±1.5 V TA = 25°C Figure 18. Input Referred Noise Voltage versus Frequency 1.0 0.001 10 ∆VO ∆VCM × ADM ∆V0 100 Figure 17. Total Harmonic Distortion versus Frequency 0.1 – ADM + 120 20 100 10 M ∆VCM 100 k VCC = +15 V VEE = –15 V Vn(total) = (inRS)2 +en2 + Ǹ 4KTRS TA = 25°C 10 1.0 1.0 10 100 1.0 k 10 k 100 k 1.0 M RS, SOURCE RESISTANCE (Ω) 5 LM833 Figure 21. Inverting Amplifier Figure 22. Noninverting Amplifier Slew Rate VO , OUTPUT VOLTAGE (5.0 V/DIV) VO , OUTPUT VOLTAGE (5.0 V/DIV) VCC = +15 V VEE = –15 V RL = 2.0 kΩ CL = 0 pF AV = –1.0 TA = 25°C VCC = +15 V VEE = –15 V RL = 2.0 kΩ CL = 0 pF AV = +1.0 TA = 25°C t, TIME (2.0 µs/DIV) t, TIME (2.0 µs/DIV) VO , OUTPUT VOLTAGE (10 mV/DIV) Figure 23. Noninverting Amplifier Overshoot VCC = +15 V VEE = –15 V RL = 2.0 kΩ CL = 0 pF AV = +1.0 TA = 25°C t, TIME (200 ns/DIV) 6 MOTOROLA ANALOG IC DEVICE DATA LM833 OUTLINE DIMENSIONS N SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE K 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 –B– 1 4 F DIM A B C D F G H J K L M N –A– NOTE 2 L C J –T– N SEATING PLANE D M K MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC ––– 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC ––– 10_ 0.030 0.040 G H 0.13 (0.005) T A M M B M D SUFFIX PLASTIC PACKAGE CASE 751–05 (SO–8) ISSUE R D A NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C 8 5 0.25 H E M B M 1 4 h B e X 45 _ q A C SEATING PLANE L 0.10 A1 B 0.25 M C B S A S MOTOROLA ANALOG IC DEVICE DATA DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ 7 LM833 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315 MFAX: [email protected] – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 8 ◊ *LM833/D* MOTOROLA ANALOG IC DEVICE DATA LM833/D