FUJITSU MB86615PBT

FUJITSU SEMICONDUCTOR
DATA SHEET
DS04-22002-1E
ASSP Communication Control
IEEE 1394 Bus Controller
(for DVC)
MB86615
■ DESCRIPTION
The MB86615 is 1394 serial bus controller compatible with the IEEE 1394 “FireWire” standard (IEEE Standard
1394-1995). One built-in port plus a differential transceiver and comparator are provided to enable formation of
networks in a 1394 cable environment. The MB86615 supports s100 data transfer speeds.
By integrating the physical layer and link layer on one chip, The MB86615 is designed to reduce mounting area
as well as power consumption.
The MB86615 has an exclusive data port for isochronous transfer, provides automatic packetizing for sending
and separation of header and data units at receiving, and is optimized for continuity of transfer processing.
The MB86615 supports DVC AV/C protocols, and includes the necessary built-in automatic operations and
CSR’s for providing the necessary operations for DVC data transfer.
■ FEATURES
•
•
•
•
•
•
•
Compatible with IEEE 1394 high-performance serial bus standards
Physical layer and link layer integrated on one chip
1 cable ports
Supports s100 transfer speed (98.304 Mbit/sec)
3.3V single power supply operation
Built-in PLL (for crystal oscillator) for internal clock signal generation
Power saving modes
1) Forced sleep mode at instruction from MPU
2) Automatic sleep mode for non-connected ports
• Header and data units automatically separated at receiving and automatic packetizing for sending
• Supports cycle master functions
(Continued)
■ PACKAGES
100-pin plastic LQFP
120-pin plastic FBGA
(FPT-100P-M05)
(BGA-120P-M01)
MB86615
(Continued)
• Built-in CSR’s to provide isochronous resource manager functions
• 32-bit CRC generation and check functions
• General purpose port for asynchronous transfer and control (16-bit MPU/DMA common bus)
• Exclusive built-in ports for isochronous transfer (8-bit bus)
• Built-in CRS’s and automatic processes to support DVC
1) Automatic separation of CIP headers at receiving, and automatic packetizing at sending.
2) Automatic generation and match detection of time stamp by FP signal.
3) DBC area automatic increment function
4) No-data packet sending and receiving
5) On-chip PCR (input/output 1 channel each)
6) Each CSR with automatic C&S lock processing and read processing
• Compatible with 4-core cable
• Packages: LQFP-100, FBGA-120
2
MB86615
■ PIN ASSIGNMENTS
MODE0
TEST5
FP
ICRCE
IV
ILWRE
IDIR
ICLK
VDD
VSS
ID0
ID1
ID2
ID3
ID4
ID5
ID6
ID7
TEST4
TEST3
VSS
VDD
TEST2
TEST1
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
100 MODE1
1. LQFP-100
74 AVSS
VDD
3
73 N.C.
VSS
4
72 N.C.
ALE
5
71 N.C.
D15
6
70 N.C.
D14
7
69 AVDD
D13
8
68 AVSS
D12
9
67 N.C.
D11
10
66 AVDD
D10
11
65 AVSS
D9
12
64 N.C.
D8
13
63 AVSS
VDD
14
62 AVDD
VSS
15
61 TPA
D7
16
60 TPB
D6
17
59 TPA
AD5 18
58 TPB
AD4 19
57 AVSS
AD3 20
56 AVDD
AD2 21
55 TPBIAS
AD1 22
54 AVSS
D0
23
53 AVDD
VDD
24
52 ROI
VSS
25
51 N.C.
N.C.
DREQ
DACK
VDD
VSS
X0
X1
TESTP
AVSS
AVDD
VCOIN
CHPO
ROP
AVSS
AVDD
RD (R/W)
VDD
VSS
CS
A5
A4
A3
A2
A1
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
2
27
28
29
30
31
32
33
34
35
75 AVDD
INT
WR (DS) 26
RESET 1
(FPT-100P-M05)
3
MB86615
2. FBGA-120
13
12
11
10
9
8
7
6
5
4
3
2
1
N.C.
AVDD
AVSS
VCOIN
TESTP
XO
DACK
N.C.
A3
A5
VDD
N.C.
WR
(DS)
N
N.C.
ROI
N.C.
CHPO
AVSS
X1
VDD
DREQ
A2
A4
VSS
RD
(R/W)
VSS
M
AVDD
AVSS
TPBIAS
ROP
AVDD
N.C.
VSS
N.C.
A1
N.C.
CS
N.C.
VDD
L
AVDD
AVSS
TPB
D0
AD1
AD2
K
TPA
TPB
N.C.
AD3
AD4
AD5
J
TPA
AVDD
AVSS
D6
N.C.
D7
I
N.C.
N.C.
AVSS
VSS
VDD
D8
H
AVDD
N.C.
N.C.
N.C.
D9
D10
G
AVSS
AVDD
N.C.
D11
D12
N.C.
E
N.C.
N.C.
N.C.
D13
D14
D15
D
N.C.
AVSS
TEST3
ID7
ID4
ID1
VSS
IDIR
IV
TEST5
ALE
VSS
VDD
C
AVDD
TEST2
VSS
N.C.
ID5
ID2
ID0
ICLK
N.C.
FP
N.C.
INT
N.C.
B
TEST1
N.C.
VDD
TEST4
ID6
ID3
N.C.
VDD
ILWRE
ICRCE
MODE
0
MODE
1
RESET
A
TOP VIEW
1 pin
4
MB86615
■ PIN LIST
1. LQFP-100
NO.
I/O
Pin Name
NO.
I/O
Pin Name
1
ID
I
RESET
34
36
ID
—
N.C.
A2
2
O
INT
35
37
ID
O
DREQ
A1
3
—
VDD
36
38
IU
I
PMODE
DACK
4
—
VSS
37
39
—
O
CTR
VDD
5
ID
I
ALE
38
40
—
O
OCLK
VSS
6
ID/O
IU/O
D15
39
41
I/O
—
V
X0
DD
7
ID/O
IU/O
D14
40
42
—
I
V
X1
SS
8
ID/O
IU/O
D13
41
43
I/O
O
TESTP
X0
9
ID/O
IU/O
D12
42
44
—
I
AV
X1SS
10
ID/O
IU/O
D11
43
45
—
TESTP
AVDD
11
ID/O
IU/O
D10
44
46
—
I
VCOIN
AVSS
12
ID/O
IU/O
D9
45
47
—
O
CHPO
AVDD
13
ID/O
IU/O
D8
46
48
O
I
VCOIN
ROP
14
—
VDD
47
49
—
O
CHPO
AVSS
15
—
VSS
48
50
—
O
AV
ROP
DD
16
ID/O
IU/O
D7
49
51
—
AV
N.C.
