ONSEMI MC34184D

Order this document by MC34181/D
"( "($ ( &
!(& !#'&
#$&"! #$%
Quality bipolar fabrication with innovative design concepts are employed
for the MC33181/2/4, MC34181/2/4 series of monolithic operational
amplifiers. This JFET input series of operational amplifiers operates at
210 µA per amplifier and offers 4.0 MHz of gain bandwidth product and
10 V/µs slew rate. Precision matching and an innovative trim technique of
the single and dual versions provide low input offset voltages. With a JFET
input stage, this series exhibits high input resistance, low input offset voltage
and high gain. The all NPN output stage, characterized by no deadband
crossover distortion and large output voltage swing, provides high
capacitance drive capability, excellent phase and gain margins, low open
loop high frequency output impedance and symmetrical source/sink AC
frequency response.
The MC33181/2/4, MC34181/2/4 series of devices are specified over the
commercial or industrial/vehicular temperature ranges. The complete series
of single, dual and quad operational amplifiers are available in the plastic
DIP as well as the SOIC surface mount packages.
• Low Supply Current: 210 µA (Per Amplifier)
•
•
•
•
•
•
•
•
•
•
•
8
8
1
1
P SUFFIX
PLASTIC PACKAGE
CASE 626
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
PIN CONNECTIONS
Offset Null
Inputs
VEE
1
8
NC
2
–
7
3
+
6
VCC
Output
5
Offset Null
4
(Single, Top View)
Wide Supply Operating Range: ±1.5 V to ±18 V
Output 1
Wide Bandwidth: 4.0 MHz
Inputs 1
High Slew Rate: 10 V/µs
1
Low Input Offset Voltage: 2.0 mV
–
+
3
VEE
Large Output Voltage Swing: –14 V to +14 V (with ±15 V Supplies)
VCC
Output 2
8
1
2
7
2
6
–
+
4
Inputs 2
5
(Dual, Top View)
Large Capacitance Drive Capability: 0 pF to 500 pF
Low Total Harmonic Distortion: 0.04%
Excellent Phase Margin: 67°
14
Excellent Gain Margin: 6.7 dB
14
1
1
Output Short Circuit Protection
Offered in New TSSOP Package Including the Standard SOIC and
DIP Packages
P SUFFIX
PLASTIC PACKAGE
CASE 646
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
14
ORDERING INFORMATION
1
Op Amp
Function
Single
Dual
Device
Operating
Temperature Range
Package
MC34181P
MC34181D
TA = 0° to +70°C
Plastic DIP
SO–8
MC33181P
MC33181D
TA = –40° to +85°C
Plastic DIP
SO–8
MC34182P
MC34182D
TA = 0° to +70°C
Plastic DIP
SO–8
TA = –40° to +85°C
Plastic DIP
SO–8
MC34184P
MC34184D
MC34184DTB
TA = 0° to +70°C
Plastic DIP
SO–14
TSSOP–14
MC33184P
MC33184D
MC33184DTB
TA = –40° to +85°C
DTB SUFFIX
PLASTIC PACKAGE
CASE 948G
(TSSOP–14)
PIN CONNECTIONS
Output 1
Inputs 1
MC33182P
MC33182D
Quad
Plastic DIP
SO–14
TSSOP–14
2
3
VCC
5
6
1
4
––
+
13
+
–
2
3
+
–
Output 4
Inputs 4
12
11
7
10
VEE
Inputs 3
9
8
Output 3
(Quad, Top View)
 Motorola, Inc. 1996
MOTOROLA ANALOG IC DEVICE DATA
–
+
4
Inputs 2
Output 2
14
1
Rev 1
1
MC34181,2,4 MC33181,2,4
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VS
+36
V
VIDR
Note 1
V
Input Voltage Range
VIR
Note 1
V
Output Short Circuit Duration (Note 2)
tSC
Indefinite
sec
Operating Junction Temperature
TJ
+150
°C
Tstg
–60 to +150
°C
Supply Voltage (from VCC to VEE)
Input Differential Voltage Range
Storage Temperature Range
NOTES: 1. Either or both input voltages should not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not
exceeded (see Figure 1).
