ONSEMI MC74LVX4053MG

MC74LVX4053
Analog Multiplexer/
Demultiplexer
High−Performance Silicon−Gate CMOS
The MC74LVX4053 utilizes silicon−gate CMOS technology to
achieve fast propagation delays, low ON resistances, and low OFF
leakage currents. This analog multiplexer/demultiplexer controls
analog voltages that may vary across the complete power supply range
(from VCC to VEE).
The LVX4053 is similar in pinout to the LVX8053, the HC4053A,
and the metal−gate MC14053B. The Channel−Select inputs determine
which one of the Analog Inputs/Outputs is to be connected, by means
of an analog switch, to the Common Output/Input. When the Enable
pin is HIGH, all analog switches are turned off.
The Channel−Select and Enable inputs are compatible with standard
CMOS outputs; with pullup resistors, they are compatible with
LSTTL outputs.
This device has been designed so the ON resistance (RON) is more
linear over input voltage than the RON of metal−gate CMOS analog
switches and High−Speed CMOS analog switches.
http://onsemi.com
MARKING
DIAGRAMS
16
SOIC−16
D SUFFIX
CASE 751B
1
16
1
16
Fast Switching and Propagation Speeds
Low Crosstalk Between Switches
Analog Power Supply Range (VCC − VEE) = *3.0 V to )3.0 V
SOEIAJ−16
M SUFFIX
CASE 966
Digital (Control) Power Supply Range (VCC − GND) = 2.5 to 6.0 V
Improved Linearity and Lower ON Resistance Than Metal−Gate,
HSL, or VHC Counterparts
Low Noise
•
• Designed to Operate on a Single Supply with VEE = GND, or Using
•
•
LVX
4053
ALYWG
G
TSSOP−16
DT SUFFIX
CASE 948F
Features
•
•
•
•
•
LVX4053G
AWLYWW
Split Supplies up to ±3.0 V
Break−Before−Make Circuitry
These Devices are Pb−Free and are RoHS Compliant
VCC
Y
16
15
X
14
X1
X0
A
3
4
Z1
Z
= Specific Device Code
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
9
See detailed ordering and shipping information in the package
dimensions section on page 2 of this data sheet.
5
6
7
8
Z0 Enable VEE GND
2
Y0
LVX4053
A
WL, L
Y
WW, W
G or G
C
12
1
10
1
(Note: Microdot may be in either location)
13
Y1
11
B
LVX4053
ALYWG
Figure 1. Pin Connection and Marking Diagram
(Top View)
© Semiconductor Components Industries, LLC, 2011
May, 2011 − Rev. 8
1
Publication Order Number:
MC74LVX4053/D
MC74LVX4053
12
FUNCTION TABLE
X0
13
X1
Control Inputs
Enable
C
L
L
L
L
L
L
L
L
H
L
L
L
L
H
H
H
H
X
Select
B
A
L
L
H
H
L
L
H
H
X
L
H
L
H
L
H
L
H
X
ON Channels
Z0
Z0
Z0
Z0
Z1
Z1
Z1
Z1
Y0
Y0
Y1
Y1
Y0
Y0
Y1
Y1
NONE
X0
X1
X0
X1
X0
X1
X0
X1
X SWITCH
2
Y0
ANALOG
1
INPUTS/OUTPUTS Y1
Y SWITCH
5
Z0
3
Z1
Z SWITCH
14
15
4
X
Y
COMMON
OUTPUTS/INPUTS
Z
11
A
10
B
9
C
6
ENABLE
CHANNEL‐SELECT
INPUTS
X = Don’t Care
PIN 16 = VCC
PIN 8 = GND
PIN 7 = VEE
NOTE: This device allows independent control of each switch.
