ONSEMI BUH50G

BUH50G
SWITCHMODEt NPN
Silicon Planar Power
Transistor
The BUH50G has an application specific state−of−art die designed
for use in 50 Watts HALOGEN electronic transformers and
SWITCHMODE applications.
Features
• Improved Efficiency Due to Low Base Drive Requirements:
•
•
•
•
High and Flat DC Current Gain hFE
Fast Switching
ON Semiconductor Six Sigma Philosophy Provides Tight and
Reproductible Parametric Distributions
Specified Dynamic Saturation Data
Full Characterization at 125°C
These Devices are Pb−Free and are RoHS Compliant*
http://onsemi.com
POWER TRANSISTOR
4 AMPERES
800 VOLTS, 50 WATTS
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector−Emitter Sustaining Voltage
VCEO
500
Vdc
Collector−Base Breakdown Voltage
VCBO
800
Vdc
Collector−Emitter Breakdown Voltage
VCES
800
Vdc
Emitter−Base Voltage
VEBO
9
Vdc
Collector Current
− Continuous
− Peak (Note 1)
IC
ICM
4
8
Adc
Base Current
− Continuous
− Peak (Note 1)
IB
IBM
2
4
Adc
PD
50
0.4
W
W/_C
TJ, Tstg
−65 to 150
_C
Symbol
Max
Unit
Thermal Resistance, Junction−to−Case
RqJC
2.5
_C/W
Thermal Resistance, Junction−to−Ambient
RqJA
62.5
_C/W
Maximum Lead Temperature for Soldering
Purposes 1/8″ from Case for 5 Seconds
TL
260
_C
Total Device Dissipation @ TC = 25_C
Derate above 25°C
Operating and Storage Temperature
TO−220AB
CASE 221A−09
STYLE 1
1
2
3
MARKING DIAGRAM
BUH50G
THERMAL CHARACTERISTICS
Characteristics
AY WW
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.
BUH50
A
Y
WW
G
= Device Code
= Assembly Location
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
Device
Package
Shipping
BUH50G
TO−220
(Pb−Free)
50 Units / Rail
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2010
April, 2010 − Rev. 5
1
Publication Order Number:
BUH50/D
BUH50G
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
Î
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
VCEO(sus)
500
Typ
Max
Unit
OFF CHARACTERISTICS
Collector−Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH)
Vdc
Collector Cutoff Current (VCE = Rated VCEO, IB = 0)
ICEO
100
mAdc
Collector Cutoff Current
@ TC = 25°C
(VCE = Rated VCES, VEB = 0) @ TC = 125°C
ICES
100
1000
mAdc
Emitter−Cutoff Current (VEB = 9 Vdc, IC = 0)
IEBO
100
mAdc
ON CHARACTERISTICS
Base−Emitter Saturation Voltage
(IC = 1 Adc, IB = 0.33 Adc)
(IC = 2 Adc, IB = 0.66 Adc) 25°C
(IC = 2 Adc, IB = 0.66 Adc) 100°C
VBE(sat)
Collector−Emitter Saturation Voltage
(IC = 1 Adc, IB = 0.33 Adc)
@ TC = 25°C
VCE(sat)
0.86
0.94
0.85
1.2
1.6
1.5
0.2
0.5
(IC = 2 Adc, IB = 0.66 Adc)
@ TC = 25°C
@ TC = 125°C
0.32
0.29
0.6
0.7
(IC = 3 Adc, IB = 1 Adc)
@ TC = 25°C
0.5
1
DC Current Gain (IC = 1 Adc, VCE = 5 Vdc)
@ TC = 25°C
DC Current Gain (IC = 2 Adc, VCE = 5 Vdc)
@ TC = 25°C
hFE
7
13
5
10
Vdc
Vdc
−
−
DYNAMIC CHARACTERISTICS
