BC618 Darlington Transistors NPN Silicon Features • Pb−Free Packages are Available* http://onsemi.com COLLECTOR 1 MAXIMUM RATINGS Rating Symbol Value Unit Collector −Emitter Voltage VCEO 55 Vdc Collector −Base Voltage VCBO 80 Vdc Emitter−Base Voltage VEBO 12 Vdc Collector Current − Continuous IC 1.0 Adc Total Power Dissipation @ TA = 25°C Derate above TA = 25°C PD 625 5.0 mW mW/°C Total Power Dissipation @ TA = 25°C Derate above TA = 25°C PD 1.5 12 W mW/°C TJ, Tstg −55 to +150 °C Operating and Storage Junction Temperature Range BASE 2 EMITTER 3 12 TO−92 CASE 29 STYLE 17 3 THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction−to−Ambient RqJA 200 °C/W Thermal Resistance, Junction−to−Case RqJC 83.3 °C/W MARKING DIAGRAM Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. BC 618 AYWW G G A = Assembly Location Y = Year WW = Work Week G = Pb−Free Package (Note: Microdot may be in either location) ORDERING INFORMATION Device BC618 BC618G BC618RL1 BC618RL1G *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2006 January, 2006 − Rev. 3 1 Package Shipping † TO−92 5000 Units / Bulk TO−92 (Pb−Free) 5000 Units / Bulk TO−92 2000 / Tape & Reel TO−92 (Pb−Free) 2000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. Publication Order Number: BC618/D BC618 ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max 55 − − 80 − − 12 − − − − 50 − − 50 − − 50 − − 1.1 − − 1.6 2000 4000 10000 4000 − − − − − − 50000 − 150 − − − 4.5 7.0 − 5.0 9.0 Unit OFF CHARACTERISTICS Collector −Emitter Breakdown Voltage (IC = 10 mAdc, VBE = 0) V(BR)CEO Collector −Base Breakdown Voltage (IC = 100 mAdc, IE = 0) V(BR)CBO Emitter −Base Breakdown Voltage (IE = 10 mAdc, IC = 0) V(BR)EBO Collector Cutoff Current (VCE = 60 Vdc, VBE = 0) ICES Collector Cutoff Current (VCB = 60 Vdc, IE = 0) ICBO Emitter Cutoff Current (VEB = 10 Vdc, IC = 0) IEBO Vdc Vdc Vdc nAdc nAdc nAdc ON CHARACTERISTICS DC Current Gain (IC = 200 mA, IB = 0.2 mA) VCE(sat) Base −Emitter Saturation Voltage (IC = 200 mA, IB = 0.2 mA) VBE(sat) DC Current Gain (IC = 100 mA, VCE = 5.0 Vdc) (IC = 10 mA, VCE = 5.0 Vdc) (IC = 200 mA, VCE = 5.0 Vdc) (IC = 1.0 A, VCE = 5.0 Vdc) hFE Vdc Vdc − DYNAMIC CHARACTERISTICS Current−Gain − Bandwidth Product (IC = 500 mA, VCE = 5.0 Vdc, P = 100 MHz) fT Output Capacitance (VCB = 10 V, IE = 0, f = 1.0 MHz) Cob Input Capacitance (VEB = 5.0 V, IE = 0, f = 1.0 MHz) Cib RS in en IDEAL TRANSISTOR Figure 1. Transistor Noise Model http://onsemi.com 2 MHz pF pF BC618 NOISE CHARACTERISTICS (VCE = 5.0 Vdc, TA = 25°C) 2.0 BANDWIDTH = 1.0 Hz RS ≈ 0 200 BANDWIDTH = 1.0 Hz i n, NOISE CURRENT (pA) en, NOISE VOLTAGE (nV) 500 100 10 mA 50 100 mA 20 IC = 1.0 mA 10 1.0 0.7 0.5 IC = 1.0 mA 0.3 0.2 100 mA 0.1 0.07 0.05 10 mA 0.03 5.0 10 20 50 100 200 500 1k 2k 5k 10k 20k f, FREQUENCY (Hz) 50k 100k 0.02 10 20 50 100 200 50k 100k Figure 3. Noise Current 200 14 BANDWIDTH = 10 Hz TO 15.7 kHz 12 BANDWIDTH = 10 Hz TO 15.7 kHz 100 NF, NOISE FIGURE (dB) VT, TOTAL WIDEBAND NOISE VOLTAGE (nV) Figure 2. Noise Voltage 500 1k 2k 5k 10k 20k f, FREQUENCY (Hz) IC = 10 mA 70 50 100 mA 30 20 1.0 mA 10 1.0 2.0 10 