Channel−Select Input A controls the X−Switch, Input B
controls the Y−Switch and Input C controls the Z−Switch
Figure 2. Logic Diagram Triple Single−Pole,
Double−Position Plus Common Off
ORDERING INFORMATION
Package
Shipping†
MC74LVX4053DG
SOIC−16
(Pb−Free)
48 Units / Rail
MC74LVX4053DR2G
SOIC−16
(Pb−Free)
2500 Tape & Reel
MC74LVX4053DTG
TSSOP−16*
96 Units / Rail
MC74LVX4053DTR2G
TSSOP−16*
2500 Tape & Reel
MC74LVX4053MG
SOEIAJ−16
(Pb−Free)
50 Units / Rail
MC74LVX4053MELG
SOEIAJ−16
(Pb−Free)
2000 Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*This package is inherently Pb−Free.
http://onsemi.com
2
MC74LVX4053
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
MAXIMUM RATINGS
Symbol
Value
Unit
VEE
Negative DC Supply Voltage
(Referenced to GND)
*7.0 to )0.5
V
VCC
Positive DC Supply Voltage
(Referenced to GND)
(Referenced to VEE)
*0.5 to )7.0
*0.5 to )7.0
V
VIS
Analog Input Voltage
VEE *0.5 to VCC )0.5
V
VIN
Digital Input Voltage
*0.5 to 7.0
V
$20
mA
*65 to )150
_C
260
_C
)150
_C
I
Parameter
(Referenced to GND)
DC Current, Into or Out of Any Pin
TSTG
Storage Temperature Range
TL
Lead Temperature, 1 mm from Case for 10 Seconds
TJ
Junction Temperature under Bias
JA
Thermal Resistance
SOIC
TSSOP
143
164
°C/W
PD
Power Dissipation in Still Air,
SOIC
TSSOP
500
450
mW
MSL
Moisture Sensitivity
FR
Flammability Rating
VESD
Level 1
Oxygen Index: 30% − 35%
ESD Withstand Voltage
ILATCHUP
Latchup Performance
UL−94−VO (0.125 in)
Human Body Model (Note 1)
Machine Model (Note 2)
Charged Device Model (Note 3)
u2000
u200
u1000
V
Above VCC and Below GND at 125°C (Note 4)
$300
mA
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Tested to EIA/JESD22−A114−A.
2. Tested to EIA/JESD22−A115−A.
3. Tested to JESD22−C101−A.
4. Tested to EIA/JESD78.
RECOMMENDED OPERATING CONDITIONS
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Symbol
Parameter
Min
Max
Unit
VEE
Negative DC Supply Voltage
(Referenced to GND)
*6.0
GND
V
VCC
Positive DC Supply Voltage
(Referenced to GND)
(Referenced to VEE)
2.5
2.5
6.0
6.0
V
VEE
VCC
V
0
6.0
V
*55
125
_C
0
0
100
20
ns/V
VIS
Analog Input Voltage
VIN
Digital Input Voltage
TA
Operating Temperature Range, All Package Types
tr, tf
Input Rise/Fall Time
(Channel Select or Enable Inputs)
(Note 5) (Referenced to GND)
VCC = 3.0 V $ 0.3 V
VCC = 5.0 V $ 0.5 V
5. Unused inputs may not be left open. All inputs must be tied to a high−logic voltage level or a low−logic input voltage level.
90
419,300
47.9
100
178,700
20.4
110
79,600
9.4
120
37,000
4.2
130
17,800
2.0
140
8,900
1.0
TJ = 80_C
117.8
TJ = 90_C
1,032,200
TJ = 100_C
80
TJ = 110_C
Time, Years
TJ = 120_C
Time, Hours
FAILURE RATE OF PLASTIC = CERAMIC
UNTIL INTERMETALLICS OCCUR
TJ = 130_C
Junction
Temperature °C
NORMALIZED FAILURE RATE
DEVICE JUNCTION TEMPERATURE VERSUS
TIME TO 0.1% BOND FAILURES
1
1
10
100
1000
TIME, YEARS
Figure 3. Failure Rate vs. Time Junction Temperature
http://onsemi.com
3
MC74LVX4053
DC CHARACTERISTICS − Digital Section (Voltages Referenced to GND)