SS
17
ID/O
IU/O
D6
50
52
—
O
AV
ROI
DD
18
ID/O
IU/O
AD5
51
53
—
AV
N.C.
DD
19
ID/O
IU/O
AD4
52
54
—
O
AV
RO1
SS
20
ID/O
IU/O
AD3
53
55
—
O
TPBIAS
AVDD
21
ID/O
IU/O
AD2
54
56
—
AVDD
SS
22
ID/O
IU/O
AD1
55
57
—
O
TAPBIAS1
AVSS
23
ID/O
IU/O
D0
56
58
I/O
—
AV
TPB
DD
24
—
VDD
57
59
I/O
—
AV
TPA
SS
25
—
VSS
58
60
I/O
TPB1
TPB
26
ID
I
WR
WR(XDS)
(DS)
59
61
I/O
TPA1
TPA
27
ID
I
RD (R/W)
60
62
I/O
—
TPB1
AVDD
28
—
VDD
61
63
I/O
—
TPA1
AVSS
29
—
VSS
62
64
—
RO0
N.C.
30
ID
I
CS
63
65
—
AVDD
SS
31
ID
I
A5
64
66
—
O
AVDD
SS
32
ID
I
A4
65
67
—
RO0
N.C.
33
ID
I
A3
66
68
—
AVDD
SS
34
—
I
V
A2
DD
57
69
—
AVDD
35
—
I
V
A1
SS
58
70
I/O
—
TPB1
N.C.
(Continued)
5
MB86615
(Continued)
6
NO.
I/O
Pin Name
NO.
I/O
Pin Name
71
—
N.C.
86
I/O
ID3
72
—
N.C.
87
I/O
ID2
73
—
N.C.
88
I/O
ID1
74
—
AVSS
89
I/O
ID0
75
—
AVDD
90
—
VSS
76
IU/O
TEST1
91
—
VDD
77
IU/O
TEST2
92
I
ICLK
78
—
VDD
93
I
IDIR
79
—
VSS
94
O
ILWRE
80
IU/O
TEST3
95
I
IV
81
IU/O
TEST4
96
O
ICRCE
82
I/O
ID7
97
I/O
FP
83
I/O
ID6
98
O
TEST5
84
I/O
ID5
99
I
MODE0
85
I/O
ID4
100
I
MODE1
MB86615
2. FBGA-120
Pin
No.
Ball
No.
I/O
Pin Name
Pin
No.
Ball
No.
I/O
Pin Name
Pin
No.
Ball
No.
I/O
Pin Name
1
A1
I
RESET
37
N4
I
A5
73
H13
I/O
TPA
2
B1
—
N.C.
38
M4
I
A4
74
H12
—
AVDD
3
B2
O
INT
39
L4
—
N.C.
75
H11
—
AVSS
4
C1
—
VDD
40
N5
I
A3
76
G13
—
N.C.
5
C2
—
VSS
41
M5
I
A2
77
G12
—
N.C.
6
C3
I
ALE
42
L5
I
A1
78
G11
—
AVSS
7
D1
IU/O
D15
43
N6
—
N.C.
79
F13
—
AVDD
8
D2
IU/O
D14
44
M6
O
DREQ
80
F12
—
N.C.
9
D3
IU/O
D13
45
L6
—
N.C.
81
F11
—
N.C.
10
E1
—
N.C.
46
N7
I
DACK
82
E13
—
AVSS
11
E2
IU/O
D12
47
M7
—
VDD
83
E12
—
AVDD
12
E3
IU/O
D11
48
L7
—
VSS
84
E11
—
N.C.
13
F1
IU/O
D10
49
N8
I/O
X0
85
D13
—
N.C.
14
F2
IU/O
D9
50
M8
I
X1
86
D12
—
N.C.
15
F3
—
N.C.
51
L8
—
N.C.
87
D11
—
N.C.
16
G1
IU/O
D8
52
N9
O
TESTP
88
C13
—
N.C.
17
G2
—
VDD
53
M9
—
AVSS
89
C12
—
AVSS
18
G3
—
VSS
54
L9
—
AVDD
90
B13
—
AVDD
19
H1
IU/O
D7
55
N10
I
VCOIN
91
A13
IU/O
TEST1
20
H2
—
N.C.
56
M10
O
CHPO
92
A12
—
N.C.
21
H3
IU/O
D6
57
L10
O
ROP
93
B12
IU/O
TEST2
22
J1
IU/O
AD5
58
N11
—
AVSS
94
A11
—
VDD
23
J2
IU/O
AD4
59
M11
—
N.C.
95
B11
—
VSS
24
J3
IU/O
AD3
60
N12
—
AVDD
96
C11
IU/O
TEST3
25
K1
IU/O
AD2
61
N13
—
N.C.
97
A10
IU/O
TEST4
26
K2
IU/O
AD1
62
M13
—
N.C.
98
B10
—
N.C.
27
K3
IU/O
D0
63
M12
O
ROI
99
C10
I/O
ID7
28
L1
—
VDD
64
L13
—
AVDD
100
A9
I/O
ID6
29
L2
—
N.C.
65
L12
—
AVSS
101
B9
I/O
ID5
30
M1
—
VSS
66
L11
O
TPBIAS
102
C9
I/O
ID4
31
N1
I
WR (DS)
67
K13
—
AVDD
103
A8
I/O
ID3
32
N2
—
N.C.
68
K12
—
AVSS
104
B8
I/O
ID2
33
M2
I
RD (R/W)
69
K11
I/O
TPB
105
C8
I/O
ID1
34
N3
—
VDD
70
J13
I/O
TPA
106
A7
—
N.C.
35
M3
—
VSS
71
J12
I/O
TPB
107
B7
I/O
ID0
36
L3
I
CS
72
J11
—
N.C.
108
C7
—
VSS
(Continued)
7
MB86615
(Continued)
8
Pin
No.
Ball
No.
I/O
Pin Name
Pin
No.
Ball
No.
I/O
Pin Name
Pin
No.
Ball
No.
