ONSEMI MC33470DW

Order this document by MC33470/D
The MC33470 is a digitally programmable switching voltage regulator,
specifically designed for Microprocessor supply, Voltage Regulator Module
and general purpose applications, to provide a high power regulated output
voltage using a minimum of external parts. A 5–bit digital–to–analog converter
defines the dc output voltage.
This product has three additional features. The first is a pair of high speed
comparators which monitor the output voltage and expedite the circuit
response to load current changes. The second feature is a soft start circuit
which establishes a controlled response when input power is applied and
when recovering from external circuit fault conditions. The third feature is two
output drivers which provide synchronous rectification for optimum
efficiency.
This product is ideally suited for computer, consumer, and industrial
equipment where accuracy, efficiency and optimum regulation performance
is desirable.
SYNCHRONOUS
RECTIFICATION DC/DC
CONVERTER
PROGRAMMABLE
INTEGRATED CONTROLLER
SEMICONDUCTOR
TECHNICAL DATA
20
1
DW SUFFIX
PLASTIC PACKAGE
CASE 751D
(SO–20L)
MC33470 Features:
•
•
•
•
•
•
•
•
•
5–Bit Digital–to–Analog Converter Allows Digital Control of
Output Voltage
High Speed Response to Transient Load Conditions
Output Enable Pin Provides On/Off Control
Programmable Soft Start Control
PIN CONNECTIONS
High Current Output Drives for Synchronous Rectification
Internally Trimmed Reference with Low Temperature Coefficient
Programmable Overcurrent Protection
Overvoltage Fault Indication
Functionally Similar to the LTC1553
20 G1
G2 1
2
PV
CC
PGnd 3
18 VID0
AGnd 4
17 VID1
VCC 5
16 VID2
Sense 6
15 VID3
Imax 7
14 VID4
19 OUTEN
Ifb 8
13 Pwrgd
SS 9
12 Fault
Compensation 10
11 OT
(Top View)
ORDERING INFORMATION
Device
Operating
Temperature Range
Package
MC33470DW
TA = 0° to +75°C
SO–20L
 Motorola, Inc. 1999
MOTOROLA ANALOG IC DEVICE DATA
Rev 1
1
MC33470
Simplified Block Diagram
OT
18
VID0
17
Voltage
Identification 16
Code
Input
15
VID1
VID3
14
VID4
11
Outen
19
VCC
5
Over
Temp
VID2
Digitally Programmed
Reference
Vref
VCC
7
Over Current
Detect
Oscillator
2.5 V
VCC
90 µA
1.5 V
S
Q
800 µ
+
G1
Q
R
SS
Vref
Delay
PWM
Latch
1
G2
3
+
1.04 Vref
PGnd
OTA Error Amp
20 µA
+
1.04 Vref
13
R
Power
Good
+
8
Ifb
6
Sense
2
20
10 µA
0.96 Vref
Imax
PV
CC
En
PWM
Comparator
9
190 µA
Q
0.93 Vref
Delay
S
14
Fault
1.14 Vref
AGnd
4
Compensation
10
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
MAXIMUM RATINGS (TC = 25°C, unless otherwise noted.)
Rating
Symbol
Value
Unit
VCC
7.0
V
PV
CC
18
V
Imax, Ifb Inputs
Vin
–0.3 to 18
V
All Other Inputs and Digital
(OT, Fault, Power Good) Outputs
Vin
–0.3 to
VCC + 0.3
V
PD
RθJA
RθJC
0.60
91
60
W
°C/W
°C/W
Operating Junction Temperature
TJ
125
°C
Operating Ambient Temperature (Notes 1 and 2)
TA
0 to +70
°C
Tstg
–55 to +125
°C
Power Supply Voltage
Output Driver Supply Voltage (Operating)
Power Dissipation and Thermal Characteristics
Maximum Power Dissipation
Case 751D DW Suffix (TA = 70°C)
Thermal Resistance Junction–to–Ambient
Thermal Resistance Junction–to–Case
Storage Temperature Range
NOTE:
2
ESD data available upon request
MOTOROLA ANALOG IC DEVICE DATA
MC33470
ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, PVCC
VCC, = 12 V for typical values TA = Low to High [Notes 1, 2, 3], for
min/max values TA is the operating ambient temperature range that applies, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
fosc
210
300
390
kHz
Vsense
1.764
2.744
3.43
1.8
2.8
3.5
1.836
2.856
3.57
V
V
V
Input Bias Current (VCM = 2.8 V)
IIB
–
20
–
µA
Transconductance (VCM = 2.8 V, VCOMP = 2.0 V)
GM
400
800
1200
µmho
Open Loop Voltage Gain (VCOMP = 2.0 V)
AVOL
–
67
–
dB
Output Line Regulation (VCC = 4.5 to 5.5 V)
Regline
–
7.0
–
mV
Output Load Regulation
Regload
–
5.0
–
mV
IOH
IOL
–
–
120
120
–
–
Duty Cycle at G1 Output
