BUH50G SWITCHMODEt NPN Silicon Planar Power Transistor The BUH50G has an application specific state−of−art die designed for use in 50 Watts HALOGEN electronic transformers and SWITCHMODE applications. Features • Improved Efficiency Due to Low Base Drive Requirements: • • • • High and Flat DC Current Gain hFE Fast Switching ON Semiconductor Six Sigma Philosophy Provides Tight and Reproductible Parametric Distributions Specified Dynamic Saturation Data Full Characterization at 125°C These Devices are Pb−Free and are RoHS Compliant* http://onsemi.com POWER TRANSISTOR 4 AMPERES 800 VOLTS, 50 WATTS MAXIMUM RATINGS Rating Symbol Value Unit Collector−Emitter Sustaining Voltage VCEO 500 Vdc Collector−Base Breakdown Voltage VCBO 800 Vdc Collector−Emitter Breakdown Voltage VCES 800 Vdc Emitter−Base Voltage VEBO 9 Vdc Collector Current − Continuous − Peak (Note 1) IC ICM 4 8 Adc Base Current − Continuous − Peak (Note 1) IB IBM 2 4 Adc PD 50 0.4 W W/_C TJ, Tstg −65 to 150 _C Symbol Max Unit Thermal Resistance, Junction−to−Case RqJC 2.5 _C/W Thermal Resistance, Junction−to−Ambient RqJA 62.5 _C/W Maximum Lead Temperature for Soldering Purposes 1/8″ from Case for 5 Seconds TL 260 _C Total Device Dissipation @ TC = 25_C Derate above 25°C Operating and Storage Temperature TO−220AB CASE 221A−09 STYLE 1 1 2 3 MARKING DIAGRAM BUH50G THERMAL CHARACTERISTICS Characteristics AY WW Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%. BUH50 A Y WW G = Device Code = Assembly Location = Year = Work Week = Pb−Free Package ORDERING INFORMATION Device Package Shipping BUH50G TO−220 (Pb−Free) 50 Units / Rail *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2010 April, 2010 − Rev. 5 1 Publication Order Number: BUH50/D BUH50G ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ Î ÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎÎ ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted) Characteristic Symbol Min VCEO(sus) 500 Typ Max Unit OFF CHARACTERISTICS Collector−Emitter Sustaining Voltage (IC = 100 mA, L = 25 mH) Vdc Collector Cutoff Current (VCE = Rated VCEO, IB = 0) ICEO 100 mAdc Collector Cutoff Current @ TC = 25°C (VCE = Rated VCES, VEB = 0) @ TC = 125°C ICES 100 1000 mAdc Emitter−Cutoff Current (VEB = 9 Vdc, IC = 0) IEBO 100 mAdc ON CHARACTERISTICS Base−Emitter Saturation Voltage (IC = 1 Adc, IB = 0.33 Adc) (IC = 2 Adc, IB = 0.66 Adc) 25°C (IC = 2 Adc, IB = 0.66 Adc) 100°C VBE(sat) Collector−Emitter Saturation Voltage (IC = 1 Adc, IB = 0.33 Adc) @ TC = 25°C VCE(sat) 0.86 0.94 0.85 1.2 1.6 1.5 0.2 0.5 (IC = 2 Adc, IB = 0.66 Adc) @ TC = 25°C @ TC = 125°C 0.32 0.29 0.6 0.7 (IC = 3 Adc, IB = 1 Adc) @ TC = 25°C 