Symbol
Parameter
Condition
Guaranteed Limit
VCC
V
*55 to 25°C
v85°C
v125°C
Unit
VIH
Minimum High−Level Input
Voltage, Channel−Select or Enable Inputs
2.5
3.0
4.5
6.0
1.90
2.10
3.15
4.2
1.90
2.10
3.15
4.2
1.90
2.10
3.15
4.2
V
VIL
Maximum Low−Level Input
Voltage, Channel−Select or Enable Inputs
2.5
3.0
4.5
6.0
0.6
0.9
1.35
1.8
0.6
0.9
1.35
1.8
0.6
0.9
1.35
1.8
V
IIN
Maximum Input Leakage
Current, Channel−Select or Enable Inputs
VIN = 6.0 or GND
0 V to 6.0 V
$0.1
$1.0
$1.0
A
ICC
Maximum Quiescent Supply
Current (per Package)
Channel Select, Enable
and VIS = VCC or GND
6.0
4.0
40
80
A
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
DC ELECTRICAL CHARACTERISTICS − Analog Section
Symbol
RON
Parameter
Test Conditions
Guaranteed Limit
VCC
V
VEE
V
*55 to 25°C
v85_C
v125_C
Unit
Maximum “ON” Resistance
VIN = VIL or VIH
VIS = ½ (VCC − VEE)
|IS| = 2.0 mA
(Figure 4)
3.0
4.5
3.0
0
0
*3.0
86
37
26
108
46
33
120
55
37
RON
Maximum Difference in “ON”
Resistance Between Any Two
Channels in the Same Package
VIN = VIL or VIH
VIS = ½ (VCC − VEE)
|IS| = 2.0 mA
3.0
4.5
3.0
0
0
*3.0
15
13
10
20
18
15
20
18
15
Ioff
Maximum Off−Channel Leakage
Current, Any One Channel
Vin = VIL or VIH;
VIO = VCC or GND;
Switch Off (Figure 3)
5.5
+3.0
0
−3.0
0.1
0.1
0.5
0.5
1.0
1.0
A
Maximum Off−Channel
Leakage Current,
Common Channel
Vin = VIL or VIH;
VIO = VCC or GND;
Switch Off (Figure 4)
5.5
+3.0
0
−3.0
0.2
0.2
2.0
2.0
4.0
4.0
Maximum On−Channel
Leakage Current,
Channel−to−Channel
Vin = VIL or VIH;
Switch−to−Switch =
VCC or GND; (Figure 5)
5.5
+3.0
0
−3.0
0.2
0.2
2.0
2.0
4.0
4.0
Ion
A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
AC CHARACTERISTICS (Input tr = tf = 3 ns)
Guaranteed Limit
Symbol
tBBM
Parameter
Min. Break−Before−Make Time
Test Conditions
VIN = VIL or VIH
VIS = VCC
RL = 300 CL = 35 pF
(Figures 12 and 13)
VCC
V
VEE
V
3.0
4.5
3.0
0.0
0.0
*3.0
*Typical Characteristics are at 25_C.
http://onsemi.com
4
*55 to 25_C
Min
Typ*
v85_C
v125_C
Unit
1.0
1.0
1.0
6.5
5.0
3.5
−
−
−
−
−
−
ns
MC74LVX4053
AC CHARACTERISTICS (CL = 50 pF, Input tr = tf = 3 ns)
Guaranteed Limit
Symbol
Parameter
VCC
V
VEE
V
*55 to 25°C
Min
Typ
v85°C
Max
Min
Max
v125°C
Min
Max
Unit
tPLH,
tPHL
Maximum Propagation Delay,
Channel−Select to Analog Output
(Figures 16 and 17)
2.5
3.0
4.5
3.0
0
0
0
*3.0
40
28
23
23
45
30
25
25
50
35
30
28
ns
tPLZ,
tPHZ
Maximum Propagation Delay, Enable to
Analog Output (Figures 14 and 15)
2.5
3.0
4.5
3.0
0
0
0
*3.0
40
28
23
23
45
30
25
25
50
35
30
28
ns
tPZL,
tPZH
Maximum Propagation Delay, Enable to
Analog Output (Figures 14 and 15)
2.5
3.0
4.5
3.0
0
0
0
*3.0
40
28
23
23
45
30
25
25
50
35
30
28
ns
Typical @ 25°C, VCC = 5.0 V, VEE = 0V
CPD
Power Dissipation Capacitance (Figure 18) (Note 6)
45
pF
CIN
Maximum Input Capacitance, Channel−Select or Enable Inputs
10
pF
CI/O
Maximum Capacitance
(All Switches Off)
10
10
1.0
pF
Analog I/O
Common O/I
Feedthrough
6. Used to determine the no−load dynamic power consumption: P D = CPD VCC
2f
+ ICC VCC .