Current Gain Bandwidth (IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz)
fT
4
MHz
Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1 MHz)
Cob
50
100
pF
Input Capacitance (VEB = 8 Vdc)
Cib
850
1200
pF
VCE(dsat)
1.75
5
V
DYNAMIC SATURATION VOLTAGE
Dynamic Saturation
Voltage:
Determined 1 ms and
3 ms respectively after
rising IB1 reaches
90% of final IB1
IC = 1 A
IB1 = 0.33 A
VCC = 300 V
IC = 2 A
IB1 = 0.66 A
VCC = 300 V
@ 1 ms
@ TC = 25°C
@ TC = 125°C
@ 3 ms
@ TC = 25°C
@ TC = 125°C
0.3
0.5
V
@ 1 ms
@ TC = 25°C
@ TC = 125°C
6
14
V
@ 3 ms
@ TC = 25°C
@ TC = 125°C
0.75
4
V
SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 20 ms)
Turn−on Time
Turn−off Time
Turn−on Time
Turn−off Time
Turn−on Time
Turn−off Time
IC = 2 Adc, IB1 = 0.4 Adc
IB2 = 0.4 Adc
VCC = 125 Vdc
@ TC = 25°C
ton
95
250
ns
@ TC = 25°C
toff
2.5
3.5
ms
IC = 2 Adc, IB1 = 0.4 Adc
IB2 = 1 Adc
VCC = 125 Vdc
@ TC = 25°C
ton
110
250
ns
@ TC = 25°C
toff
0.95
2
ms
IC = 1 Adc, IB1 = 0.3 Adc
IB2 = 0.3 Adc
VCC = 125 Vdc
@ TC = 25°C
ton
100
200
ns
@ TC = 25°C
toff
2.9
3.5
ms
SWITCHING CHARACTERISTICS: Inductive Load (Vclamp = 300 V, VCC = 15 V, L = 200 mH)
Fall Time
Storage Time
Crossover Time
IC = 2 Adc
IB1 = 0.4 Adc
IB2 = 1 Adc
Fall Time
Storage Time
Crossover Time
IC = 2 Adc
IB1 = 0.66 Adc
IB2 = 1 Adc
@ TC = 25°C
@ TC = 125°C
tf
80
95
150
ns
@ TC = 25°C
@ TC = 125°C
ts
1.2
1.7
2.5
ms
@ TC = 25°C
@ TC = 125°C
tc
150
180
300
ns
@ TC = 25°C
@ TC = 125°C
tf
90
100
150
ns
@ TC = 25°C
@ TC = 125°C
ts
1.7
2.5
2.75
ms
@ TC = 25°C
@ TC = 125°C
tc
190
220
350
ns
http://onsemi.com
2
BUH50G
TYPICAL STATIC CHARACTERISTICS
100
100
VCE = 5 V
hFE, DC CURRENT GAIN
hFE, DC CURRENT GAIN
VCE = 1 V
TJ = 125°C
TJ = 25°C
10
TJ = -40°C
1
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
TJ = 125°C
TJ = 25°C
10
TJ = -40°C
1
0.01
10
Figure 1. DC Current Gain @ 1 Volt
10
TJ = 25°C
VCE , VOLTAGE (VOLTS)
IC/IB = 3
4A
3A
1
2A
1A
1
TJ = -40°C
0.1
TJ = 125°C
IC = 500 mA
0.1
0.01
TJ = 25°C
0.1
1
IB, BASE CURRENT (mA)
0.01
0.01
10
Figure 3. Collector Saturation Region
0.1
1
IC, COLLECTOR CURRENT (AMPS)
10
Figure 4. Collector−Emitter Saturation Voltage
10
10
IC/IB = 3
IC/IB = 5
TJ = -40°C
VBE , VOLTAGE (VOLTS)
VCE , VOLTAGE (VOLTS)
10
Figure 2. DC Current Gain @ 5 Volt
10
VCE , VOLTAGE (VOLTS)
0.1
1
IC, COLLECTOR CURRENT (AMPS)
1
0.1
TJ = 25°C
1
TJ = 125°C
TJ = -40°C
TJ = 25°C
TJ = 125°C
0.01
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
0.1
0.01
10
Figure 5. Collector−Emitter Saturation Voltage
0.1
1
IC, COLLECTOR CURRENT (AMPS)
Figure 6. Base−Emitter Saturation Region
http://onsemi.com
3
10
BUH50G
TYPICAL STATIC CHARACTERISTICS
10
10000
C, CAPACITANCE (pF)
VBE , VOLTAGE (VOLTS)
IC/IB = 5
TJ = 125°C
1
TJ = -40°C
TJ = 25°C
0.1
0.01
0.1
1