Representative Schematic Diagram
(Each Amplifier)
VCC
Internal
Bias
Network
Q8
Q9
Q7
Neg
Pos
J1
J2
D1
C1
D3
+
R6
D2
Q1
R7
Q4
Q2
C2
Q3
R1
VO
R2
Q5
Q6
I3
I4
R4
R3
R5
VEE
1
5
Null Offsets
MC3X181 (Single) Only
–
+
5
1
VEE
25 kΩ
MC3X181 Input Offset
Voltage Null CIrcuit
2
MOTOROLA ANALOG IC DEVICE DATA
MC34181,2,4 MC33181,2,4
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics
Input Offset Voltage (RS = 50 Ω, VO = 0 V)
Single
TA = +25°C
TA = 0° to +70°C (MC34181)
TA = –40° to +85°C (MC33181)
Dual
TA = +25°C
TA = 0° to +70°C (MC34182)
TA = –40° to +85°C (MC33182)
Quad
TA = +25°C
TA = 0° to +70°C (MC34184)
TA = –40° to +85°C (MC33184)
Average Temperature Coefficient of VIO (RS = 50 Ω, VO = 0V)
Symbol
Min
Typ
Max
VIO
∆VIO/∆T
Input Offset Current (VCM = 0 V, VO = 0V)
TA = +25°C
TA = 0° to +70°C
TA = –40° to +85°C
IIO
Input Bias Current (VCM = 0 V, VO = 0V)
TA = +25°C
TA = 0° to +70°C
TA = –40° to +85°C
IIB
Input Common Mode Voltage Range
VICR
Large Signal Voltage Gain (RL = 10 kΩ, VO = ±10 V)
TA = +25°C
TA = Tlow to Thigh
AVOL
Output Voltage Swing (VID = 1.0 V, RL = 10 kΩ)
TA = +25°C
Unit
mV
—
—
—
0.5
—
—
2.0
3.0
3.5
—
—
—
1.0
—
—
3.0
4.0
4.5
—
—
—
4.0
—
—
10
11
11.5
—
10
—
—
—
—
0.001
—
—
0.05
1.0
2.0
—
—
—
0.003
—
—
0.1
2.0
4.0
µV/°C
nA
nA
(VEE +4.0 V) to (VCC –2.0 V)
V
V/mV
25
15
60
—
—
—
VO+
VO–
+13.5
—
+14
–14
—
–13.5
V
Common Mode Rejection (RS = 50 Ω, VCM = VICR, VO = 0 V)
CMR
70
86
—
dB
Power Supply Rejection (RS = 50 Ω, VCM = 0 V, VO = 0 V)
PSR
70
84
—
dB
Output Short Circuit Current (VID = 1.0 V, Output to Ground)
Source
Sink
ISC
3.0
8.0
8.0
11
—
—
Power Supply Current (No Load, VO = 0 V)
Single
TA = +25°C
TA = Tlow to Thigh
Dual
TA = +25°C
TA = Tlow to Thigh
Quad
TA = +25°C
TA = Tlow to Thigh
MOTOROLA ANALOG IC DEVICE DATA
mA
µA
ID
—
—
210
—
250
250
—
—
420
—
500
500
—
—
840
—
1000
1000
3
MC34181,2,4 MC33181,2,4
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Symbol
Characteristics
Slew Rate (Vin = –10 V to +10 V, RL = 10 kΩ, CL = 100 pF)
AV = +1.0
AV = –1.0
Min
Typ
Max
SR
Settling Time (AV = –1.0, RL = 10 kΩ, VO = 0 V to +10 V Step)
To Within 0.10%
To Within 0.01%
Unit
V/µs
7.0
—
10
10
—
—
—
—
1.1
1.5
—
—
µs
ts
Gain Bandwidth Product (f = 100 kHz)
GBW
3.0
4.0
—
MHz
Power Bandwidth (AV = +1.0, RL = 10 kΩ, VO = 20 Vpp, THD = 5.0%)
BWp
—
120
—
kHz
—
—
67
34
—
—
—
—
6.7
3.4
—
—
Phase Margin (–10 V < VO < +10 V)
RL = 10 kΩ
RL = 10 kΩ, CL = 100 pF
fm
Gain Margin (–10 V < VO < +10 V)
RL = 10 kΩ
RL = 10 kΩ, CL = 100 pF
Am
Equivalent Input Noise Voltage
RS = 100 Ω, f = 1.0 kHz
en
—
38
—
nV/ √ Hz
Equivalent Input Noise Current
f = 1.0 kHz
in
—
0.01
—
pA/ √ Hz
Differential Input Capacitance
Ci
—
3.0
—
pF
Differential Input Resistance
Ri
—
1012
—
W
THD
—
0.04
—
%
—
—
120
—
dB
|Zo|
—
200
—
Ω
Total Harmonic Distortion
AV = 10, RL = 10 kΩ, 2.0 Vpp < VO < 20 Vpp, f = 1.0 kHz