I/O
Pin Name
109
A6
—
VDD
113
B5
—
N.C.
117
C4
O
TEST5
110
B6
I
ICLK
114
C5
I
IV
118
A3
I
MODE0
111
C6
I
IDIR
115
A4
O
ICRCE
119
B3
—
N.C.
112
A5
O
ILWRE
116
B4
I/O
FP
120
A2
I
MODE1
MB86615
■ PIN DESCRIPTION
1. 1394 Interface
Pin name
I/O
Function
TPA
I/O
1394 Cable port TPA positive signal I/O pin
TPA
I/O
1394 Cable port TPA negative signal I/O pin
TPB
I/O
1394 Cable port TPB positive signal I/O pin
TPB
I/O
1394 Cable port TPB negative signal I/O pin
TPBIAS
O
1394 Cable port common voltage reference voltage output pin
ROI
O
Connect to GND through 4.7 kΩ resistance
2. Isochronous-data Interface
Pin name
I/O
ICLK
I
IDIR
I
Function
Isochronous data interface CLK signal input pin (4 MHz to 16 MHz).
Isochronous transfer transmission/reception switching signal input pin.
0 input: The device clears the ISO-FIFO buffer and enters the transmission
mode.
The device asserts the ILWRE signal and starts transmission after
receiving one packet of data according to the “data-length” setting
(bank 0: 10h).
1 input: The device clears the ISO-FIFO buffer and enters the reception mode.
If any packet being transmitted exists, the device enters the reception
mode after completing transmission of the packet. The ILWRE signal is
asserted upon reception of one packet.
Note: The IDIR signal should normally be left at “1” and switched to “0” only for
transmission.
ILWRE
O
ISO-FIFO access enable signal output pin.
Transmission mode: The signal is asserted when the FIFO buffer is not full.
The signal is negated when the FIFO buffer becomes full.
When it is negated, data is accepted only up to the rising
edge of the next ICLK signal.
When a bus reset is detected, the signal is negated after
accepting data of up to the packet boundary.
After the bus reset, the signal is asserted again upon
completion of transmission of one source packet remaining
in the FIFO buffer.
Reception mode: The signal is asserted upon completion of one packet of data.
The signal is negated once when one packet of data is read
from the FIFO buffer and asserted back if the FIFO buffer still
contains any packet of data which has been received
completely.
ID7 to ID0
I/O
Isochronous transfer data input/output bits. (MSB is ID7, LSB is ID0)
IV
I
ID7 to ID0 enable signal input pin
Transmission mode: While the IV signal is active, data from the ID7 to ID0 pins is
loaded into the ISO-FIFO buffer at the rising edge of the
ICLK signal.
Reception mode: While the signal becomes active, the device starts sending
data from the ISO-FIFO buffer to the ID7 to ID0 pins. Data is
then switched at the rising edge of the ICLK signal.
(Continued)
9
MB86615
(Continued)
Pin name
I/O
Function
ICREC
O
This pin outputs a signal indicating that data sent in the reception mode is data in
a packet from which a data-CRC error has been detected.
I/O
Time stamp trigger signal I/O pin.
Transmission mode: This pin inputs the time stamp trigger signal.
The value in the internal cycle timer register is fetched upon
detection of the falling edge of the FP signal.
Reception mode: Time stamp match detection signal output pin.
FP
3. System Interface
10
Pin name
I/O
Function
CS
I
Input pin for signals used by the MPU to select the MB86615 as an I/O device.
A5 to A1
I
Address input pins for internal register selection.
Valid only in non-multiplexed mode.
If multiplexed mode is selected these pins should be fixed at ‘0’.
D15 to D6, D0
I/O
16-bit data bus input/output pins (MSB is D15, LSB is D0).
AD5 to AD1
I/O
16-bit data bus input/output pins (MSB is AD5, LSB is AD1). Used for address
input signals when multiplexed mode is selected.
RD (R/W)
I
80-series mode: Read strobe signal input pin, used to output data from the
MB86615 to the data bus.
68-series mode: Control signal input pin, used for data input/output operations to
the MB86615.
WR (DS)
I
80-series mode: Write strobe signal input pin, used to input data from the data
bus to the MB86615.
68-series mode: DS signal input pin, output when data bus is enabled.
ALE
I
ALE signal input pin, for signal output when addresses are enabled in multiplexed
mode. In non-multiplexed mode, this signal should be fixed at ‘0’.
DREQ
O
This pin outputs the DMA transfer request signal to the DMAC for asynchronous
transfer in DMA mode.
The signal requests DMA transfer between the device and memory.
DACK
I
This pin inputs the DMA enable signal from the DMAC for asynchronous transfer
in DMA mode.
INT
O
Interrupt output pin.
MB86615
4. Other
Pin name
I/O
Function
X0
I/O
X1
I
VCOIN
I
VCO input pin for internal PLL.
CHPO
O
Charge pump output pin for internal PLL.
ROP
O
Connect to GND through 4.7 kΩ resistance.
RESET
I
Reset signal input pin. The device enters the forced sleep mode automatically
upon detection of the RESET signal asserted.
MODE0
I
Input ‘0’ for 80-series mode.
Input ‘1’ for 68-series mode.
MODE1
I
Input ‘0’ for non-multiplexed mode.
Input ‘1’ for multiplexed mode.
TESTP
O
Test pin. Do not connect.
TEST1 to TEST4
IU/O
Test pin. Do not connect.
TEST5
O
Test pin. Do not connect.
AVDD
—
Analog power supply
AVSS
—
Analog ground
VDD
—
Digital power supply
VSS
—
Digital ground
N.C.
—
Unused pin. Do not connect.
External crystal connection pins for oscillator circuits.
11
MB86615
■ BLOCK DIAGRAM
IDIR
ISO
sending
packet
processing
ICLK
ICRCE
ISO
receiving
packet
processing
ASYNC
send-only
FIFO
(128 byte)
ASYNC
sending
packet
processing
ASYNC
receive-only
FIFO
(128 byte)
ASYNC
receiving
packet
processing
LINK
layer
control
circuit
PHY
layer
control
circuit
A5 to A1
AD5 to AD1
RD (R/W)
WR (DS)
ALE
System & asynchronous interface
D15 to D6, D0
Transaction
control circuit block
Cycle master
Dedicated transaction
control circuit block
INT
DREQ
DACK
12
TPA
TPB
TPB
TPBIAS
FP
CS
1394 interface
IV
Isochronous interface
ID7 to ID0
ISO sending/receiving FIFO (1kB)
ILWRE
TPA
Register block
CSR
PLL circuit
MB86615
■ BLOCK DESCRIPTIONS
• PHY Layer Control Circuit
This block contains the IEEE 1394 physical layer control circuits.