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)
Symbol
Parameter
Condition
Typ
VCC
V
VEE
V
25°C
Unit
BW
Maximum On−Channel Bandwidth or
Minimum Frequency Response
VIS = ½ (VCC − VEE)
Ref and Test Attn = 10 dB
Source Amplitude = 0 dB
(Figure 7)
3.0
4.5
6.0
3.0
0.0
0.0
0.0
*3.0
80
80
80
80
MHz
VISO
Off−Channel Feedthrough Isolation
f = 1 MHz; VIS = ½ (VCC − VEE)
Adjust Network Analyzer output to 10 dBm on
each output from the power splitter
(Figures 8 and 9)
3.0
4.5
6.0
3.0
0.0
0.0
0.0
*3.0
*70
*70
*70
*70
dB
VONL
Maximum Feedthrough On Loss
VIS = ½ (VCC − VEE)
Adjust Network Analyzer output to 10 dBm on
each output from the power splitter
(Figure 11)
3.0
4.5
6.0
3.0
0.0
0.0
0.0
*3.0
*2
*2
*2
*2
dB
Charge Injection
VIN = VCC to VEE, fIS = 1 kHz, tr = tf = 3 ns
RIS = 0 , CL= 1000 pF, Q = CL * VOUT
(Figure 10)
5.0
3.0
*3.0
0.0
9.0
12
pC
Total Harmonic Distortion THD + Noise
fIS = 1 MHz, RL = 10 K, CL = 50 pF,
VIS = 5.0 VPP sine wave
VIS = 6.0 VPP sine wave
(Figure 19)
6.0
3.0
0.0
*3.0
0.10
0.05
Q
THD
http://onsemi.com
5
%
MC74LVX4053
PLOTTER
PROGRAMMABLE
POWER
SUPPLY
*
MINI
COMPUTER
DC ANALYZER
)
VCC
DEVICE
UNDER TEST
ANALOG IN
COMMON OUT
GND
GND
Figure 4. On Resistance, Test Set−Up
VCC
VCC
16
VEE
VCC
A
VCC
OFF
ON
VEE
OFF
NC
16
A
A
VCC
COMMON O/I
OFF
VEE
VEE
6
7
8
Figure 5. Maximum Off Channel Leakage Current,
Any One Channel, Test Set−Up
HP4195A
Network Anl
S1 R1 T1
6
7
8
Figure 6. Maximum On Channel Leakage Current,
Channel to Channel, Test Set−Up
0.1 F
VIS
HP11667B
Pwr Splitter
VCC
100 K
0.1 F
ON
All untested Analog I/O pins
OFF
50 K
VEE
6
7
8
N/C
COMMON O/I
ANALOG I/O
VIL
VIH
VCC
9 − 11
Channel Selects
connected to address
pins on HP4195A and
appropriately configured
to test each switch.
Figure 7. Maximum On Channel Bandwidth, Test Set−Up
http://onsemi.com
6
MC74LVX4053
HP4195A
Network Anl
S1 R1 T1
0.1 F
HP11667B
Pwr Splitter
0.1 F
VIS
VCC
100 K
16
OFF
All untested Analog I/O pins
ON
50 K
VEE
6
7
8
Channel Selects
connected to address
pins on HP4195A and
appropriately configured
to test each switch.
9 − 11
Config = Network
Format = T/R (dB)
CAL = Trans Cal
VISO(dB) = 20 log (VT1/VR1)
Display = Rectan X*A)B
Scale Ref = Auto Scale
View = Off, Off, Off
Trig = Cont Mode
Source Amplitude = )13 dB
Reference Attenuation = 20 dB
Test Attenuation = 0 dB
Figure 8. Maximum Off Channel Feedthrough Isolation, Test Set−Up
HP4195A
Network Anl
S1 R1 T1
HP11667B
Pwr Splitter
0.1 F
VIS
VCC
100 K
0.1 F
OFF
16
ON
50 K
All untested Analog I/O pins
50 VEE
6
7
8
Config = Network
Format = T/R (dB)
CAL = Trans Cal
Display = Rectan X*A)B
Scale Ref = Auto Scale
View = Off, Off, Off
Trig = Cont Mode
Source Amplitude = )13 dB
Reference Attenuation = 20 dB
Test Attenuation = 0 dB
9 − 11
Channel Selects
connected to address
pins on HP4195A and
appropriately configured
to test each switch.