Channel Separation (RL = 10 kΩ, –10 V < VO < +10 V, 0 Hz < f < 10 kHz)
Open Loop Output Impedance
(f = 1.0 MHz)
2400
2000
1600
8/14 Pin
Plastic
TSSOP–14
SO–14
1200
4
800
SO–8
400
0
–55 –40 –20
0
20 40 60 80 100 120 140 160
TA, AMBIENT TEMPERATURE (°C)
dB
Figure 2. Input Common Mode Voltage Range
versus Temperature
V ICR, INPUT COMMON MODE VOLTAGE
RANGE (V)
P D , MAXIMUM POWER DISSIPATION (mW)
Figure 1. Maximum Power Dissipation versus
Temperature for Package Variations
Degrees
0
–1.0
VCC = +3.0 V to +15 V
VEE = –3.0 V to –15 V
∆VIO = 5.0 mV
VCC (VCM to VCC)
–2.0
3.0
2.0
1.0
VEE
0
–55
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
100
125
MOTOROLA ANALOG IC DEVICE DATA
MC34181,2,4 MC33181,2,4
Figure 3. Input Bias Current
versus Temperature
Figure 4. Input Bias Current versus
Input Common Mode Voltage
20
VCC = +15 V
VEE = –15 V
VCM = 0 V
100
I IB , INPUT BIAS CURRENT (nA)
I IB , INPUT BIAS CURRENT (nA)
1000
10
1.0
0.1
0.01
0.001
–55
–25
0
25
50
75
100
V sat , OUTPUT SATURATION VOLTAGE (V)
10
4.0
6.0
8.0
10
12
14
16
5.0
10
0
VCC
–1.0
VCC = +15 V
VEE = –15 V
TA = +25°C
–2.0
–3.0
Source
+3.0
+2.0
Sink
+1.0
0
VEE
0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
VCC, |VEE|, SUPPLY VOLTAGE (V)
IL, LOAD CURRENT (mA)
Figure 7. Output Saturation Voltage versus
Load Resistance to Ground
Figure 8. Output Saturation Voltage versus
Load Resistance to VCC
0
V sat , OUTPUT SATURATION VOLTAGE (V)
VO, OUTPUT VOLTAGE SWING (V)
V sat , OUTPUT SATURATION VOLTAGE (V)
0
Figure 6. Output Saturation Voltage
versus Load Current
RL = 10 k
VCC
VCC = +15 V
VEE = –15 V
TA = +25°C
–2.0
–3.0
3.0
2.0
1.0
0
1.0 k
–5.0
Figure 5. Output Voltage Swing
versus Supply Voltage
20
–1.0
5
VICR, INPUT COMMON MODE VOLTAGE (V)
30
2.0
10
TA, AMBIENT TEMPERATURE (°C)
RL Connected to Ground
TA = 25°C
0
15
0
–10
125
40
0
VCC = +15 V
VEE = –15 V
TA = 25°C
VEE
10 k
100 k
RL, LOAD RESISTANCE TO GROUND (Ω)
MOTOROLA ANALOG IC DEVICE DATA
1.0 M
10
0
VCC
–1.0
–2.0
–3.0
3.0
VCC = +15 V
VEE = –15 V
TA = +25°C
2.0
1.0
0
1.0 k
VEE
10 k
100 k
1.0 M
RL, LOAD RESISTANCE (Ω)
5
MC34181,2,4 MC33181,2,4
Figure 10. Output Impedance versus Frequency
30
Sink
10
Source
0
–55
–25
0
25
50
75
100
200
VCC = +15 V
VEE = –15 V
VCM = 0 V
VO = 0 V
∆IO = 10 µA
TA = 25°C
AV = 1000
100
0
100
1.0 k
100 k
1.0 M
Figure 11. Output Voltage Swing
versus Frequency
Figure 12. Output Distortion versus
Frequency
12
6
10 k
109 k
1.0
THD, TOTAL HARMONIC DISTORTION (%)
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
THD = 1.0%
TA = 25°C
0
1.0 k
0.8
0.6
VCC = +15 V
VEE = –15 V
VO = 2.0 Vpp
RL = 10 kΩ
TA = 25°C
AV = 1000
0.4
100
0.2
10
1.0
0
10
1.0 M
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
f, FREQUENCY (Hz)
Figure 13. Open Loop Voltage Gain
versus Temperature
Figure 14. Open Loop Voltage Gain and
Phase versus Frequency
70
100
A VOL, OPEN LOOP VOLTAGE GAIN (dB)
A VOL, OPEN LOOP VOLTAGE GAIN (V/mV)
10 k