Both asynchronous transfer and isochronous transfer in a cable environment are supported.
The transfer speed is 100 Mbit/sec.
One analog transceiver/receiver ports are built-in.
This block provides bus status monitoring initialization operation after a bus reset is applied, as well as
arbitration and encoding/decoding functions for data sending and receiving.
• LINK Layer Control Circuit
This block controls the generation and transfer of IEEE 1394 standard packets.
32-bit CRC generation and checking is performed for packet headers and data.
A 32-bit cycle timer register is built-in to provide cycle master functions.
• Sending/Receiving FIFO
Contains built-in 1-byte FIFO areas, used for isochronous transfer for both sending
and receiving.
Contains independent sending and receiving 128-byte FIFO areas for asynchronous transfer.
• Packet Processing
Sending: Performs packetizing of headers, data and CRC. Automatically generates and attaches CRC.
Receiving: Separates 1394 packet headers and data, strips CRC.
• Transaction Control Circuit Block
This block controls the 1394 bus protocol based on a variety of instructions.
• Dedicated Transaction Circuit Block
This block packetizes data from the isochronous interface for DVC and rebuilds received data for the
isochronous interface in conjunction with the packet processing block.
• Register Block
This block contains various device control registers, as well as registers for setting parameters required for
transfer, DVC registers and CSR.
The built-in CSR provides isochronous resource manager functions.
• PLL Circuit
This block uses the reference clock signal generated by the crystal oscillator circuit to create internal operating
clock and transfer clock signals.
Reference oscillator frequency: 8.192 MHz.
13
MB86615
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Rating
Symbol
Unit
Min.
Max.
VDD
VSS – 0.5
4.0
V
Input voltage*1
VI
VSS – 0.5
VDD + 0.5
V
Output voltage*1
VO
VSS – 0.5
VDD + 0.5
V
Tst
–55
+125
°C
Top
–40
+85
°C
IO
–14
+14
mA
—
—
VDD + 1.0
V
—
—
VSS – 1.0
V
Power supply voltage*1
Strage temperature
Operating temperature*
Output current*
Overshoot*
3
4
Undershoot*
*1:
*2:
*3:
*4:
2
4
Voltage values are based on Vss = 0 V.
Not warranted for continuous operation.
Normal output current flow (Minimum at Vo = 0 V, maximum at Vo = VDD).
50 ns or less.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Power supply voltage*
Value
Unit
Min.
Max.
VDD
3.0
3.6
V
“H” level input voltage
CMOS input
VIH
VDD × 0.65
VDD
V
“L” level input voltage
CMOS input
VIL
VSS
VDD × 0.25
V
Differential input voltage
(for data transfer)
Cable input
VID
142
260
mV
Differential input voltage
(for arbitration)
Cable input
VIDA
173
260
mV
Common mode input voltage
Cable input
VCM
1.165
2.515
V
Receiving input jitter
Cable input
—
—
1.08
ns
Receiving input skew
Cable input
—
—
0.8
ns
CMOS output
IOH/IOL
–4
+4
mA
TPBIAS
Iot
–2
+10
mA
Ta
0
+70
°C
Output current
Operating temperature
* : Voltage values are based on Vss = 0 V.
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
14
MB86615
■ ELECTRICAL CHARACTERISTICS
1. DC Characteristics
1.1 1394 Interface Driver
Parameter
Symbol
(VDD = 3 to 3.6 V , VSS = 0 V, Ta = 0 to +70°C)
Value
Conditions
Unit
Min.
Max.
Differential output voltage
VOD
R1 = 56 Ω
172
265
mV
Common phase current
ICM
Driver enabled
–0.81
0.44
mA
VOFF
Driver disabled
—
20
mV
VO
—
1.665
2.015
V
Off state voltage
TPBIAS output voltage
1.2 1394 Interface - Comparator
Parameter
Symbol
(VDD = 3 to 3.6 V , VSS = 0 V, Ta = 0 to +70°C)
Value
Conditions
Unit
Min.
Max.
IIC
Driver disabled
–20
20
µA
Arbitration comparator “H” level
detection offset
VSCH
Driver disabled
168
—
mV
Arbitration comparator “Z” level
detection offset
VSCZ
Driver disabled
–30
30
mV
Arbitration comparator “L” level
detection offset
VSCL
Driver disabled
—
–168
mV
Port status comparator disconnection
detect voltage
VSD
Driver disabled
—
0.6
V
Port status comparator connection
detect voltage
VSC
Driver disabled
1.0
—
V
Common phase input current
15
MB86615
1.3 System Interface, etc
Parameter
Symbol
Conditions
“H” level input voltage
VIH
CMOS
VDD × 0.65
—
VDD
V
“L” level input voltage
VIL
CMOS
VSS
—
VDD × 0.25
V
“H” level output voltage
VOH
IOH = –4 mA
VDD – 0.5
—
VDD
V
“L” level output voltage
VOL
IOL = +4 mA
VSS
—
0.4
V
–5
—
5
µA
–5
—
5
µA
Input pins
Input leak current
Input pull-up resistance
Power supply current
16
(VDD = 3 to 3.6 V , VSS = 0 V, Ta = 0 to +70°C)
Value
Unit
Min.
Typ.
Max.
3-state pin
input
ILI
ILZ
VI = 0V to VDD
Rp
VIH = 0
25
50
200
kΩ
IDD1
1394 port
connected
—
—
200
mA
IDD0
1394 port non
connected
—
—
180
mA
IDDS
Forced sleep
—
—
30
mA
MB86615
2. AC Characteristics
2.1 1394 Driver
Parameter
Value
Symbol
Min.
Max.
Unit
Sending jitter
tJT
—
±0.8
ns
Sending skew
tSK
—
±0.8
ns
Sending rise time* Conditions
Sending fall time* CL = 10 pF. RL = 56 Ω
tDR
—
3.2
ns
tDF
—
3.2
ns
* : 10 to 90% value.
2.2 System Clock
Parameter
Value
Symbol
Min.
Typ.
Max.