10 mA 8.0 100 mA 6.0 4.0 IC = 1.0 mA 2.0 5.0 10 20 50 100 200 RS, SOURCE RESISTANCE (kW) 500 0 1.0 1000 Figure 4. Total Wideband Noise Voltage 2.0 5.0 10 20 50 100 200 RS, SOURCE RESISTANCE (kW) Figure 5. Wideband Noise Figure http://onsemi.com 3 500 1000 BC618 SMALL−SIGNAL CHARACTERISTICS 4.0 |h fe |, SMALL−SIGNAL CURRENT GAIN C, CAPACITANCE (pF) 20 TJ = 25°C 10 7.0 Cibo Cobo 5.0 3.0 2.0 0.04 0.1 0.2 0.4 1.0 2.0 4.0 10 VR, REVERSE VOLTAGE (VOLTS) 20 2.0 1.0 0.8 0.6 0.4 0.2 0.5 40 200k hFE , DC CURRENT GAIN TJ = 125°C 25°C 30k 20k 10k 7.0k 5.0k −55 °C VCE = 5.0 V 3.0k 2.0k 5.0 7.0 10 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (mA) 500 RθV, TEMPERATURE COEFFICIENTS (mV/°C) TJ = 25°C V, VOLTAGE (VOLTS) 1.4 VBE(sat) @ IC/IB = 1000 1.2 VBE(on) @ VCE = 5.0 V 1.0 VCE(sat) @ IC/IB = 1000 5.0 7.0 10 0.5 10 20 50 100 200 IC, COLLECTOR CURRENT (mA) 500 TJ = 25°C 2.5 IC = 10 mA 50 mA 250 mA 500 mA 2.0 1.5 1.0 0.5 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 IB, BASE CURRENT (mA) 500 1000 Figure 9. Collector Saturation Region 1.6 0.6 2.0 3.0 Figure 8. DC Current Gain 0.8 1.0 Figure 7. High Frequency Current Gain VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS) Figure 6. Capacitance 100k 70k 50k VCE = 5.0 V f = 100 MHz TJ = 25°C 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (mA) 500 −1.0 −2.0 *APPLIES FOR IC/IB ≤ hFE/3.0 25°C TO 125°C *RqVC FOR VCE(sat) −55 °C TO 25°C −3.0 25°C TO 125°C −4.0 qVB FOR VBE −5.0 −55 °C TO 25°C −6.0 5.0 7.0 10 Figure 10. “On” Voltages 20 30 50 70 100 200 300 IC, COLLECTOR CURRENT (mA) Figure 11. Temperature Coefficients http://onsemi.com 4 500 BC618 ( ), RESISTANCE (NORMALIZED) 1.0 0.7 0.5 D = 0.5 0.2 0.3 0.2 0.1 0.05 SINGLE PULSE 0.1 0.07 0.05 SINGLE PULSE ZqJC(t) = r(t) • RqJCTJ(pk) − TC = P(pk) ZqJC(t) ZqJA(t) = r(t) • RqJATJ(pk) − TA = P(pk) ZqJA(t) 0.03 0.02 0.01 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 t, TIME (ms) 100 200 500 1.0k 2.0k 5.0k Figure 12. Thermal Response FIGURE A IC, COLLECTOR CURRENT (mA) 1.0k 700 500 300 200 1.0 ms TA = 25°C TC = 25°C tP PP 100 ms 1.0 s 100 70 50 t1 30 CURRENT LIMIT THERMAL LIMIT SECOND BREAKDOWN LIMIT 20 10 PP 0.4 0.6 1/f 1.0 2.0 4.0 6.0 10 20 VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS) t DUTYCYCLE + t1f + 1 tP PEAK PULSE POWER = PP 40 Design Note: Use of Transient Thermal Resistance Data Figure 13. Active Region Safe Operating Area http://onsemi.com 5 10k BC618 PACKAGE DIMENSIONS TO−92 (TO−226) CASE 29−11 ISSUE AL A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM. B R P L SEATING PLANE K DIM A B C D G H J K L N P R V D X X G J H V C SECTION X−X 1 N N INCHES MIN MAX 0.175 0.205 0.170 0.210 0.125 0.165 0.016 0.021 0.045 0.055 0.095 0.105 0.015 0.020 0.500 −−− 0.250 −−− 0.080 0.105 −−− 0.100 0.115 −−− 0.135 −−− MILLIMETERS MIN MAX 4.45 5.20 4.32 5.33 3.18 4.19 0.407 0.533 1.15 1.39 2.42 2.66 0.39 0.50 12.70 −−− 6.35 −−− 2.04 2.66 −−− 2.54 2.93 −−− 3.43 −−− STYLE 17: PIN 1. COLLECTOR 2. BASE 3. EMITTER ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 6 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. BC618/D