f, FREQUENCY (Hz)
18
60
50
40
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
f ≤ 10 Hz
TA = 25°C
30
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
6
1.0
TA, AMBIENT TEMPERATURE (°C)
24
20
–55
10
100
125
30
VO , OUTPUT VOLTAGE SWING (V p–p )
300
100
125
80
VCC = +15 V
VEE = –15 V
VO = 0 V
RL = 10 kΩ
TA = 25°C
Gain
60
Phase
0
45
φ , EXCESS PHASE (DEGREES)
20
VCC = +15 V
VEE = –15 V
RL ≤ 0.1 Ω
VID = 1.0 V
|Z O |, OUTPUT IMPEDANCE ( Ω )
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
Figure 9. Output Short Circuit Current
versus Temperature
40
90
20
135
0
1.0
10
100 1.0 k
10 k
100 k
1.0 M
10 M
180
100 M
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
Figure 15. Normalized Gain Bandwidth
Product versus Temperature
Figure 16. Output Voltage Overshoot
versus Load Capacitance
1.3
V OS , OUTPUT VOLTAGE OVERSHOOT (%)
GBW, GAIN BANDWIDTH PRODUCT (NORMALIZED)
MC34181,2,4 MC33181,2,4
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
1.2
1.1
1.0
0.9
0.8
0.7
–55
–25
0
25
50
75
100
125
60
40
20
0
10
100
1.0 k
CL, LOAD CAPACITANCE (pF)
Figure 17. Phase Margin versus
Load Capacitance
Figure 18. Gain Margin versus
Load Capacitance
10
VCC = +15 V
VEE = –15 V
RL = 10 kΩ to ∞
–10 V < VO < +10 V
TA = 25°C
60
50
A m, GAIN MARGIN (dB)
, PHASE MARGIN (DEGREES)
m
φ
80
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
∆VO = 100 mVpp
–10 V < VO < +10 V
AV = +1.0
TA = 25°C
TA, AMBIENT TEMPERATURE (°C)
70
40
30
20
10
0
10
100
8.0
6.0
4.0
2.0
100
1.0 k
CL, LOAD CAPACITANCE (pF)
CL, LOAD CAPACITANCE (pF)
Figure 19. Phase Margin
versus Temperature
Figure 20. Gain Margin
versus Temperature
10
CL = 10 pF
9.0
A m, GAIN MARGIN (dB)
60
50
40
CL = 100 pF
30
VCC = +15 V
VEE = –15 V
RL = 10 kΩ to ∞
–10 V < VO < +10 V
20
10
–55
VCC = +15 V
VEE = –15 V
RL = 10 kΩ to ∞
–10 V < VO < +10 V
TA = 25°C
0
10
1.0 k
70
φ m , PHASE MARGIN (DEGREES)
100
–25
0
25
50
8.0
CL = 10 pF
7.0
6.0
5.0
CL = 100 pF
4.0
3.0
VCC = +15 V
VEE = –15 V
RL = 10 kΩ to ∞
–10 V < VO < +10 V
2.0
1.0
75
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
100
125
0
–55
–25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (°C)
7
MC34181,2,4 MC33181,2,4
Figure 21. Normalized Slew Rate
versus Temperature
Figure 22. Common Mode Rejection
versus Frequency
CMR, COMMON MODE REJECTION (dB)
1.0
0.9
0.8
0.7
0.6
0.5
–55
VCC = +15 V
VEE = –15 V
AV = +1.0
RL = 10 kΩ
CL = 100 pF
Vin = –10 V to +10 V
–25
0
25
50
75
100
PSR, POWER SUPPLY REJECTION (dB)
en , INPUT NOISE VOLTAGE ( nV/ √ Hz )
PSR, POWER SUPPLY REJECTION (dB)
VCC = +15 V
VEE = –15 V
VCM = 0 V
TA = 25°C
20
0
10
100
1.0 k
10 k
X ADM
60
40
20
1.0 k
10 k
100 k
1.0 M
110
Positive Supply
100
∆VCC, ∆VEE = 3.0 V
f ≤ 10 Hz
90
Negative Supply
80
–55
100 k
–25
0
25
50
75
100
TA < AMBIENT TEMPERATURE (°C)
Figure 25. Power Supply Rejection
versus Frequency
Figure 26. Normalized Supply Current
versus Supply Voltage