Unit
Clock frequency
fC
8.191992
8.192
8.192008
MHz
Clock cycle time
tCLF
—
1/fc
—
ns
High
tCLCH
50
—
—
ns
Low
tCLCL
50
—
—
ns
Clock rise time
tCR
—
—
5
ns
Clock fall time
tCF
—
—
5
ns
Clock pulse width
tCLCH
tCLF
tCF
tCR
0. 65 VDD
0. 25 VDD
CLK
tCLCL
17
MB86615
2.3 System Reset
Parameter
Symbol
Reset (RESET) “L” level pulse width
tWRSL
Value
tWRSL
RESET
18
Min.
Max.
4 tclf
—
Unit
ns
MB86615
2.4 MPU Interface
(1) 68-Series Register Write Operation (multiplexed)
Parameter
Symbol
Value
Min.
Max.
Unit
Address setup time
tAWSM
10
—
ns
Address hold time
tAWHM
10
—
ns
CS setup time
tCWSM
20
—
ns
CS hold time
tCWHM
10
—
ns
R/W setup time
tRWSM
20
—
ns
R/W hold time
tRWHM
10
—
ns
ALE “H” level pulse width
tALE
15
—
ns
ALE fall to DS fall time
tDWD
15
—
ns
DS “L” level pulse width
tDSM
40
—
ns
Data setup time
tDWSM
10
—
ns
Data hold time
tDWHM
0
—
ns
DS rise to ALE rise time
tLWD
20
—
ns
tCWSM
tCWHM
CS
tRWHM
tRWSM
R/W
tALE
tLWD
tDWD
ALE
tDSM
DS
tAWSM
D15 to D6, D0
AD5 to AD1
Address
tAWHM
tDWSM
tDWHM
Data
19
MB86615
(2) 68-System Register Read Operation (multiplexed)
Parameter
Symbol
Value
Min.
Max.
Unit
Address setup time
tARSM
10
—
ns
Address hold time
tARHM
10
—
ns
CS setup time
tCRSM
20
—
ns
CS hold time
tCRHM
10
—
ns
R/W setup time
tRWSM
20
—
ns
R/W hold time
tRWH
10
—
ns
ALE “H” level pulse width
tALE
15
—
ns
ALE fall to DS fall time
tDRD
15
—
ns
DS “L” level pulse width
tDSM
40
—
ns
Data output definition time
tRLDM
—
40
ns
Data output disabled time
tRHDM
5
—
ns
tLRD
20
—
ns
DS rise to ALE rise time
tCRSM
tCRHM
tRWSM
tRWH
CS
R/W
tALE
tLRD
tDRD
ALE
tDSM
DS
tARSM
D15 to D6, D0
AD5 to AD1
20
Address
tARHM
tRLDM
tRHDM
Defined data
MB86615
(3) 68-Series Register Write Operation (non-multiplexed)
Parameter
Value
Symbol
Min.
Max.
Unit
Address setup time
tAWS
10
—
ns
Address hold time
tAWH
20
—
ns
CS setup time
tCWS
20
—
ns
CS hold time
tCWH
10
—
ns
R/W setup time
tRWS
20
—
ns
R/W hold time
tRWH
10
—
ns
DS “L” level pulse width
tDS
40
—
ns
Data setup time
tDWS
40
—
ns
Data hold time
tDWH
0
—
ns
tAWS
tAWH
A5 to A0
tCWS
tCWH
tRWS
tRWH
CS
R/W
tDS
DS
tDWS
D15 to D6, D0
AD5 to AD1
tDWH
Data
21
MB86615
(4) 68-Series Register Read Operation (non-multiplexed)
Parameter
Value
Symbol
Min.
Max.
Unit
Address setup time
tARS
10
—
ns
Address hold time
tARH
20
—
ns
CS setup time
tCRS
20
—
ns
CS hold time
tCRH
10
—
ns
R/W setup time
tRWS
20
—
ns
R/W hold time
tRWH
10
—
ns
DS “L” level pulse width
tDS
40
—
ns
Data output definition time
tRLD
—
40
ns
Data output disabled time
tRHD
5
—
ns
tARS
tARH
A5 to A0
Address
tCRS
tCRH
tRWS
tRWH
CS
R/W
tDS
DS
tRLD
D15 to D6, D0
AD5 to AD1
22
tRHD
Defined data
MB86615
(5) 80-Series Register Write Operation (multiplexed)
Parameter
Symbol
Value
Min.
Max.
Unit
Address setup time
tAWSM
10
—
ns
Address hold time
tAWHM
10
—
ns
CS setup time
tCWSM
20
—
ns
CS hold time
tCWHM
10
—
ns
ALE “H” level pulse width
tALE
15
—
ns
ALE fall to WR fall time
tDWD
15
—
ns
WR “L” level pulse width
tWRM
40
—
ns
Data setup time
tDWSM
40
—
ns
Data hold time
tDWHM
0
—
ns
tLWD
20
—
ns
WR rise to ALE rise time
tCWSM
tCWHM
CS
tALE
tDWD
tLWD
ALE
tWRM
WR
tAWSM
D15 to D6, D0
AD5 to AD1
Address
tAWHM
tDWSM
tDWHM
Data
23
MB86615
(6) 80-Series Register Read Operation (multiplexed)
Parameter
Symbol
Value
Min.
Max.
Unit
Address setup time
tARSM
10
—
ns
Address hold time
tARAHM
10
—
ns
CS setup time
tCRSM
20
—
ns
CS hold time
tCRHM
10
—
ns
ALE “H” level pulse width
tALE
15
—
ns
ALE fall to RD fall time
tDRD
15
—
ns
RD “L” level pulse width
tRDM
40
—
ns
Data output definition time
tRLDM
—
40
ns
Data output disabled time
tRHDM
5
—
ns
tLRD
20
—
ns
RD rise to ALE rise time
tCRSM
tCRHM
CS
tALE
tDRD
tLRD
ALE
tRDM
RD
tARSM
D15 to D6, D0
AD5 to AD1
24
Address
tARAHM
tRLDM
tRHDM
Defined data
MB86615
(7) 80-Series Register Write Operation (non-multiplexed)
Parameter
Value
Symbol
Min.
Max.