IC, COLLECTOR CURRENT (AMPS)
Cib (pF)
1000
TJ = 25°C
f(test) = 1 MHz
100
Cob (pF)
10
1
10
1
10
VR, REVERSE VOLTAGE (VOLTS)
Figure 7. Base−Emitter Saturation Region
100
Figure 8. Capacitance
TYPICAL SWITCHING CHARACTERISTICS
3000
4000
TJ = 125°C
TJ = 25°C
2500
IBoff = IC/2
VCC = 125 V
PW = 20 ms
TJ = 125°C
TJ = 25°C
3000
IBoff = IC/2
VCC = 125 V
PW = 20 ms
t, TIME (ns)
t, TIME (ns)
2000
IC/IB = 5
1500
2000
IC/IB = 3
1000
1000
500
IC/IB = 3
0
IC/IB = 5
0
1
2
3
4
IC, COLLECTOR CURRENT (AMPS)
5
1
Figure 9. Resistive Switching, ton
5
Figure 10. Resistive Switch Time, toff
300
4000
IC/IB = 3
IBoff = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
IBoff = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
200
t, TIME (ns)
3000
t, TIME (ns)
2
3
4
IC, COLLECTOR CURRENT (AMPS)
2000
tc
100
1000
TJ = 125°C
TJ = 25°C
0
1
tfi
IC/IB = 5
TJ = 125°C
TJ = 25°C
0
2
3
IC, COLLECTOR CURRENT (AMPS)
1
4
2
3
IC, COLLECTOR CURRENT (AMPS)
Figure 12. Inductive Storage Time,
tc & tfi @ IC/IB = 3
Figure 11. Inductive Storage Time, tsi
http://onsemi.com
4
4
BUH50G
TYPICAL CHARACTERISTICS
250
4000
TJ = 125°C
TJ = 25°C
tc
tsi , STORAGE TIME (μs)
t, TIME (ns)
200
150
100
IBoff = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
50
0
1
3000
IC = 1 A
2000
1000
IC = 2 A
tfi
0
2
3
IC, COLLECTOR CURRENT (AMPS)
4
4
3
Figure 13. Inductive Switching, tc & tfi @ IC/IB = 5
5
7
6
hFE, FORCED GAIN
9
8
10
Figure 14. Inductive Storage Time
150
350
130
IC = 1 A
120
t c , CROSSOVER TIME (ns)
IBoff = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
140
110
100
90
80
70
TJ = 125°C
TJ = 25°C
60
50
2
4
IC = 1 A
250
150
IBoff = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
IC = 2 A
TJ = 125°C
TJ = 25°C
IC = 2 A
50
6
hFE, FORCED GAIN
10
8
3
5
Figure 15. Inductive Fall Time
7
hFE, FORCED GAIN
SECOND BREAKDOWN
DERATING
0.8
0.6
THERMAL DERATING
0.4
0.2
0
20
40
9
Figure 16. Inductive Crossover Time
1
POWER DERATING FACTOR
t fi , FALL TIME (ns)
IBoff = IC/2
VCC = 15 V
VZ = 300 V
LC = 200 mH
TJ = 125°C
TJ = 25°C
60
80
100
120
TC, CASE TEMPERATURE (°C)
140
Figure 17. Forward Power Derating
http://onsemi.com
5
160
11
BUH50G
Figure 20 may be found at any case temperature by using the
appropriate curve on Figure 17.
TJ(pk) may be calculated from the data in Figure 22. At any
case temperatures, thermal limitations will reduce the power
that can be handled to values less than the limitations
imposed by second breakdown. For inductive loads, high
voltage and current must be sustained simultaneously during
turn−off with the base to emitter junction reverse biased. The
safe level is specified as a reverse biased safe operating area
(Figure 21). This rating is verified under clamped conditions
so that the device is never subjected to an avalanche mode.