+PSR = 20Log
∆VO/ADM
∆VCC
–PSR = 20Log
∆VO/ADM
∆VEE
+PSR (∆VCC = ±1.5 V)
100
–PSR (∆VEE = ±1.5 V)
60
VCC = +15 V
VEE = –15 V
TA = 25°C
–
ADM
+
∆VCC
∆VO
∆VEE
1.0 k
10 k
f, FREQUENCY (Hz)
8
∆VO
f, FREQUENCY (Hz)
140
0
100
∆VCM
Figure 24. Power Supply Rejection
versus Temperature
40
20
CMR = 20 Log
80
∆VO
Figure 23. Input Noise Voltage
versus Frequency
60
40
100
–
ADM
+
∆VCM
f, FREQUENCY (Hz)
80
80
VCC = +15 V
VEE = –15 V
∆VCM = 3.0 V
TA = 25°C
120
TA, AMBIENT TEMPERATURE (°C)
100
120
140
0
100
125
100 k
1.0 M
|IEE |, I CC , SUPPLY CURRENT (NORMALIZED)
SR, SLEW RATE (NORMALIZED)
1.1
125
1.2
1.1
TA = 25°C
1.0
125°C
–55°C
0.9
VCC = +15 V
VEE = –15 V
TA = 25°C
RL = ∞
VO = 0V
0.8
0.7
0
5.0
10
15
20
VCC, |VEE|, SUPPLY VOLTAGE (V)
MOTOROLA ANALOG IC DEVICE DATA
MC34181,2,4 MC33181,2,4
Figure 27. Channel Separation versus Frequency
Figure 28. Transient Response
120
100
80
60
40
20
VCC = +15 V
VEE = –15 V
TA = +25°C
0
10 k
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
AV = +1.0
TA = 25°C
V O , OUTPUT VOLTAGE (5.0 V/DIV)
CHANNEL SEPARATION (dB)
140
100 k
1.0 M
10 M
t, TIME (2.0 µs/DIV)
f, FREQUENCY (Hz)
Figure 29. Small Signal Transient Reponse
V O , OUTPUT VOLTAGE (20 mV/DIV)
VCC = +15 V
VEE = –15 V
RL = 10 kΩ
AV = +1.0
TA = 25°C
t, TIME (0.5 µs/DIV)
MOTOROLA ANALOG IC DEVICE DATA
9
MC34181,2,4 MC33181,2,4
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
8
5
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
–B–
1
4
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
–A–
NOTE 2
L
C
J
–T–
N
SEATING
PLANE
D
M
K
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
G
H
0.13 (0.005)
M
T A
M
B
M
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
D
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
8
5
0.25
H
E
M
B
M
1
4
h
B
e
X 45 _
q
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
10
M
C B
S
A
S
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.18
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
MOTOROLA ANALOG IC DEVICE DATA
MC34181,2,4 MC33181,2,4
OUTLINE DIMENSIONS – continued
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
14
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
8
B
1
7
A
F
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
C
J
N
H
G
D
SEATING
PLANE
K
M
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.300 BSC
0_
10_
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
19.56
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.62 BSC
0_
10_
0.39
1.01
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
14
8
–B–
1
P 7 PL
0.25 (0.010)
7
G
M
F
–T–
0.25 (0.010)
M
K
D 14 PL
M
T B
S
MOTOROLA ANALOG IC DEVICE DATA
M
R X 45 _
C
SEATING
PLANE
B
A
S
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.228
0.244
0.010
0.019
11
MC34181,2,4 MC33181,2,4
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
12
◊
*MC34181/D*
MC34181/D
MOTOROLA ANALOG IC DEVICE
DATA