Unit
Address setup time
tAWS
10
—
ns
Address hold time
tAWH
20
—
ns
CS setup time
tCWS
20
—
ns
CS hold time
tCWH
10
—
ns
WR “L” level pulse width
tWR
40
—
ns
Data setup time
tDWS
40
—
ns
Data hold time
tDWH
0
—
ns
tAWS
tAWH
Address
A5 to A0
tCWS
tCWH
CS
tWR
WR
tDWS
D15 to D6, D0
AD5 to AD1
tDWH
Data
25
MB86615
(8) 80-Series Register Read Operation (non-multiplexed)
Parameter
Value
Symbol
Min.
Max.
Unit
Address setup time
tARS
10
—
ns
Address hold time
tARH
20
—
ns
CS setup time
tCRS
20
—
ns
CS hold time
tCRH
10
—
ns
RD “L” level pulse width
tRD
40
—
ns
Data output definition time
tRLD
—
40
ns
Data output disabled time
tRHD
5
—
ns
tARS
tARH
Address
A5 to 0
tCRS
tCRH
CS
tRD
RD
tRLD
tRHD
D15 to D6, D0
AD5 to AD1
Defined data
(9) INT Signal Operation
Parameter
Interrupt read operation to INT signal negate
Symbol
tINTD
Value
Min.
Max.
100
—
Unit
ns
RD,
DS
tINTD
INT
Note: This specification applies only to reading of the last data from the interrupt holding register. For other
read-related specifications, conform to the respective specifications for individual modes.
26
MB86615
2.5 DMA Access
(1) 68-Series DMA Write Operation
Parameter
Value
Symbol
Min.
Max.
Unit
DREQ “H” to DACK “L”
tDHAL
0
—
ns
DS “H” to DREQ “L”
tDHDL
—
30
ns
DACK setup time
tDAWS
20
—
ns
DACK hold time
tDAWH
0
—
ns
R/W setup time
tDRWS
20
—
ns
R/W hold time
tDRWH
10
—
ns
DS “L” level pulse width
tDDS
40
—
ns
DS “H” level pulse width
tDDSH
30
—
ns
Input data setup time
tDDWS
30
—
ns
Input data hold time
tDDWH
0
—
ns
tDHAL
tDHDL
DREQ
tDAWS
tDAWH
tDRWS
tDRWH
DACK
R/W
tDDS
tDDSH
DS
tDDWS
D15 to D6, D0
AD5 to AD1
Data
tDDWH
Data
27
MB86615
(2) 68-Series DMA Read Operation
Parameter
Value
Symbol
Min.
Max.
Unit
DREQ “H” to DACK “L”
tDHAL
0
—
ns
DS “H” to DREQ “L”
tDHDL
—
30
ns
DACK setup time
tDARS
20
—
ns
DACK hold time
tDARH
0
—
ns
R/W setup time
tDRWS
20
—
ns
R/W hold time
tDRWH
10
—
ns
DS “L” level pulse width
tDDS
40
—
ns
DS “H” level pulse width
tDDSH
30
—
ns
Data output definition time
tDRLD
—
40
ns
Data output disabled time
tDRHD
5
—
ns
tDHAL
tDHDL
DREQ
tDARS
tDARH
tDRWS
tDRWH
DACK
R/W
tDDS
tDDSH
DS
tDRLD
D15 to D6, D0
AD5 to AD1
28
tDRHD
Defined data
Defined data
MB86615
(3) 80-Series DMA Write Operation
Parameter
Value
Symbol
Min.
Max.
Unit
DREQ “H” to DACK “L”
tDHAL
0
—
ns
WR “H” to DREQ “L”
tDHDL
—
30
ns
DACK setup time
tDAWS
20
—
ns
DACK hold time
tDAWH
0
—
ns
WR “L” level pulse width
tDWR
40
—
ns
WR “H” level pulse width
tDWRH
30
—
ns
Input data setup time
tDDWS
30
—
ns
Input data hold time
tDDWH
0
—
ns
tDHAL
tDHDL
DREQ
tDAWS
tDAWH
DACK
tDWR
tDWRH
WR
tDDWS
D15 to D6, D0
AD5 to AD1
Data
tDDWH
Data
29
MB86615
(4) 80-Series DMA Read Operation
Parameter
Value
Symbol
Min.
Max.
Unit
DREQ “H” to DACK “L”
tDHAL
0
—
ns
RD “H” to DREQ “L”
tDHDL
—
30
ns
DACK setup time
tDARS
20
—
ns
DACK hold time
tDARH
0
—
ns
RD “L” level pulse width
tDRD
40
—
ns
RD “H” level pulse width
tDRDH
30
—
ns
Data output definition time
tDRLD
—
40
ns
Data output disabled time
tDRHD
5
—
ns
tDHAL
tDHDL
DREQ
tDARS
tDARH
DACK
tDRD
tDRDH
RD
tDRLD
D15 to D6, D0
AD5 to AD1
30
tDRHD
Defined data
Defined data
MB86615
2.6 Isochronous Interface
2.6.1 ICLK
Parameter
Symbol
Value
Min.
Max.
Unit
Clock frequency
—
4
16
MHz
Clock cycle time
tICLK
62.5
250
ns
Clock “H” level pulse width
tICLH
20
—
ns
Clock “L” level pulse width
tICLL
20
—
ns
Clock rise time
tICR
—
7
ns
Clock fall time
tICF
—
7
ns
tICLK
tICLH
tICF
tICR
0. 65 VDD
0. 25 VDD
ICLK
tICLL
31
MB86615
2.6.2 Sending Operation
(1) Start Sending Operation
Parameter
Value
Symbol
Min.
Max.
Unit
IDIR fall to ILWRE fall time
tSDIR
—
tICLK + 125
ns
ICLK rise to ILWRE fall time
tSIDIR
—
40
ns
ILWRE fall to IV fall time
tILIV
0
—
ns
IV setup time
tSIV
40
—
ns
Data setup time
tSD
20
—
ns
Data hold time
tHD
0
—
ns
ICLK
IDIR
tSIDIR
tSDIR
tILIV
ILWRE
tSIV
IV
tHD
tSD
ID7 to ID0
32
1
2
3
MB86615
(2) End Sending Operation
Parameter
Value
Symbol
Min.
Max.
Unit
IV rise to IDIR rise time
tHDIR
0
—
ns
IDIR rise to ILWRE rise time
tDWR
—
1 tICLK + 40
ns
ICLK rise to ILWRE rise time
tSWDIR
—
40
ns
IDIR rise to IDIR fall time
tDIRH
250
—
µs
ICLK
IDIR
tSWDIR
tDWR
ILWRE
tHDIR
tDIRH
IV
ID7 to ID0
N−1
N
N+1
33
MB86615
(3) IV Temporary Negation in Sending Operation
Parameter
Symbol
Value
Min.
