ONSEMI BC618RL1G

BC618
Darlington Transistors
NPN Silicon
Features
• Pb−Free Packages are Available*
http://onsemi.com
COLLECTOR 1
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector −Emitter Voltage
VCEO
55
Vdc
Collector −Base Voltage
VCBO
80
Vdc
Emitter−Base Voltage
VEBO
12
Vdc
Collector Current − Continuous
IC
1.0
Adc
Total Power Dissipation @ TA = 25°C
Derate above TA = 25°C
PD
625
5.0
mW
mW/°C
Total Power Dissipation @ TA = 25°C
Derate above TA = 25°C
PD
1.5
12
W
mW/°C
TJ, Tstg
−55 to +150
°C
Operating and Storage Junction
Temperature Range
BASE
2
EMITTER 3
12
TO−92
CASE 29
STYLE 17
3
THERMAL CHARACTERISTICS
Characteristic
Symbol
Max
Unit
Thermal Resistance, Junction−to−Ambient
RqJA
200
°C/W
Thermal Resistance, Junction−to−Case
RqJC
83.3
°C/W
MARKING DIAGRAM
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
BC
618
AYWW G
G
A
= Assembly Location
Y
= Year
WW = Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
Device
BC618
BC618G
BC618RL1
BC618RL1G
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2006
January, 2006 − Rev. 3
1
Package
Shipping †
TO−92
5000 Units / Bulk
TO−92
(Pb−Free)
5000 Units / Bulk
TO−92
2000 / Tape & Reel
TO−92
(Pb−Free)
2000 / Tape & Reel
†For information on tape and reel specifications,
including part orientation and tape sizes, please
refer to our Tape and Reel Packaging Specifications
Brochure, BRD8011/D.
Publication Order Number:
BC618/D
BC618
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
55
−
−
80
−
−
12
−
−
−
−
50
−
−
50
−
−
50
−
−
1.1
−
−
1.6
2000
4000
10000
4000
−
−
−
−
−
−
50000
−
150
−
−
−
4.5
7.0
−
5.0
9.0
Unit
OFF CHARACTERISTICS
Collector −Emitter Breakdown Voltage
(IC = 10 mAdc, VBE = 0)
V(BR)CEO
Collector −Base Breakdown Voltage
(IC = 100 mAdc, IE = 0)
V(BR)CBO
Emitter −Base Breakdown Voltage
(IE = 10 mAdc, IC = 0)
V(BR)EBO
Collector Cutoff Current
(VCE = 60 Vdc, VBE = 0)
ICES
Collector Cutoff Current
(VCB = 60 Vdc, IE = 0)
ICBO
Emitter Cutoff Current
(VEB = 10 Vdc, IC = 0)
IEBO
Vdc
Vdc
Vdc
nAdc
nAdc
nAdc
ON CHARACTERISTICS
DC Current Gain
(IC = 200 mA, IB = 0.2 mA)
VCE(sat)
Base −Emitter Saturation Voltage
(IC = 200 mA, IB = 0.2 mA)
VBE(sat)
DC Current Gain
(IC = 100 mA, VCE = 5.0 Vdc)
(IC = 10 mA, VCE = 5.0 Vdc)
(IC = 200 mA, VCE = 5.0 Vdc)
(IC = 1.0 A, VCE = 5.0 Vdc)
hFE
Vdc
Vdc
−
DYNAMIC CHARACTERISTICS
Current−Gain − Bandwidth Product
(IC = 500 mA, VCE = 5.0 Vdc, P = 100 MHz)
fT
Output Capacitance
(VCB = 10 V, IE = 0, f = 1.0 MHz)
Cob
Input Capacitance
(VEB = 5.0 V, IE = 0, f = 1.0 MHz)
Cib
RS
in
en
IDEAL
TRANSISTOR
Figure 1. Transistor Noise Model
http://onsemi.com
2
MHz
pF
pF
BC618
NOISE CHARACTERISTICS
(VCE = 5.0 Vdc, TA = 25°C)
2.0
BANDWIDTH = 1.0 Hz
RS ≈ 0
200
BANDWIDTH = 1.0 Hz
i n, NOISE CURRENT (pA)
en, NOISE VOLTAGE (nV)
500
100
10 mA
50
100 mA
20
IC = 1.0 mA
10
1.0
0.7
0.5
IC = 1.0 mA
0.3
0.2
100 mA
0.1
0.07
0.05
10 mA
0.03
5.0
10 20
50 100 200
500 1k 2k 5k 10k 20k
f, FREQUENCY (Hz)
50k 100k
0.02
10 20
50 100 200
50k 100k
Figure 3. Noise Current
200
14
BANDWIDTH = 10 Hz TO 15.7 kHz
12
BANDWIDTH = 10 Hz TO 15.7 kHz
100
NF, NOISE FIGURE (dB)
VT, TOTAL WIDEBAND NOISE VOLTAGE (nV)
Figure 2. Noise Voltage
500 1k 2k 5k 10k 20k
f, FREQUENCY (Hz)
IC = 10 mA
