ONSEMI BU323Z

Order this document
by BU323Z/D
SEMICONDUCTOR TECHNICAL DATA
High Voltage Autoprotected
The BU323Z is a planar, monolithic, high–voltage power Darlington with a built–in
active zener clamping circuit. This device is specifically designed for unclamped,
inductive applications such as Electronic Ignition, Switching Regulators and Motor
Control, and exhibit the following main features:
• Integrated High–Voltage Active Clamp
• Tight Clamping Voltage Window (350 V to 450 V) Guaranteed
Over the – 40°C to +125°C Temperature Range
• Clamping Energy Capability 100% Tested in a Live
Ignition Circuit
• High DC Current Gain/Low Saturation Voltages
Specified Over Full Temperature Range
• Design Guarantees Operation in SOA at All Times
• Offered in Plastic SOT–93/TO–218 Type or
TO–220 Packages
AUTOPROTECTED
DARLINGTON
10 AMPERES
360 – 450 VOLTS CLAMP
150 WATTS
360 V
CLAMP
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
CASE 340D–02
SOT–93/TO–218 TYPE
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Collector–Emitter Sustaining Voltage
VCEO
350
Vdc
Collector–Emitter Voltage
VEBO
6.0
Vdc
Collector Current — Continuous
— Peak
IC
ICM
10
20
Adc
Base Current — Continuous
— Peak
IB
IBM
3.0
6.0
Adc
PD
150
1.0
Watts
W/_C
TJ, Tstg
– 65 to + 175
_C
Symbol
Max
Unit
RθJC
1.0
_C/W
TL
260
_C
(TC = 25_C)
Total Power Dissipation
Derate above 25_C
Operating and Storage Junction Temperature Range
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Maximum Lead Temperature for Soldering Purposes:
1/8″ from Case for 5 Seconds
This document contains information on a new product. Specifications and information herein are subject to change without notice.
Preferred devices are Motorola recommended choices for future use and best overall value.
REV 8
 Motorola, Inc. 1996
Motorola Bipolar Power Transistor Device Data
1
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
BU323Z
ELECTRICAL CHARACTERISTICS (TC = 25_C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
VCLAMP
350
—
450
Vdc
Collector–Emitter Cutoff Current
(VCE = 200 V, IB = 0)
ICEO
—
—
100
µAdc
Emitter–Base Leakage Current
(VEB = 6.0 Vdc, IC = 0)
IEBO
—
—
50
mAdc
—
—
—
—
2.2
2.5
—
—
—
—
—
—
—
—
—
—
1.6
1.8
1.8
2.1
1.7
1.1
1.3
—
—
2.1
2.3
—
—
2.5
150
500
—
—
—
3400
fT
—
—
2.0
MHz
Output Capacitance
(VCB = 10 Vdc, IE = 0, f = 1.0 MHz)
Cob
—
—
200
pF
Input Capacitance
(VEB = 6.0 V)
Cib
—
—
550
pF
WCLAMP
200
—
—
mJ
tfi
—
625
—
ns
tsi
—
10
30
µs
tc
—
1.7
—
µs
OFF CHARACTERISTICS (1)
Collector–Emitter Clamping Voltage (IC = 7.0 A)
(TC = – 40°C to +125°C)
ON CHARACTERISTICS (1)
Base–Emitter Saturation Voltage
(IC = 8.0 Adc, IB = 100 mAdc)
(IC = 10 Adc, IB = 0.25 Adc)
VBE(sat)
Collector–Emitter Saturation Voltage
(IC = 7.0 Adc, IB = 70 mAdc)
VCE(sat)
(TC = 125°C)
(IC = 8.0 Adc, IB = 0.1 Adc)
(TC = 125°C)
(IC = 10 Adc, IB = 0.25 Adc)
Base–Emitter On Voltage
(IC = 5.0 Adc, VCE = 2.0 Vdc)
(IC = 8.0 Adc, VCE = 2.0 Vdc)
Vdc
Vdc
VBE(on)
(TC = – 40°C to +125°C)
Diode Forward Voltage Drop
(IF = 10 Adc)
VF
DC Current Gain
(IC = 6.5 Adc, VCE = 1.5 Vdc)
(IC = 5.0 Adc, VCE = 4.6 Vdc)
Vdc
hFE
(TC = – 40°C to +125°C)
Vdc
—
DYNAMIC CHARACTERISTICS
Current Gain Bandwidth
(IC = 0.2 Adc, VCE = 10 Vdc, f = 1.0 MHz)
CLAMPING ENERGY (see notes)
Repetitive Non–Destructive Energy Dissipated at turn–off:
(IC = 7.0 A, L = 8.0 mH, RBE = 100 Ω) (see Figures 2 and 4)
SWITCHING CHARACTERISTICS: Inductive Load (L = 10 mH)
Fall Time
Storage Time
Cross–over Time
(IC = 6.5 A, IB1 = 45 mA,
VBE(off)
( ) = 0, RBE(off)
( ) = 0,
VCC = 14 V,
V VZ = 300 V)
(1) Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle = 2.0%.