Max.
IV hold time
tHIV
0
tICLK – 40
ns
Date setup time
tSD
20
—
ns
Data hold time
tHD
0
—
ns
ICLK
IDIR
ILWRE
tHIV
IV
tSD
ID7 to ID0
34
Unit
N−1
tHD
N
N+1
MB86615
(4) Negating ILWRE during Transmission (with a bus reset detected or the FIFO buffer full)
Parameter
Symbol
Value
Min.
Max.
Unit
ICLK rise to ILWRE rise time
tHWRL
—
40
ns
ILWRE rise to IV rise time
tREMIV
tICLK
2 tICLK – 40
ns
ICLK rise to ILWRE fall time
tHWRH
—
40
ns
ICLK
IDIR
tHWRL
tHWRH
ILWRE
tREMIV
IV
ID7 to ID0
valid
valid
valid
ignore
Note: The ILWRE signal is negated to stop writing data to be transmitted in either of the following cases in the
transmission mode
(1) When the ISO transmission/reception FIFO buffer becomes full (The ILWRE signal is negated in
synchronization with the last ICLK signal generated before the FIFO buffer becomes full. Note, however,
that this condition does not negate the ILWRE signal if the point-rcc bit (bit 7) in the ISO-FIFO control
register (address 0Eh) has been set to “1.”
(2) When a bus reset is detected (The ILWRE signal is negated in synchronization with the last ICLK signal
generated before the FIFO buffer loads one packet of data after detection of the bus reset.)
The ILWRE signal is asserted back when transmission of one packet of data to the 1394 bus is completed.
35
MB86615
(5) Switch to Transmission from Reception in Process
Parameter
Value
Symbol
Min.
Max.
Unit
IDIR fall to ILWRE rise time
tDLWRH
—
tICLK + 40
ns
IDIR fall to ILWRE fall time
tDLWRL
—
2 tICLK + 40
ns
ICLK
IDIR
tDLWRL
tDLWRH
ILWRE
(6) FP Input Timing
Parameter
Symbol
Min.
Max.
Unit
FP “L” level pulse width
tFPL
100
—
ns
FP “H” level pulse width
tFPH
125
—
µs
FP “H” detection to CTR value load
—
80
150
ns
tFPL
FP
36
Value
tFPH
MB86615
2.6.3 Receiving Operation
(1) Start Receiving Operation
Parameter
Value
Symbol
ICLK rise to ILWRE fall
Min.
Max.
Unit
tWREH
—
40
ns
IV setup time
tSIV
40
—
ns
Data output definition time
tDZ
—
40
ns
Data output disable time
tD
10
40
ns
IV fall to ICRCE fall time*
tERRL
—
40
ns
* : The ICRCE signal is output when a CRC error is detected in receiving data.
ICLK
IDIR
tWREH
ILWRE
tSIV
IV
tDZ
tD
ID7 to ID0
Hi − Z
1
2
3
tERRL
ICRCE
37
MB86615
(2) End Receiving Operation
Parameter
Value
Symbol
Min.
Max.
ICLK rise to ILWRE rise
tWREL
—
40
ns
Data output disable time
tZD
0
50
ns
ILWRE negate time*1
tWREH
6 tICLK
—
ns
IV rise to ICRCE rise time*2
tERRH
—
40
ns
*1: This device negates the ILWRE signal upon completion of reading each packet of data.
*2: The ICRCE signal is asserted only when a CRC error is detected in data received.
ICLK
IDIR
tWREL
tWREH
ILWRE
IV
tZD
ID7 to ID0
N−2
N−1
Hi − Z
N
tERRH
ICRCE
38
Unit
MB86615
(3) IV Temporary Negation in Receiving Operation
Parameter
Value
Symbol
Unit
Min.
Max.
tHIV
40
—
ns
IV rise to ICRCE rise time
tERRH
—
40
ns
IV fall to ICRCE fall time
tERRL
—
40
ns
IV rise to ICLK rise
ICLK
IDIR
ILWRE
tHIV
IV
ID7 to ID0
N−3
N−2
Hi − Z
tERRH
N−1
tERRL
ICRCE
39
MB86615
(4) FP Signal Output
Parameter
Symbol
Value
Min.
Max.
IDIR fall to FP output enable
tZFP
—
40
ns
FP “L” level pulse width
tFPW
600
730
ns
—
—
40
ns
Time stamp match detect to FP output
IDIR
tZFP
FP
40
Unit
Hi − Z
tFPW
MB86615
2.6.4 Clearing the ISO Transmission/Reception FIFO Buffer Using the fifo-clr Bit
The ISO transmission/reception FIFO buffer is cleared by setting the fifo-clr bit (bit 4) in the ISO-FIFO control
register (address 0Eh) to “1.” Given below is a timing chart for the isochronous interface when the FIFO buffer
is cleared.
Note that this FIFO buffer clear function is available only when the point-rec bit (bit 7) or length-chk bit (bit 6)
in the ISO-FIFO control register has been set to “1.”
Parameter
Value
Symbol
IV rise to ILWRE rise
ILWRE negate time
tCLR
Unit
Min.
Max.
tCLR
—
4 tICLK
ns
tWREH
—
7 tICLK
ns
tWREH
ILWRE
IV
* : The ISO transmission/reception FIFO buffer is cleared while the ILWRE signal is negated.
41
MB86615
■ INTERNAL REGISTERS
The MB86615 internal registers have 3-bank construction, with 16-bit access to all registers.
Bank 0 contains registers necessary for IEEE 1394 settings and transfer, bank 1 contains registers necessary
for AV/C (DVC) operation, and bank 2 contains CSR’s.
In addition each bank has registers used in common for MB86615 device control.
1. Bank Common Registers
The following registers can be accessed in any bank from bank 0 to bank 2.