70
50
100 mA
30
20
1.0 mA
10
1.0
2.0
10
10 mA
8.0
100 mA
6.0
4.0
IC = 1.0 mA
2.0
5.0
10
20
50 100 200
RS, SOURCE RESISTANCE (kW)
500
0
1.0
1000
Figure 4. Total Wideband Noise Voltage
2.0
5.0
10
20
50 100 200
RS, SOURCE RESISTANCE (kW)
Figure 5. Wideband Noise Figure
http://onsemi.com
3
500
1000
BC618
SMALL−SIGNAL CHARACTERISTICS
4.0
|h fe |, SMALL−SIGNAL CURRENT GAIN
C, CAPACITANCE (pF)
20
TJ = 25°C
10
7.0
Cibo
Cobo
5.0
3.0
2.0
0.04
0.1
0.2
0.4
1.0 2.0 4.0
10
VR, REVERSE VOLTAGE (VOLTS)
20
2.0
1.0
0.8
0.6
0.4
0.2
0.5
40
200k
hFE , DC CURRENT GAIN
TJ = 125°C
25°C
30k
20k
10k
7.0k
5.0k
−55 °C
VCE = 5.0 V
3.0k
2.0k
5.0 7.0
10
20 30
50 70 100
200 300
IC, COLLECTOR CURRENT (mA)
500
RθV, TEMPERATURE COEFFICIENTS (mV/°C)
TJ = 25°C
V, VOLTAGE (VOLTS)
1.4
VBE(sat) @ IC/IB = 1000
1.2
VBE(on) @ VCE = 5.0 V
1.0
VCE(sat) @ IC/IB = 1000
5.0 7.0
10
0.5 10 20
50
100 200
IC, COLLECTOR CURRENT (mA)
500
TJ = 25°C
2.5
IC = 10 mA
50 mA
250 mA
500 mA
2.0
1.5
1.0
0.5
0.1 0.2
0.5 1.0 2.0 5.0 10 20 50 100 200
IB, BASE CURRENT (mA)
500 1000
Figure 9. Collector Saturation Region
1.6
0.6
2.0
3.0
Figure 8. DC Current Gain
0.8
1.0
Figure 7. High Frequency Current Gain
VCE , COLLECTOR−EMITTER VOLTAGE (VOLTS)
Figure 6. Capacitance
100k
70k
50k
VCE = 5.0 V
f = 100 MHz
TJ = 25°C
20 30
50 70 100 200 300
IC, COLLECTOR CURRENT (mA)
500
−1.0
−2.0
*APPLIES FOR IC/IB ≤ hFE/3.0
25°C TO 125°C
*RqVC FOR VCE(sat)
−55 °C TO 25°C
−3.0
25°C TO 125°C
−4.0
qVB FOR VBE
−5.0
−55 °C TO 25°C
−6.0
5.0 7.0 10
Figure 10. “On” Voltages
20 30
50 70 100
200 300
IC, COLLECTOR CURRENT (mA)
Figure 11. Temperature Coefficients
http://onsemi.com
4
500
BC618
( ),
RESISTANCE (NORMALIZED)
1.0
0.7
0.5
D = 0.5
0.2
0.3
0.2
0.1
0.05
SINGLE PULSE
0.1
0.07
0.05
SINGLE PULSE
ZqJC(t) = r(t) • RqJCTJ(pk) − TC = P(pk) ZqJC(t)
ZqJA(t) = r(t) • RqJATJ(pk) − TA = P(pk) ZqJA(t)
0.03
0.02
0.01
0.1
0.2
0.5
1.0
2.0
5.0
10
20
50
t, TIME (ms)
100
200
500
1.0k
2.0k
5.0k
Figure 12. Thermal Response
FIGURE A
IC, COLLECTOR CURRENT (mA)
1.0k
700
500
300
200
1.0 ms
TA = 25°C
TC = 25°C
tP
PP
100 ms
1.0 s
100
70
50
t1
30
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
20
10
PP
0.4 0.6
1/f
1.0
2.0
4.0 6.0
10
20
VCE, COLLECTOR−EMITTER VOLTAGE (VOLTS)
t
DUTYCYCLE + t1f + 1
tP
PEAK PULSE POWER = PP
40
Design Note: Use of Transient Thermal
Resistance Data
Figure 13. Active Region Safe Operating Area
http://onsemi.com
5
10k
BC618
PACKAGE DIMENSIONS
TO−92 (TO−226)
CASE 29−11
ISSUE AL
A
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. CONTOUR OF PACKAGE BEYOND DIMENSION R
IS UNCONTROLLED.
4. LEAD DIMENSION IS UNCONTROLLED IN P AND
BEYOND DIMENSION K MINIMUM.
B
R
P
L
SEATING
PLANE
K
DIM
A
B
C
D
G
H
J
K
L
N
P
R
V
D
X X
G
J
H
V
C
SECTION X−X
1
N
N
INCHES
MIN
MAX
0.175
0.205
0.170
0.210
0.125
0.165
0.016
0.021
0.045
0.055
0.095
0.105
0.015
0.020
0.500
−−−
0.250
−−−
0.080
0.105
−−− 0.100
0.115
−−−
0.135
−−−
MILLIMETERS
MIN
MAX
4.45
5.20
4.32
5.33
3.18
4.19
0.407
0.533
1.15
1.39
2.42
2.66
0.39
0.50
12.70
−−−
6.35
−−−
2.04
2.66
−−−
2.54
2.93
−−−
3.43
−−−
STYLE 17:
PIN 1. COLLECTOR
2. BASE
3. EMITTER
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
6
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
BC618/D