Maximum
Minimum
DCmax
DCmin
77
–
88
–
95
0
Propagation Delay
Comp Input to G1 Output, TJ = 25°C
Comp Input to G2 Output, TJ = 25°C
tPLH1
tPLH2
–
–
0.1
0.1
–
–
Charge Current (VSoft–Start = 0 V)
Ichg
7.0
10
13
µA
Discharge Current under Current Limit (Note 5)
(VSoft–Start = 2.0 V, Vsense = Vout, Vimax = VCC, Vifb = 0 V)
ISSIL
30
90
150
µA
Discharge Current under Hard Current Limit
(VSoft–Start = 2.0 V, Vsense < Vout/2, Vimax = VCC, Vifb = 0 V)
ISSHIL
40
64
–
mA
Hard Current Limit Hold Time
tSSHIL
100
200
300
µs
IOL
133
190
247
µA
–
0.93
1.04
0.96
1.07
–
200
50
400
100
600
150
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
OSCILLATOR
Frequency (VCC = 4.5 to 5.5 V)
FEEDBACK AMPLIFIER
Voltage Feedback Input Threshold (Note 4)
VID0, VID1, VID2 and VID4 = “1” and VID3 = “0”
VID4 = “1” and VID0, VID1, VID2 and VID3 = “0”
Output Current
Source
Sink
µA
PWM SECTION
%
µs
SOFT–START SECTION
IMAX INPUT
Sink Current (Vin max = VCC, Vifb = VCC)
POWER GOOD OUTPUT
Threshold For Logic “1” to “0” Transition
Upper Threshold
Lower Threshold
Vth
Response Time
Logic “0” to “1” (Vsense changes from 0 V to VO)
Logic “1” to “0” (Vsense changes from VO to 0 V)
trPG
Vsense
µs
Sink Current (VOL = 0.5 V)
IOLPG
–
10
–
mA
Output Low Voltage (IOL = 100 µA) (Note 6)
VOLPG
–
250
500
mV
NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. VID1, VID3, VID4 = logic 0, and VID0, VID2 = logic 1.
4. Vsense is provided from a low impedance voltage source or shorted to the output voltage.
5. Under a typical soft current limit, the net soft–start discharge current will be 90 µA (ISSIL) – 10 µA (Ichg) = 80 µA. The softstart
sink to source current ratio is designed to be 9:1.
6 Sense (Pin 6) = 5.0 V, Comp (Pin 10) open, VID4, VID2, VID1, VID0 = 1.0, VID3 = 0.
7. OUTEN is internally pulled low if VID0, 1, 2, 3, and 4 are floating.
8. Due to internal pull–up resistors, there will be an additional 0.5 mA per pin if any of the VID0, 1, 2, 3, or 4 pins are pulled low.
MOTOROLA ANALOG IC DEVICE DATA
3
MC33470
ELECTRICAL CHARACTERISTICS (continued) (VCC = 5.0 V, PVCC
V , = 12 V for typical values TA = Low to High [Notes 1, 2, 3], for
CC
min/max values TA is the operating ambient temperature range that applies, unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
VthF
1.12
1.14
1.2
Vref
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
FAULT OUTPUT
Threshold For Logic “0” to “1” Transition
trF
50
100
150
µs
IOLF
–
10
–
mA
VthOUTEN
1.85
2.0
2.2
V
Delay Time
tDOT
25
50
100
µs
Sink Current (VOL = 0.5 V)
IOLF
–
10
–
mA
Input Low State
VIL
–
–
0.8
V
Input High State
VIH
3.5
–
–
V
Input Impedance
Rin
–
10
–
kΩ
VOTDD
1.55
1.70
1.85
V
Source Resistance (Vsense = 2.0 V, VG = PPVCC
VCC – 1.0 V)
Sink Resistance (Vsense = 0 V, VG = 1.0 V)
ROH
–
0.5
–
Ω
ROL
–
0.5
–
Output Voltage with OUTEN Reset (Isink = 1.0 mA)
VOL
–
0.1
0.5
V
Output Voltage Rise Time (CL = 10 nF, TJ = 25°C)
tr
–
70
140
ns
Output Voltage Fall Time (CL = 10 nF, TJ = 25°C)
tf
–
70
140
ns
tNOL
30
150
210
ns
PV
CC min
10.8
–
–
V
VCC min
3.0
–
4.25
V
ICC
–
3.7
8.0
mA
PI
CC
–
15
–
mA
Vsense Response Time Switches from 2.8 V to VCC
Sink Current (VOL = 0.5 V)
OVERTEMPERATURE OUTPUT
Threshold For Logic “1” to “0” Transition (OUTEN Voltage Decreasing)
LOGIC INPUTS (VID0, VID1, VID2, VID3, VID4)
OUTPUT ENABLE CONTROL (OUTEN)
Over–Temperature Driver Disable and Reset
(OUTEN Voltage Decreasing) (Note 7)
OUTPUT SECTIONS (G1, G2)
G1, G2 Non–Overlap Time (CL = 10 nF, TJ = 25°C)
TOTAL DEVICE
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
PVCC
Minimum Operating Voltage After Turn–On (P
VCC Decreasing)
Minimum Operating Voltage After Turn–On (VCC Decreasing)
VCC Current (Note 8) (OUTEN and PPVCC
VCC open,
VID0, 1, 2, 3, 4 Floating)
PV
Current (OUTEN = 5.0 V, VID0, 1, 2, 3, 4 Open, PPVCC
VCC
VCC = 12 V)
CC
NOTES: 1. Maximum package power dissipation limits must be observed.
2. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.
3. VID1, VID3, VID4 = logic 0, and VID0, VID2 = logic 1.
4. Vsense is provided from a low impedance voltage source or shorted to the output voltage.
5. Under a typical soft current limit, the net soft–start discharge current will be 90 µA (ISSIL) – 10 µA (Ichg) = 80 µA. The softstart
sink to source current ratio is designed to be 9:1.
6 Sense (Pin 6) = 5.0 V, Comp (Pin 10) open, VID4, VID2, VID1, VID0 = 1.0, VID3 = 0.
7. OUTEN is internally pulled low if VID0, 1, 2, 3, and 4 are floating.
8. Due to internal pull–up resistors, there will be an additional 0.5 mA per pin if any of the VID0, 1, 2, 3, or 4 pins are pulled low.
4
MOTOROLA ANALOG IC DEVICE DATA
MC33470
Figure 1. Output Drive Waveform
Figure 2. 5.0 V Supply Current
VO = 2.8 V
IO = 3.3 A
Figure 13 Circuit
I CC, SUPPLY CURRENT (mA)
2.0 V/DIV
8.0
TA = 25°C
7.0
6.0
5.0
PV
CC
4.0
+ 12 V
3.0
PV
CC
+ Open
5.0
6.0
2.0
1.0
0
0
1.0
2.0
3.0
4.0
7.0
8.0
200 nS/DIV
INPUT VOLTAGE (V)
Figure 3. Error Amplifier Transient Response
Figure 4. Drive Output Source/Sink Saturation
Voltage versus Load Current
0
PV
CC
–0.5
Source Saturation
(Load to Ground)
500 mV/DIV
–1.0
0
VO = 2.8 V
IO transient = 0.3 to 16 A
Figure 13 Circuit
Sink Saturation
(Load to PV )
CC
1.0
0.5
Ground
0
2.5 mS/DIV
0
0.4
0.6
0.8
1.0
Figure 6. Feedback Loop Gain and Phase
versus Frequency
20
VO = 2.8 V
IO transient = 0.3 to 16 A
Figure 13 Circuit
50 mV/DIV
LOOP GAIN (dB)
15
MOTOROLA ANALOG IC DEVICE DATA
10
0
VCCP = 12 V
VCC = 5.0 V
VO = 2.8 V
IO = 3.3 A
TA = 25°C
Gain
30
Phase
60
90
5.0
0
120
–5.0
150
–10
300
1.0 k
3.0 k
10 k
30 k
f, FREQUENCY (Hz)
100 k
180
300 k
5
∅
2.5 mS/DIV
1.2
, EXCESS PHASE (DEGREES)
Figure 5. Feedback Circuit Load
Transient Response
0.2
MC33470
Figure 7. Drive Output Source/Sink Saturation
Voltage versus Load Current
0.8
30
VCCP = 12 V
VCC = 5.0 V
VO = 2.8 V
R2 = 18.2 k
C16 = 0
TA = 25°C
Figure 13
100
10
60
90
Phase
120
180
1000
1.0
1.0
10
∅
150
THRESHOLD VOLTAGE CHANGE (%)
Gain
, EXCESS PHASE (DEGREES)
0
1000
GAIN (µmho)
Figure 8. Feedback Threshold Voltage
versus Temperature
100
FREQUENCY (kHz)
–4.0
UVLO THRESHOLD CHANGE (%)
50
–25
0
25
50
75
75
100
2.0
0
–2.0
–4.0
–5.0
–75
125
–50
–25
0
25
50
75
Figure 11. VCC Undervoltage Lockout Trip Point
versus Temperature
Figure 12. Oscillator Frequency
versus Temperature
1.0
2.5
0.5
2.0
0
–0.5
–1.0
–1.5
–2.0
–2.5
VCC Increasing
IO = 3.3 A
VO = 2.8 V
–3.0
–50
–25
0
25
50
125
IO = 3.3 A
VO = 2.8 V
TA, AMBIENT TEMPERATURE (°C)
–3.5
100
4.0