There are two limitations on the power handling ability of
a transistor: average junction temperature and second
breakdown. Safe operating area curves indicate IC −VCE
limits of the transistor that must be observed for reliable
operation; i.e., the transistor must not be subjected to greater
dissipation than the curves indicate. The data of Figure 20 is
based on TC = 25°C; TJ(pk) is variable depending on power
level. Second breakdown pulse limits are valid for duty
cycles to 10% but must be derated when TC > 25°C. Second
breakdown limitations do not derate the same as thermal
limitations. Allowable current at the voltages shown on
TYPICAL CHARACTERISTICS
10
VCE
9
dyn 1 ms
90% IC
IC
8
6
0V
tfi
tsi
7
dyn 3 ms
10% IC
10% Vclamp
Vclamp
5
tc
4
IB
90% IB
3
1 ms
2
1
3 ms
0
TIME
Figure 18. Dynamic Saturation Voltage
10
1 ms
5 ms
1
DC
1
2
3
4
TIME
5
6
8
7
5
1 ms
10 ms
0
Figure 19. Inductive Switching Measurements
EXTENDED
SOA
0.1
IC, COLLECTOR CURRENT (AMPS)
IC, COLLECTOR CURRENT (AMPS)
90% IB1
IB
GAIN ≥ 3
4
3
2
-5 V
1
0V
0.01
TC ≤ 125°C
LC = 500 mH
-1.5 V
0
10
100
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
1000
300
Figure 20. Forward Bias Safe Operating Area
600
VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS)
Figure 21. Reverse Bias Safe Operating Area
http://onsemi.com
6
900
BUH50G
TYPICAL CHARACTERISTICS
Table 1. Inductive Load Switching Drive Circuit
+15 V
1 mF
150 W
3W
100 W
3W
IC PEAK
100 mF
MTP8P10
VCE PEAK
VCE
MTP8P10
RB1
MPF930
IB1
MUR105
MPF930
+10 V
Iout
IB
A
50
W
COMMON
MJE210
150 W
3W
500 mF
IB2
RB2
MTP12N10
V(BR)CEO(sus)
L = 10 mH
RB2 = ∞
VCC = 20 Volts
IC(pk) = 100 mA
1 mF
-Voff
Inductive Switching
L = 200 mH
RB2 = 0
VCC = 15 Volts
RB1 selected for
desired IB1
RBSOA
L = 500 mH
RB2 = 0
VCC = 15 Volts
RB1 selected for
desired IB1
r(t), TRANSIENT THERMAL RESISTANCE
(NORMALIZED)
1
0.5
0.2
P(pk)
0.1
0.1
0.05
t1
0.02
t2
DUTY CYCLE, D = t1/t2
SINGLE PULSE
0.01
0.01
0.1
1
RqJC(t) = r(t) RqJC
RqJC = 2.5°C/W MAX
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t1
TJ(pk) - TC = P(pk) RqJC(t)
10
t, TIME (ms)
Figure 22. Typical Thermal Response (ZqJC(t)) for BUH50
http://onsemi.com
7
100
1000
BUH50G
PACKAGE DIMENSIONS
TO−220AB
CASE 221A−09
ISSUE AF
SEATING
PLANE
−T−
B
F
T
C
S
4
DIM
A
B
C
D
F
G
H
J
K
L
N
Q
R
S
T
U
V
Z
A
Q
U
1 2 3
H
K
Z
L
R
V
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION Z DEFINES A ZONE WHERE ALL
BODY AND LEAD IRREGULARITIES ARE
ALLOWED.
J
G
D
N
INCHES
MIN
MAX
0.570
0.620
0.380
0.405
0.160
0.190
0.025
0.035
0.142
0.161
0.095
0.105
0.110
0.155
0.014
0.025
0.500
0.562
0.045
0.060
0.190
0.210
0.100
0.120
0.080
0.110
0.045
0.055
0.235
0.255
0.000
0.050
0.045
----0.080
STYLE 1:
PIN 1.
2.
3.
4.
MILLIMETERS
MIN
MAX
14.48
15.75
9.66
10.28
4.07
4.82
0.64
0.88
3.61
4.09
2.42
2.66
2.80
3.93
0.36
0.64
12.70
14.27
1.15
1.52
4.83
5.33
2.54
3.04
2.04
2.79
1.15
1.39
5.97
6.47
0.00
1.27
1.15
----2.04
BASE
COLLECTOR
EMITTER
COLLECTOR
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
8
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
BUH50/D