2
Motorola Bipolar Power Transistor Device Data
BU323Z
By design, the BU323Z has a built–in avalanche diode and
a special high voltage driving circuit. During an auto–protect
cycle, the transistor is turned on again as soon as a voltage,
determined by the zener threshold and the network, is
reached. This prevents the transistor from going into a
Reverse Bias Operating limit condition. Therefore, the device
will have an extended safe operating area and will always
appear to be in “FBSOA.” Because of the built–in zener and
associated network, the I C = f(V CE ) curve exhibits an
unfamiliar shape compared to standard products as shown in
Figure 1.
IC
INOM = 6.5 A
Output transistor turns on: IC = 40 mA
High Voltage Circuit turns on: IC = 20 mA
Avalanche diode turns on: IC = 100 µA
250 V
300 V
340 V
Icer Leakage Current
VCE
VCLAMP NOMINAL
= 400 V
Figure 1. IC = f(VCE) Curve Shape
MERCURY CONTACTS
WETTED RELAY
IC CURRENT
SOURCE
VCE
MONITOR
(VGATE)
RBE = 100 Ω
IB CURRENT
SOURCE
The bias parameters, VCLAMP, IB1, VBE(off), IB2, IC, and
the inductance, are applied according to the Device Under
Test (DUT) specifications. VCE and IC are monitored by the
test system while making sure the load line remains within
the limits as described in Figure 4.
L INDUCTANCE
(8 mH)
0.1 Ω
NON
INDUCTIVE
IC
MONITOR
VBEoff
IB2 SOURCE
Note: All BU323Z ignition devices are 100% energy tested,
per the test circuit and criteria described in Figures 2 and 4,
to the minimum guaranteed repetitive energy, as specified in
the device parameter section. The device can sustain this
energy on a repetitive basis without degrading any of the
specified electrical characteristics of the devices. The units
under test are kept functional during the complete test sequence for the test conditions described:
IC(peak) = 7.0 A, ICH = 5.0 A, ICL = 100 mA, IB = 100 mA,
RBE = 100 Ω, Vgate = 280 V, L = 8.0 mH
Figure 2. Basic Energy Test Circuit
IC, COLLECTOR CURRENT (AMPS)
10
1
300 µs
1 ms
TC = 25°C
10 ms
250 ms
0.1
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
CURVES APPLY BELOW
RATED VCEO
0.01
0.001
10
100
340 V
VCE, COLLECTOR–EMITTER VOLTAGE (VOLTS)
1000
Figure 3. Forward Bias Safe Operating Area
Motorola Bipolar Power Transistor Device Data
3
BU323Z
IC
The shaded area represents the amount of energy the device can sustain, under given DC biases (IC/IB/VBE(off)/
RBE), without an external clamp; see the test schematic diagram, Figure 2.
ICPEAK
IC HIGH
The transistor PASSES the Energy test if, for the inductive
load and ICPEAK/IB/VBE(off) biases, the VCE remains outside
the shaded area and greater than the VGATE minimum limit,
Figure 4a.