TA, AMBIENT TEMPERATURE (°C)
–4.0
–75
75
TA, AMBIENT TEMPERATURE (°C)
6
I sense, CURRENT CHANGE (%)
–2.0
UVLO THRESHOLD CHANGE (%)
I max, CURRENT CHANGE (%)
0
25
–50
5.0
IO = 3.3 A
VO = 2.8 V
0
0
Figure 10. Vsense Current Source
versus Temperature
2.0
–25
0.2
TA, AMBIENT TEMPERATURE (°C)
4.0
–50
0.4
–0.2
–75
Figure 9. Imax Current versus Temperature
–6.0
–75
IO = 3.3 A
VO = 2.8 V
0.6
100
125
1.5
1.0
100
125
100
125
IO = 3.3 A
VO = 2.8 V
0.5
0
–0.5
–1.0
–1.5
–2.0
–2.5
–75
–50
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
MOTOROLA ANALOG IC DEVICE DATA
MOTOROLA ANALOG IC DEVICE DATA
To µP
J1–B9
R3
100 k
SS
13
Power
Good
6
Sense
4
AGnd
+
+
+
+
2.5 V
1.04 Vref
C1, C2 –
C3 –
C6, C13 –
C10, C11 –
C17
100 pF
0.96 Vref
1.04 Vref
1.14 Vref
Vref
Over
Temp
Q
Delay
En
OSCON 16SA150M
TDK C3216Y5V1C476Z
TDK C3216Y5V1C106Z
OSCON 4SP820M
PWM
Latch
R
S
+
4.0/3.8
VCC 5
Q
U1
S
R
Delay
I max
R4
56
20
Ifb
12
Fault
3
1
PGnd
G2
8
R8
4.7
4
2, 3
Q1
MMSF3300R2
5, 6, 7, 8
12 V
J1–A4, B4
C5
470 pF
R5
1.2 k
R6
100 k
D2
Fault Indicate
C11 C13
C10
820 µ F 820 µ F 1.0 µ F
4.0 V 4.0 V
+ C2
150 µ F
16 V
Q2
MMSF3300R2
5, 6, 7, 8
L1
1.5 µH
+ C1
150 µ F
16 V
Q4 MBRD1035CT
MMSF3300R2
2, 3
Q3
MMSF3300R2
5, 6, 7, 8
R7
4.7
4
R9
10
2
G1
V DRIVE
+ C6
1.0 µF
7
R1
2.7 k
C3
4.7 µ F
L2
1.5 µ H
Input Voltage
Vin = 5.0 V
J1–A1, A2, A3, B1, B2
J1 – AMP 532956–7
L1, L2 – Coilraft U6904
VCC
R10
10
Over Current
190 µA
Detect
≤90 µA
OUTEN 19
J1–B5
D1
J1–B6
Undervoltage
Lockout
11
10 Compensation
C16
2200 pF
R2
8.2 k
0.96 Vref
PWM
Comparator
OTA Error Amp
800 µ
Vref /2
1.5 V
Digitally Programmed
Reference
Oscillator
Vref
20 µA
64 mA
10 µA
VCC
14 VID4
15 VID3
16 VID2
17 VID1
9
C18
0.01 µF
J1–A9
Voltage
Identification J1–A8
Code
Input
J1–B8
J1–B7
J1–A7
18 VID0
OT
UP#
OUTEN
VSS
J1–A11, A13, A15
A17, A19, B10, B12
B14, B16, B18, B20
VO
0.3 to 14 A
J1–A10, A12, A14,
A16, A18, A20,
B11, B13, B15,
B17, B19
MC33470
Figure 13. MC33470 Application Circuit
7
MC33470
Figure 14. Timing Diagram
UVL Threshold
12 V
UVL Threshold
5.0 V
Internal
Vref
Timing Capacitor
2.5 V
1.5 V
Compensation
G1
G2
OPERATING DESCRIPTION
The MC33470 is a monolithic, fixed frequency power
switching regulator specifically designed for dc–to–dc
converter applications which provide a precise supply
voltage for state of the art processors. The MC33470
operates as fixed frequency, voltage mode regulator
containing all the active functions required to directly
implement digitally programmable step–down synchronous
rectification with a minimum number of external components.