VISOC(dB) = 20 log (VT1/VR1)
Figure 9. Maximum Common−Channel Feedthrough Isolation, Test Set−Up
http://onsemi.com
7
MC74LVX4053
VCC
16
ON/OFF
VOUT
OFF/ON
VIN
Enable
VEE
6
RIS
7
8
CL *
Bias Channel Selects to
test each combination of
analog inputs to common
analog output.
9 − 11
*Includes all probe and jig capacitance.
VIH
VIS
VIL
Q = CL * VOUT
VOUT
VOUT
Figure 10. Charge Injection, Test Set−Up
HP4195A
Network Anl
S1 R1 T1
0.1 F
HP11667B
Pwr Splitter
0.1 F
VIS
VCC
100 K
16
ON
All untested Analog I/O pins
OFF
50 VEE
6
7
8
Config = Network
Format = T/R (dB)
CAL = Trans Cal
Display = Rectan X*A)B
Scale Ref = Auto Scale
View = Off, Off, Off
Trig = Cont Mode
Source Amplitude = )13 dB
Reference Attenuation = 20 dB
Test Attenuation = 20 dB
9 − 11
Channel Selects
connected to address
pins on HP4195A and
appropriately configured
to test each switch.
VONL(dB) = 20 log (VT1/VR1)
Figure 11. Maximum On Channel Feedthrough On Loss, Test Set−Up
http://onsemi.com
8
MC74LVX4053
Tek 11801B
DSO
COM INPUT
VCC
VCC
VIN
16
VOH
80%
OFF
ON
VEE
80% of
VOH
CL
RL
Channel Selects connected
to VIN and appropriately
configured to test each switch.
6
7
8
9 − 11
GND
tBBM
VIN
50 Figure 12. Break−Before−Make, Test Set−Up
Figure 13. Break−Before−Make Time
VCC
VCC
16
VCC
CHANNEL
SELECT
ANALOG I/O
50%
COMMON
O/I
TEST
POINT
ON/OFF
OFF/ON
GND
tPLH
ANALOG
OUT
CL *
6
7
8
tPHL
50%
CHANNEL SELECT
*Includes all probe and jig capacitance.
Figure 14. Propagation Delays, Channel Select
to Analog Out
tf
GND
POSITION 1 WHEN TESTING tPHZ AND tPZH
1
POSITION 2 WHEN TESTING tPLZ AND tPZL
tr
90%
50%
10%
ENABLE
tPZL
ANALOG
OUT
tPLZ
50%
VCC
2
GND
HIGH
IMPEDANCE
10%
tPHZ
tPZH
ANALOG
OUT
Figure 15. Propagation Delay, Test Set−Up
Channel Select to Analog Out
90%
VCC
VCC
16
1
ANALOG I/O
ON/OFF
2
VOL
1 K
TEST
POINT
CL *
ENABLE
VOH
50%
HIGH
IMPEDANCE
Figure 16. Propagation Delays, Enable to
Analog Out
6
7
8
Figure 17. Propagation Delay, Test Set−Up
Enable to Analog Out
http://onsemi.com
9
MC74LVX4053
VCC
A
VCC
ON/OFF
NC
OFF/ON
VIL
15
10 − 11,
13 − 14
12
Channel
Select
Figure 18. Power Dissipation Capacitance, Test Set−Up
HP3466
DMM
)V
COM
HP3466
DMM
)V
COM
HP E3630A
DC Pwr Supply
COM
)20 V
HP 339
Distortion Measurement Set
*20 V
Analyzer
Input COM
Oscillator
Output COM
16
ON
RL
OFF
50 K
6
7
8
9 − 11
CL
Channel Selects connected
to DC bias supply or ground
and appropriately configured
to test each switch.
Figure 19. Total Harmonic Distortion, Test Set−Up
http://onsemi.com
10
MC74LVX4053
APPLICATIONS INFORMATION
outputs to VCC or GND through a low value resistor helps
minimize crosstalk and feedthrough noise that may be
picked up by an unused switch.
Although used here, balanced supplies are not a
requirement. The only constraints on the power supplies are
that:
VEE − GND = 0 to *6 volts
VCC − GND = 2.5 to 6 volts
VCC − VEE = 2.5 to 6 volts
and VEE v GND
When voltage transients above VCC and/or below VEE are
anticipated on the analog channels, external Germanium or
Schottky diodes (Dx) are recommended as shown in
Figure 22. These diodes should be able to absorb the
maximum anticipated current surges during clipping.