IC LOW
VCE
Figure 4a.
VGATE MIN
IC
ICPEAK
IC HIGH
IC LOW
VCE
Figure 4b.
VGATE MIN
IC
ICPEAK
IC HIGH
The transistor FAILS if the VCE is less than the VGATE
(minimum limit) at any point along the VCE/IC curve as
shown on Figures 4b, and 4c. This assures that hot spots
and uncontrolled avalanche are not being generated in the
die, and the transistor is not damaged, thus enabling the
sustained energy level required.
IC LOW
VCE
Figure 4c.
VGATE MIN
IC
ICPEAK
IC HIGH
The transistor FAILS if its Collector/Emitter breakdown
voltage is less than the VGATE value, Figure 4d.
IC LOW
VCE
Figure 4d.
VGATE MIN
Figure 4. Energy Test Criteria for BU323Z
4
Motorola Bipolar Power Transistor Device Data
BU323Z
10000
10000
TJ = 125°C
hFE, DC CURRENT GAIN
hFE, DC CURRENT GAIN
TYPICAL
1000
–40°C
25°C
100
1000
TYP – 6Σ
TYP + 6Σ
100
VCE = 5 V, TJ = 25°C
VCE = 1.5 V
10
100
1000
IC, COLLECTOR CURRENT (MILLIAMPS)
10
100
10000
5.0
4.5
TJ = 25°C
IC = 3 A
4.0
3.5
5A
3.0
8A
10 A
2.5
2.0
7A
1.5
1.0
0.5
0
1
10
IB, BASE CURRENT (MILLIAMPS)
100
2.4
VBE(on), BASE–EMITTER VOLTAGE (VOLTS)
VBE, BASE–EMITTER VOLTAGE (VOLTS)
IC/IB = 150
1.8
TJ = 25°C
1.4
125°C
1.0
0.8
0.1
1
IC, COLLECTOR CURRENT (AMPS)
Figure 9. Base–Emitter Saturation Voltage
Motorola Bipolar Power Transistor Device Data
TJ = 125°C
2.0
1.8
1.6
1.4
1.2
1.0
25°C
0.8
0.6
0.4
0.1
1
IC, COLLECTOR CURRENT (AMPS)
10
Figure 8. Collector–Emitter Saturation Voltage
2.0
1.2
IC/IB = 150
2.2
Figure 7. Collector Saturation Region
1.6
100000
Figure 6. DC Current Gain
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
VCE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 5. DC Current Gain
1000
10000
IC, COLLECTOR CURRENT (MILLIAMPS)
10
2.0
1.8
VCE = 2 VOLTS
1.6
1.4
TJ = 25°C
1.2
1.0
125°C
0.8
0.6
0.1
1
IC, COLLECTOR CURRENT (AMPS)
10
Figure 10. Base–Emitter “ON” Voltages
5
BU323Z
PACKAGE DIMENSIONS
C
Q
B
U
S
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
E
4
DIM
A
B
C
D
E
G
H
J
K
L
Q
S
U
V
A
L
1
K
2
3
D
J
H
MILLIMETERS
MIN
MAX
–––
20.35
14.70
15.20
4.70
4.90
1.10
1.30
1.17
1.37
5.40
5.55
2.00
3.00
0.50
0.78
31.00 REF
–––
16.20
4.00
4.10
17.80
18.20
4.00 REF
1.75 REF
INCHES
MIN
MAX
–––
0.801
0.579
0.598
0.185
0.193
0.043
0.051
0.046
0.054
0.213
0.219
0.079
0.118
0.020
0.031
1.220 REF
–––
0.638
0.158
0.161
0.701
0.717
0.157 REF
0.069
V
STYLE 1:
PIN 1.
2.
3.
4.
G
BASE
COLLECTOR
EMITTER
COLLECTOR
CASE 340D–02
SOT–93/TO–218 TYPE
ISSUE B
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
6
◊
*BU323Z/D*
Motorola Bipolar Power Transistor Device BU323Z/D
Data