Oscillator
The oscillator frequency is internally programmed to
300 kHz. The charge to discharge ratio is controlled to yield
a 95% maximum duty cycle at the switch outputs. During the
fall time of the internal sawtooth waveform, the oscillator
generates an internal blanking pulse that disables the G1
output switching MOSFET. The internal sawtooth waveform
has a nominal peak voltage of 2.5 V and a valley voltage of
1.5 V.
Pulse Width Modulator
The pulse width modulator consists of a comparator with
the oscillator ramp voltage applied to the noninverting input,
while the error amplifier output is applied to the inverting
input. Output switch conduction is initiated when the ramp
waveform is discharged to the valley voltage. As the ramp
voltage increases to a voltage that exceeds the error amplifer
output, the latch resets, terminating output G1 MOSFET
conduction, and turning on output G2 MOSFET, for the
duration of the oscillator ramp. This PWM/latch combination
8
prevents multiple output pulses during a given oscillator
cycle.
The sense voltage input at Pin 6 is applied to the
noninverting inputs of a pair of high speed comparators. The
high speed comparators’ inverting inputs are tied 0.96 x Vref
and 1.04 x Vref, respectively, to provide an optimum response
to load changes. When load transients which cause the
output voltage to fall outside a 4% regulation window occur,
the high speed comparators override the PWM comparator to
force a zero or maximum duty cycle operating condition until
the output voltage is once again within the linear window.
When voltages are initially provided to the supply pins,
VCC and PV
, undervoltage lockout circuits monitor each
CC
of the supply voltage levels. Both G1 and G2 output pins are
held low until the VCC pin voltage exceeds 4.0 V and the
pin voltage exceeds 9.0 V.
PV
CC
"
Error Amplifier and Voltage Reference
The error amplifier is a transconductance type amplifier,
having a nominal transconductance of 800 µmho. The
transconductance has a negative temperature coefficient.
Typical transconductance is 868 µmho at 0°C and 620 µmho
at 125°C junction temperature. The amplifier has a cascode
output stage which provides a typical 3.0 Mega–Ohms of
impedance. The typical error amplifier dc voltage gain is 67 dB.
External loop compensation is required for converter
stability. Compensation components may be connected from
MOTOROLA ANALOG IC DEVICE DATA
MC33470
the compensation pin to ground. The error amplifier input is
tied to the sense pin which also has an internal 20 µA current
source to ground. The current source is intended to provide a
24 mV offset when an external 1.2 k resistor is placed
between the output voltage and the sense pin. The 24 mV
offset voltage is intended to allow a greater dynamic load
regulation range within a given specified tolerance for the
output voltage. The offset may be increased by increasing
the resistor value. The offset can be eliminated by connecting
the sense pin directly to the regulated output voltage.
The voltage reference consists of an internal, low
temperature coefficient, reference circuit with an added offset
voltage. The offset voltage level is the output of the
digital–to–analog converter. Control bits VID0 through VID4
control the amount of offset voltage which sets the value of
the voltage reference, as shown in Table 1. The VID0–4 input
bits each have internal 10 k pullup resistances. Therefore,
the reference voltage, and the output voltage, may be
programmed by connecting the VID pins to ground for logic
“0” or by an open for a logic “1”. Typically, a logic “1” will be
recognized by a voltage > 0.67 x VCC. A logic “0” is a voltage
< VCC/3.
MOSFET Switch Outputs
The output MOSFETs are designed to switch a maximum
of 18 V, with a peak drain current of 2.0 A. Both G1 and G2
output drives are designed to switch N–channel MOSFETs.
Output drive controls to G1 and G2 are phased to prevent
cross conduction of the internal IC output stages. Output
dead time is typically 100 nanoseconds between G1 and G2
in order to minimize cross conduction of the external
switching MOSFETs.
Current Limit and Soft–Start Controls
The soft–start circuit is used both for initial power
application and during current limit operation. A single
external capacitor and an internal 10 µA current source
control the rate of voltage increase at the error amplifier
output, establishing the circuit turn on time. The G1 output
will increase from zero duty cycle as the voltage across the
soft–start capacitor increases beyond about 0.5 V. When the
soft–start capacitor voltage has reached about 1.5 V, normal
duty cycle operation of G1 will be allowed.