0.5 1 DC Current Gain (IC = 1 Adc, VCE = 5 Vdc) @ TC = 25°C DC Current Gain (IC = 2 Adc, VCE = 5 Vdc) @ TC = 25°C hFE 7 13 5 10 Vdc Vdc − − DYNAMIC CHARACTERISTICS Current Gain Bandwidth (IC = 0.5 Adc, VCE = 10 Vdc, f = 1 MHz) fT 4 MHz Output Capacitance (VCB = 10 Vdc, IE = 0, f = 1 MHz) Cob 50 100 pF Input Capacitance (VEB = 8 Vdc) Cib 850 1200 pF VCE(dsat) 1.75 5 V DYNAMIC SATURATION VOLTAGE Dynamic Saturation Voltage: Determined 1 ms and 3 ms respectively after rising IB1 reaches 90% of final IB1 IC = 1 A IB1 = 0.33 A VCC = 300 V IC = 2 A IB1 = 0.66 A VCC = 300 V @ 1 ms @ TC = 25°C @ TC = 125°C @ 3 ms @ TC = 25°C @ TC = 125°C 0.3 0.5 V @ 1 ms @ TC = 25°C @ TC = 125°C 6 14 V @ 3 ms @ TC = 25°C @ TC = 125°C 0.75 4 V SWITCHING CHARACTERISTICS: Resistive Load (D.C. ≤ 10%, Pulse Width = 20 ms) Turn−on Time Turn−off Time Turn−on Time Turn−off Time Turn−on Time Turn−off Time IC = 2 Adc, IB1 = 0.4 Adc IB2 = 0.4 Adc VCC = 125 Vdc @ TC = 25°C ton 95 250 ns @ TC = 25°C toff 2.5 3.5 ms IC = 2 Adc, IB1 = 0.4 Adc IB2 = 1 Adc VCC = 125 Vdc @ TC = 25°C ton 110 250 ns @ TC = 25°C toff 0.95 2 ms IC = 1 Adc, IB1 = 0.3 Adc IB2 = 0.3 Adc VCC = 125 Vdc @ TC = 25°C ton 100 200 ns @ TC = 25°C toff 2.9 3.5 ms SWITCHING CHARACTERISTICS: Inductive Load (Vclamp = 300 V, VCC = 15 V, L = 200 mH) Fall Time Storage Time Crossover Time IC = 2 Adc IB1 = 0.4 Adc IB2 = 1 Adc Fall Time Storage Time Crossover Time IC = 2 Adc IB1 = 0.66 Adc IB2 = 1 Adc @ TC = 25°C @ TC = 125°C tf 80 95 150 ns @ TC = 25°C @ TC = 125°C ts 1.2 1.7 2.5 ms @ TC = 25°C @ TC = 125°C tc 150 180 300 ns @ TC = 25°C @ TC = 125°C tf 90 100 150 ns @ TC = 25°C @ TC = 125°C ts 1.7 2.5 2.75 ms @ TC = 25°C @ TC = 125°C tc 190 220 350 ns http://onsemi.com 2 BUH50G TYPICAL STATIC CHARACTERISTICS 100 100 VCE = 5 V hFE, DC CURRENT GAIN hFE, DC CURRENT GAIN VCE = 1 V TJ = 125°C TJ = 25°C 10 TJ = -40°C 1 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) TJ = 125°C TJ = 25°C 10 TJ = -40°C 1 0.01 10 Figure 1. DC Current Gain @ 1 Volt 10 TJ = 25°C VCE , VOLTAGE (VOLTS) IC/IB = 3 4A 3A 1 2A 1A 1 TJ = -40°C 0.1 TJ = 125°C IC = 500 mA 0.1 0.01 TJ = 25°C 0.1 1 IB, BASE CURRENT (mA) 0.01 0.01 10 Figure 3. Collector Saturation Region 0.1 1 IC, COLLECTOR CURRENT (AMPS) 10 Figure 4. Collector−Emitter Saturation Voltage 10 10 IC/IB = 3 IC/IB = 5 TJ = -40°C VBE , VOLTAGE (VOLTS) VCE , VOLTAGE (VOLTS) 10 Figure 2. DC Current Gain @ 5 Volt 10 VCE , VOLTAGE (VOLTS) 0.1 1 IC, COLLECTOR CURRENT (AMPS) 1 0.1 TJ = 25°C 1 TJ = 125°C TJ = -40°C TJ = 25°C TJ = 125°C 0.01 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) 0.1 0.01 10 Figure 5. Collector−Emitter Saturation Voltage 0.1 1 