The Channel Select and Enable control pins should be at
VCC or GND logic levels. VCC being recognized as a logic
high and GND being recognized as a logic low. In this
example:
VCC = )5 V = logic high
GND = 0 V = logic low
The maximum analog voltage swing is determined by the
supply voltages VCC and VEE. The positive peak analog
voltage should not exceed VCC. Similarly, the negative peak
analog voltage should not go below VEE. In this example,
the difference between VCC and VEE is 5.0 volts. Therefore,
using the configuration of Figure 21, a maximum analog
signal of 5.0 volts peak−to−peak can be controlled. Unused
analog inputs/outputs may be left floating (i.e., not
connected). However, tying unused analog inputs and
+3.0 V
+3.0 V
−3.0 V
16
ANALOG
SIGNAL
−3.0 V
ON
6
7
8
11
10
9
+3.0 V
ANALOG
SIGNAL
+5 V
+5 V
−3.0 V
16
ANALOG
SIGNAL
GND
TO EXTERNAL CMOS
CIRCUITRY 0 to 3.0 V
DIGITAL SIGNALS
ON
6
7
8
Figure 20. Application Example
11
10
9
ANALOG
SIGNAL
VCC
Dx
16
VCC
Dx
ON/OFF
Dx
Dx
VEE
VEE
VEE
7
8
Figure 22. External Germanium or Schottky Clipping Diodes
http://onsemi.com
11
GND
TO EXTERNAL CMOS
CIRCUITRY 0 to 5 V
DIGITAL SIGNALS
Figure 21. Application Example
VCC
+5 V
MC74LVX4053
A
11
13
LEVEL
SHIFTER
12
14
B
10
1
LEVEL
SHIFTER
2
15
C
9
3
LEVEL
SHIFTER
5
4
ENABLE
6
LEVEL
SHIFTER
Figure 23. Function Diagram, LVX4053
http://onsemi.com
12
X1
X0
X
Y1
Y0
Y
Z1
Z0
Z
MC74LVX4053
PACKAGE DIMENSIONS
SOIC−16
D SUFFIX
CASE 751B−05
ISSUE K
−A−
16
9
1
8
−B−
P
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D
DIMENSION AT MAXIMUM MATERIAL CONDITION.
8 PL
0.25 (0.010)
B
M
S
G
R
K
F
X 45 _
C
−T−
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
SOLDERING FOOTPRINT*
8X
6.40
16X
1
1.12
16
16X
0.58
1.27
PITCH
8
9
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
13
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.229
0.244
0.010
0.019
MC74LVX4053
PACKAGE DIMENSIONS
TSSOP−16
DT SUFFIX
CASE 948F−01
ISSUE B
16X K REF
0.10 (0.004)
0.15 (0.006) T U
T U
M
S
V
S
K
S
ÉÉÉ
ÇÇÇ
ÇÇÇ
ÉÉÉ
K1
2X
L/2
16
9
J1
B
−U−
L
SECTION N−N
J
PIN 1
IDENT.
N
8
1
0.25 (0.010)
M
0.15 (0.006) T U
S
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
N
F
DETAIL E
−W−
C
0.10 (0.004)
−T− SEATING
PLANE
D
H
G
DETAIL E
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
16X
0.36
16X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
http://onsemi.com
14
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
−−−
1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.18
0.28
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.193 0.200
0.169 0.177
−−− 0.047
0.002 0.006
0.020 0.030
0.026 BSC
0.007
0.011
0.004 0.008
0.004 0.006
0.007 0.012
0.007 0.010
0.252 BSC
0_
8_
MC74LVX4053
PACKAGE DIMENSIONS
SOEIAJ−16
M SUFFIX
CASE 966−01
ISSUE A
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
LE
9
Q1
E HE
1
M_
L
8
Z
DETAIL P
D
e
VIEW P
A
A1
b
0.13 (0.005)
c
M
0.10 (0.004)
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
MILLIMETERS
MIN
MAX
--2.05
0.05
0.20
0.35
0.50
0.10
0.20
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 _
0_
0.70
0.90
--0.78
INCHES
MIN
MAX
--0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 _
0_
0.028
0.035
--0.031
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
15
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74LVX4053/D