An overcurrent condition is detected by the current limit
amplifier. The current limit amplifier is activated whenever the
G1 output is high. The current limit amplifier compares the
voltage drop across the external MOSFET driven by G1, as
measured at the IFB pin, with the voltage at the Imax pin.
Because the Imax pin draws 190 µA of input current, the
overcurrent threshold is programmed by an external resistor.
Referring to Figure 13, the current limit resistor value can be
determined from the following equation:
R1
+
[( I
)(R
)]
L(max) DS(on)
( Imax)
where:
I
L(max)
+
I
O
) Iripple
2
IO = Maximum load current
Iripple = Inductor peak to peak ripple current
OUTEN Input and OT Output Pins
On and off control of the MC33470 may be implemented
with the OUTEN pin. A logic “1” applied the OUTEN pin,
where a logic “1” is above 2.0 V, will allow normal operation of
the MC33470. The OUTEN pin also has multiple thresholds
to provide over temperature protection. An negative
temperature coefficient thermistor can be connected to the
OUTEN pin, as shown in Figure 15. Together with RS, a
voltage divider is formed. The divider voltage will decrease
as the thermistor temperature increases. Therefore, the
thermistor should be mounted to the hottest part on the circuit
board. When the OUTEN voltage drops below 2.0 V typically,
the MC33470 OT pin open collector output will switch from a
logic “1” to a logic “0”, providing a warning to the system. If
the OUTEN voltage drops below 1.7 V, both G1 and G2
output driver pins are latched to a logic “0” state.
Figure 15. OUTEN/OT Overtemperature Function
VCC
10 k
OT
VCC
RS
MC33470
OUTEN
NTC
Thermistor
APPLICATIONS INFORMATION
Design Example
Given the following
dc–to–dc converter:
VCC =
VCCP =
VID4–0 bits =
Output current =
requirements, design a switching
5.0 V
12 V
10111 – Output Voltage = 2.8 V
0.3 A to 14 A
Efficiency > 80% at full load
Output ripple voltage ≈ 1% of output voltage
MOTOROLA ANALOG IC DEVICE DATA
1. Choose power MOSFETs.
In order to meet the efficiency requirement, MOSFETs
should be chosen which have a low value of RDS(on).
However, the threshold voltage rating of the MOSFET must
also be greater than 1.5 V, to prevent turn on of the
synchronous rectifier MOSFETs due to dv/dt coupling
through the Miller capacitance of the MOSFET
drain–to–source junction. Figure 16 shows the gate voltage
transient due to this effect.
9
MC33470
In this design, choose two parallel MMSF3300 MOSFETs
for both the main switch and the synchronous rectifier to
maximize efficiency.
2. D ≈ VO/Vin = 2.8/5.0 = 0.56
3. Inductor selection
In order to maintain continuous mode operation at 10% of
full load current, the minimum value of the inductor will be:
Lmin = (Vin – VO)(DTs)/(2IO min)
= (5 – 2.8)(0.56 x 3.3 µs)/(2 x 1.4 A) = 1.45 µH
Coilcraft’s U6904, or an equivalent, provides a surface
mount 1.5 µH choke which is rated for for full load current.
4. Output capacitor selection
Vripple ≈ ∆ IL x ESR, where ESR is the equivalent series
resistance of the output capacitance. Therefore:
ESRmax = Vripple/∆ IL = 0.01 x 2.8 V/1.4 A = 0.02 Ω
maximum
The AVX TPS series of tantalum chip capacitors may be
chosen. Or OSCON capacitors may be used if leaded parts
are acceptable. In this case, the output capacitance consists
of two parallel 820 µF, 4.0 V capacitors. Each capacitor has a
maximum specified ESR of 0.012 Ω.
5. Input Filter
As with all buck converters, input current is drawn in
pulses. In this case, the current pulses may be 14 A peak. If
a 1.5 µH choke is used, two parallel OSCON 150 µF, 16 V
capacitors will provide a filter cutoff frequency of 7.5 kHz.
unity gain frequency to be 10% of the switching frequency,
or 30 kHz. Plotting the PWM gain over frequency, at a
frequency of 30 kHz the gain is about –16.5 dB = 0.15.