IC, COLLECTOR CURRENT (AMPS) Figure 6. Base−Emitter Saturation Region http://onsemi.com 3 10 BUH50G TYPICAL STATIC CHARACTERISTICS 10 10000 C, CAPACITANCE (pF) VBE , VOLTAGE (VOLTS) IC/IB = 5 TJ = 125°C 1 TJ = -40°C TJ = 25°C 0.1 0.01 0.1 1 IC, COLLECTOR CURRENT (AMPS) Cib (pF) 1000 TJ = 25°C f(test) = 1 MHz 100 Cob (pF) 10 1 10 1 10 VR, REVERSE VOLTAGE (VOLTS) Figure 7. Base−Emitter Saturation Region 100 Figure 8. Capacitance TYPICAL SWITCHING CHARACTERISTICS 3000 4000 TJ = 125°C TJ = 25°C 2500 IBoff = IC/2 VCC = 125 V PW = 20 ms TJ = 125°C TJ = 25°C 3000 IBoff = IC/2 VCC = 125 V PW = 20 ms t, TIME (ns) t, TIME (ns) 2000 IC/IB = 5 1500 2000 IC/IB = 3 1000 1000 500 IC/IB = 3 0 IC/IB = 5 0 1 2 3 4 IC, COLLECTOR CURRENT (AMPS) 5 1 Figure 9. Resistive Switching, ton 5 Figure 10. Resistive Switch Time, toff 300 4000 IC/IB = 3 IBoff = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH IBoff = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH 200 t, TIME (ns) 3000 t, TIME (ns) 2 3 4 IC, COLLECTOR CURRENT (AMPS) 2000 tc 100 1000 TJ = 125°C TJ = 25°C 0 1 tfi IC/IB = 5 TJ = 125°C TJ = 25°C 0 2 3 IC, COLLECTOR CURRENT (AMPS) 1 4 2 3 IC, COLLECTOR CURRENT (AMPS) Figure 12. Inductive Storage Time, tc & tfi @ IC/IB = 3 Figure 11. Inductive Storage Time, tsi http://onsemi.com 4 4 BUH50G TYPICAL CHARACTERISTICS 250 4000 TJ = 125°C TJ = 25°C tc tsi , STORAGE TIME (μs) t, TIME (ns) 200 150 100 IBoff = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH 50 0 1 3000 IC = 1 A 2000 1000 IC = 2 A tfi 0 2 3 IC, COLLECTOR CURRENT (AMPS) 4 4 3 Figure 13. Inductive Switching, tc & tfi @ IC/IB = 5 5 7 6 hFE, FORCED GAIN 9 8 10 Figure 14. Inductive Storage Time 150 350 130 IC = 1 A 120 t c , CROSSOVER TIME (ns) IBoff = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH 140 110 100 90 80 70 TJ = 125°C TJ = 25°C 60 50 2 4 IC = 1 A 250 150 IBoff = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH IC = 2 A TJ = 125°C TJ = 25°C IC = 2 A 50 6 hFE, FORCED GAIN 10 8 3 5 Figure 15. Inductive Fall Time 7 hFE, FORCED GAIN SECOND BREAKDOWN DERATING 0.8 0.6 THERMAL DERATING 0.4 0.2 0 20 40 9 Figure 16. Inductive Crossover Time 1 POWER DERATING FACTOR t fi , FALL TIME (ns) IBoff = IC/2 VCC = 15 V VZ = 300 V LC = 200 mH TJ = 125°C TJ = 25°C 60 80 100 120 TC, CASE TEMPERATURE (°C) 140 Figure 17. Forward Power Derating http://onsemi.com 5 160 11 BUH50G Figure 20 may be found at any case temperature by using the appropriate curve on Figure 17. TJ(pk) may be calculated from the data in Figure 22. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn−off with the base to emitter junction reverse biased. The safe level is specified as a reverse biased safe operating area (Figure 21). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC −VCE limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 20 is based on TC = 25°C; TJ(pk) is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when TC > 25°C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on TYPICAL CHARACTERISTICS 10 VCE 9 dyn 1 ms 90% IC IC 8 6 0V tfi tsi 7 dyn 3 ms 10% IC 10% Vclamp Vclamp 5 tc 4 IB 90% IB 3 1 ms 2 1 3 ms 0 TIME Figure 18. Dynamic Saturation Voltage 10 1 ms 5 ms 1 DC 1 2 3 4 TIME 5 6 8 7 5 1 ms 10 ms 0 Figure 19. Inductive Switching Measurements EXTENDED SOA 0.1 IC, COLLECTOR CURRENT (AMPS) IC, COLLECTOR CURRENT (AMPS) 90% IB1 IB GAIN ≥ 3 4 3 2 -5 V 1 0V 0.01 TC ≤ 125°C LC = 500 mH -1.5 V 0 10 100 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) 1000 300 Figure 20. Forward Bias Safe Operating Area 600 VCE, COLLECTOR-EMITTER VOLTAGE (VOLTS) Figure 21. Reverse Bias Safe Operating Area http://onsemi.com 6 900 BUH50G TYPICAL CHARACTERISTICS Table 1. Inductive Load Switching Drive Circuit +15 V 1 mF 150 W 3W 100 W 3W IC PEAK 100 mF MTP8P10 VCE PEAK VCE MTP8P10 RB1 MPF930 IB1 MUR105 MPF930 +10 V Iout IB A 50 W COMMON MJE210 150 W 3W 500 mF IB2 RB2 MTP12N10 V(BR)CEO(sus) L = 10 mH RB2 = ∞ VCC = 20 Volts IC(pk) = 100 mA 1 mF -Voff Inductive Switching L = 200 mH RB2 = 0 VCC = 15 Volts RB1 selected for desired IB1 RBSOA L = 500 mH RB2 = 0 VCC = 15 Volts RB1 selected for desired IB1 r(t), TRANSIENT THERMAL RESISTANCE (NORMALIZED) 1 0.5 0.2 P(pk) 0.1 0.1 0.05 t1 0.02 t2 DUTY CYCLE, D = t1/t2 SINGLE PULSE 0.01 0.01 0.1 1 RqJC(t) = r(t) RqJC RqJC = 2.5°C/W MAX D CURVES APPLY FOR POWER PULSE TRAIN SHOWN READ TIME AT t1 TJ(pk) - TC = P(pk) RqJC(t) 10 t, TIME (ms) Figure 22. Typical Thermal Response (ZqJC(t)) for BUH50 http://onsemi.com 7 100 1000 BUH50G PACKAGE DIMENSIONS TO−220AB CASE 221A−09 ISSUE AF SEATING PLANE −T− B F T C S 4 DIM A B C D F G H J K L N Q R S T U V Z A Q U 1 2 3 H K Z L R V NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. J G D N INCHES MIN MAX 0.570 0.620 0.380 0.405 0.160 0.190 0.025 0.035 0.142 0.161 0.095 0.105 0.110 0.155 0.014 0.025 0.500 0.562 0.045 0.060 0.190 0.210 0.100 0.120 0.080 0.110 0.045 0.055 0.235 0.255 0.000 0.050 0.045 ----0.080 STYLE 1: PIN 1. 2. 3. 4. MILLIMETERS MIN MAX 14.48 15.75 9.66 10.28 4.07 4.82 0.64 0.88 3.61 4.09 2.42 2.66 2.80 3.93 0.36 0.64 12.70 14.27 1.15 1.52 4.83 5.33 2.54 3.04 2.04 2.79 1.15 1.39 5.97 6.47 0.00 1.27 1.15 ----2.04 BASE COLLECTOR EMITTER COLLECTOR SWITCHMODE is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 8 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative BUH50/D