Therefore, to have a 30 kHz unity gain loop, the error
amplifier gain at 30 kHz should be 1/0.15 = 6.7. Choose a
design phase margin for the loop of 60°. Also, choose the
error amp type to be an integrator for best dc regulation
performance. The phase boost needed by the error amplifier
is then 60° for the desired phase margin. Then, the following
calculations can be made:
k = tan [Boost/2 + 45°] = tan [60/2 + 45] = 3.73
Error Amp zero freq = fc/K = 30 kHz/3.73 = 8.0 kHz
Error Amp pole freq = Kfc = 3.73 x 30 kHz = 112 kHz
R2 = Error Amp Gain/Gm = 6.7/800 µ = 8.375 k – use an
8.2 k standard value
C16 = 1/(2π R2 fz) = 1/(2π x 8.2 k x 8.0 kHz) = 2426 pF –
use 2200 pF
C17 = 1/(2π R2 fp) = 1/(2π x 8.2 k x 112 kHz) = 173 pF –
use 100 pF
The complete design is shown in Figure 13. The PC board
top and bottom views are shown in Figures 17 and 18.
Figure 16. Voltage Coupling Through Miller
Capacitance
6. Feedback Loop Compensation
The corner frequency of the output filter with L = 1.5 µH
and Co = 1640 µF is 3.2 kHz. In addition, the ESR of each
output capacitor creates a zero at:
fz = 1/(2π C ESR) = 1/(2π x 820 µF x 0.012) = 16.2 kHz
The dc gain of the PWM is: Gain = Vin/Vpp = 5/1 = 5.0.
Where Vpp is the peak–to–peak sawtooth voltage across the
internal timing capacitor. In order to make the feedback loop
as responsive as possible to load changes, choose the
10
MOTOROLA ANALOG IC DEVICE DATA
MC33470
PIN FUNCTION DESCRIPTION
Pin
1
Name
G2
Description
This is a high current dual totem pole output Gate Drive for the Lower, or rectifier, N–channel
MOSFET. Its output swings from ground to P V
. During initial power application, both G2
CC
and G1 are held low until both VCC and P V
have reached proper levels.
CC
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
"
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
"
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
2
PV
CC
This is a separate power source connection for driving N–channel MOSFETs from the G1 and
G2 outputs. It may be connected to 12 V.
3
PGnd
This is a separate power ground return that is connected back to the power source. It is used to
reduce the effects of switching transient noise on the control circuitry.
4
AGnd
This pin is the ground for the control circuitry.
5
VCC
This pin is the positive supply of the control IC.
6
Sense
This pin is used for feedback from the output of the power supply. It has a 20 µA current source
to ground which can be used to provide offset in the converter output voltage.
7
Imax
This pin sets the current limit threshold. 190 µA must be sourced into the pin. The external
resistor is determined from the following equation: R = ([RDS(on)] [ILIM]/[190 µA])
8
IFB
This pin has two functions. First, it provides cycle–by–cycle current limiting. Second, if the
current is excessive, this pin will reinitiate a soft–start cycle. If the voltage at the IFB pin drops
below the voltage at the Imax pin when G1 is on, the controller will go into current limit. The
current limit circuit can be disabled by floating the Imax pin and shorting the IFB pin to VCC.
9
SS
This is the soft–start pin. A capacitor at this pin, in conjunction with a 10 µA internal current
source, sets the soft–start time. During moderate overload (current limit with VO > 50% of the
set value), the soft–start capacitor will be discharged by an internal 90 µA current source in
order to reduce the duty cycle of G1. During hard current limit (current limit with VO < 50% of
set value), the soft–start capacitor will be discharged by a 64 mA current source.
10
Comp
This pin is provided for compensating the error amp for poles and zeros encountered in the
power supply system, mostly the output LC filter.
11
OT
This is the over temperature fault pin. OT is an open drain output that will be pulled low if the
OUTEN pin is less than 2.0 V.
12
Fault
This pin indicates a fault condition. Fault is an open drain output that switches low if VO
exceeds 115% of its set value. Once triggered, the controller will remain in this state until the
power supply is recycled or the OUTEN pin is toggled.
13
Pwrgd
This pin is an open drain output which indicates that VO is properly regulated. A high level on
Pwrgd indicates that VO is within 4% of its set value for more than 400 µs. Pwrgd will switch
low if VO is outside 4% for more than 100 µs.
14
VID4
Voltage ID pin. This CMOS–compatible input programs the output voltage as shown in Table 2.
This pin has an internal 10 k pull–up resistor to VCC.
15
VID3
Voltage ID pin. This CMOS–compatible input programs the output voltage as shown in Table 2.
This pin has an internal 10 k pull–up resistor to VCC.
16
VID2
Voltage ID pin. This CMOS–compatible input programs the output voltage as shown in Table 2.
This pin has an internal 10 k pull–up resistor to VCC.
17
VID1
Voltage ID pin. This CMOS–compatible input programs the output voltage as shown in Table 2.
This pin has an internal 10 k pull–up resistor to VCC.
18
VID0
Voltage ID pin. This CMOS–compatible input programs the output voltage as shown in Table 2.
This pin has an internal 10 k pull–up resistor to VCC.
19
OUTEN
This is the on/off control pin. A CMOS–compatible logic “1” allows the controller to operate.
This pin can also be used as a temperature sensor to trigger the OT pin (when OUTEN drops
below 2.0 V OT pulls low). When OUTEN drops below 1.7 V for longer than 50 µs, the
controller will shut down.
20
G1
This is a high current dual totem pole output Gate Drive for the Upper, or switching, N–channel
MOSFET. Its output swings from ground to PVCC
VCC . During initial power application, both G2 and
PVCC
G1 are held low until both VCC and P
VCC have reached proper levels.
MOTOROLA ANALOG IC DEVICE DATA
11
MC33470
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁ
Table 1. Voltage Identification Code
12
VID4
VID3
VID2
VID1
VID0
VO
0
1
1
1
1
–
0
1
1
1
0
–
0
1
1
0
1
–
0
1
1
0
0
–
0
1
0
1
0
–
0
1
0
0
1
–
0
1
0
0
0
–
0
0
1
1
1
–
0
0
1
1
0
–
0
0
1
0
1
1.8
0
0
1
0
0
1.85
0
0
0
1
1
1.9
0
0
0
1
0
1.95
0
0
0
0
1
2.0
0
0
0
0
0
2.05
1
1
1
1
1
No CPU
1
1
1
1
0
2.1
1
1
1
0
1
2.2
1
1
1
0
0
2.3
1
1
0
1
1
2.4
1
1
0
1
0
2.5
1
1
0
0
1
2.6
1
1
0
0
0
2.7
1
0
1
1
1
2.8
1
0
1
1
0
2.9
1
0
1
0
1
3.0
1
0
1
0
0
3.1
1
0
0
1
1
3.2
1
0
0
1
0
3.3
1
0
0
0
1
3.4
1
0
0
0
0
3.5
MOTOROLA ANALOG IC DEVICE DATA
MC33470
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Table 2. Connector Pin Function
PIN
ROW A
ROW B
1
5.0 Vin
5.0 Vin
2
5.0 Vin
5.0 Vin
3
5.0 Vin
Reserved
4
12 Vin
12 Vin
5
Reserved
UP#
6
Ishare
OUTEN
7
VID0
VID1
8
VID2
VID3
9
VID4
Pwrgd
10
VCCP
VSS
11
VSS
VCCP
12
VCCP
VSS
13
VSS
VCCP
14
VCCP
VSS
15
VSS
VCCP
16
VCCP
VSS
17
VSS
VCCP
18
VCCP
VSS
19
VSS
VCCP
20
VCCP
VSS
MOTOROLA ANALOG IC DEVICE DATA
13
MC33470
Figure 17. PC Board Top View
C1
R10
L2
C2
R8
L1
R9
C3
C12
C11
C10
Figure 18. PC Board Bottom View
R1
R3
C5
R5
Q1
D2
Q2
J1
Q3
Q4
R4
C6 R7
R2
C13
R6
C16 R2
C17
14
MOTOROLA ANALOG IC DEVICE DATA
MC33470
OUTLINE DIMENSIONS
DW SUFFIX
PLASTIC PACKAGE
CASE 751D
(SO–20L)
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.150
(0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.13
(0.005) TOTAL IN EXCESS OF D DIMENSION
AT MAXIMUM MATERIAL CONDITION.
–A–
20
11
–B–
10X
P
0.010 (0.25)
1
M
B
M
10
20X
D
0.010 (0.25)
M
T A
B
S
J
S
F
R X 45 _
C
–T–
18X
G
K
MOTOROLA ANALOG IC DEVICE DATA
SEATING
PLANE
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
12.65
12.95
7.40
7.60
2.35
2.65
0.35
0.49
0.50
0.90
1.27 BSC
0.25
0.32
0.10
0.25
0_
7_
10.05
10.55
0.25
0.75
INCHES
MIN
MAX
0.499
0.510
0.292
0.299
0.093
0.104
0.014
0.019
0.020
0.035
0.050 BSC
0.010
0.012
0.004
0.009
0_
7_
0.395
0.415
0.010
0.029
M
15
MC33470
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447
JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488
Customer Focus Center: 1–800–521–6274
Mfax: [email protected] – TOUCHTONE 1–602–244–6609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,
Motorola Fax Back System
– US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
– http://sps.motorola.com/mfax/
852–26629298
HOME PAGE: http://motorola.com/sps/
16
◊
MC33470/D
MOTOROLA ANALOG IC DEVICE
DATA