Address
42
Write operation
Read operation
0
mode-control register
←
0
1
(reserved)
flag & status register
0
1
0
instruction fetch register
←
0
0
1
1
interrupt mask register
interrupt code register
0
0
1
0
0
(reserved)
Receiving acknowledge display
register
0A
0
0
1
0
1
ASYNC data port (sending)
ASYNC data port (receiving)
0C
0
0
1
1
0
mode-control-2 register
←
0E
0
0
1
1
1
ISO-FIFO control register
←
3E
1
1
1
1
1
bank select register
←
HEX
A5
A4
A3
A2
A1
00
0
0
0
0
02
0
0
0
04
0
0
06
0
08
MB86615
2. Bank 0 Registers
Bank 0 contains the registers required for 1394 settings and transfers.
Access to this bank is enabled by writing ‘0000h’ to the bank select register (3Eh).
Address
Write operation
Read operation
0
Sending ISO PKT header
setting register (high)
Receiving ISO PKT header
display register (high)
0
1
Sending ISO PKT header
setting register (low)
Receiving ISO PKT header
display register (low)
0
1
0
Sending ASYNC des ID
setting register
Receiving ASYNC des ID
setting register
1
0
1
1
Sending ASYNC PKT param
setting register
Receiving ASYNC PKT param
display register
0
1
1
0
0
Sending ASYNC data length
setting register
Receiving ASYNC data length
display register
1A
0
1
1
0
1
Sending ASYNC ex tcode
setting register
Receiving ASYNC ex tcode
display register
1C
0
1
1
1
0
Sending ASYNC source ID
setting register
Receiving ASYNC source ID
display register
1E
0
1
1
1
1
Sending ASYNC resp param
setting register
Receiving ASYNC resp param
display register
20
1
0
0
0
0
Sending ASYNC des offset
setting register (high)
Receiving ASYNC des offset
display register (high)
22
1
0
0
0
1
Sending ASYNC des offset
setting register (middle)
Receiving ASYNC des offset
display register (middle)
24
1
0
0
1
0
Sending ASYNC des offset
setting register (low)
Receiving ASYNC des offset
display register (low)
26
1
0
0
1
1
(reserved)
←
28
1
0
1
0
0
(reserved)
PHY ID display register
2A
1
0
1
0
1
(reserved)
NODE config display register
2C
1
0
1
1
0
(reserved)
←
HEX
A5
A4
A3
A2
A1
10
0
1
0
0
12
0
1
0
14
0
1
16
0
18
2E
1
0
1
1
1
(reserved)
PORT config display register
30
1
1
0
0
0
state clear setting register
root ID display register
32
1
1
0
0
1
Self ID PKT param setting register
ISO resource manager ID
display register
34
1
1
0
1
0
Receiving ISO-channel
setting register (0, 1)
←
36
1
1
0
1
1
Receiving ISO-channel
setting register (2, 3)
←
38
1
1
1
0
0
(reserved)
cycle timer monitor
display register (high)
3A
1
1
1
0
1
(reserved)
cycle timer monitor
display register (low)
3C
1
1
1
1
0
(reserved)
←
43
MB86615
3. Bank 1 Registers
Bank 1 contains the registers required for AV/C (DVC) protocols.
Access to this bank is enabled by writing ‘0001h’ to the bank select register (3Eh).
Address
44
Write operation
Read operation
0
Sending time stamp offset
setting register
←
0
1
Receiving time stamp offset
setting register
←
0
1
0
Sending CIP header DBS
setting register
Receiving CIP header
display register (highest)
1
0
1
1
(reserved)
Receiving CIP header
display register (high)
0
1
1
0
0
Sending CIP header FMT
setting register
Receiving CIP header
display register (low)
1A
0
1
1
0
1
(reserved)
Receiving CIP header
display register (lowest)
1C
0
1
1
1
0
OMPR (high)
←
1E
0
1
1
1
1
OMPR (low)
←
20
1
0
0
0
0
OPCR0 (high)
←
22
1
0
0
0
1
OPCR0 (low)
←
24
1
0
0
1
0
(reserved)
←
26
1
0
0
1
1
(reserved)
←
28
1
0
1
0
0
(reserved)
←
2A
1
0
1
0
1
(reserved)
←
2C
1
0
1
1
0
IMPR (high)
←
2E
1
0
1
1
1
IMPR (low)
←
30
1
1
0
0
0
IPCR0 (high)
←
32
1
1
0
0
1
IPCR0 (low)
←
34
1
1
0
1
0
(reserved)
←
36
1
1
0
1
1
(reserved)
←
HEX
A5
A4
A3
A2
A1
10
0
1
0
0
12
0
1
0
14
0
1
16
0
18
38
1
1
1
0
0
(reserved)
←
3A
1
1
1
0
1
(reserved)
←
3C
1
1
1
1
0
set-PCR & FP-timeout setting register
←
MB86615
4. Bank 2 Registers
Bank 2 contains CSR’s required for Isochronous resource manager.
Access to this bank is enabled by writing ‘0002h’ to the bank select register (3Eh).
Address
Write operation
Read operation
0
bus manager ID register (high)
←
0
1
bus manager ID register (low)
←
0
1
0
bandwidth available register (high)
←
1
0
1
1
bandwidth available register (low)
←
0
1
1
0
0
channels available high register (high)
←
1A
0
1
1
0
1
channels available high register (low)
←
1C
0
1
1
1
0
channels available low register (high)
←
1E
0
1
1
1
1
channels available low register (low)
←
20
1
0
0
0
0
(reserved)
←
22
1
0
0
0
1
(reserved)
←
24
1
0
0
1
0
(reserved)
←
26
1
0
0
1
1
(reserved)
←
28
1
0
1
0
0
(reserved)
←
2A
1
0
1
0
1
(reserved)
←
2C
1
0
1
1
0
(reserved)
←
2E
1
0
1
1
1
(reserved)
←
30
1
1
0
0
0
(reserved)
←
32
1
1
0
0
1
(reserved)
←
34
1
1
0
1
0
(reserved)
←
36
1
1
0
1
1
(reserved)
←
38
1
1
1
0
0
(reserved)
←
3A
1
1
1
0
1
(reserved)
←
3C
1
1
1
1
0
(reserved)
←
HEX
A5
A4
A3
A2
A1
10
0
1
0
0
12
0
1
0
14
0
1
16
0
18
45
MB86615
■ ORDERING INFORMATION
Partnumber
46
Package
MB86615PFV
100-pin plastic LQFP
(FPT-100P-M05)
MB86615PBT
120-pin plastic FBGA
(BGA-120P-M01)
Remarks
MB86615
■ PACKAGE DIMENSIONS
100-pin plastic LQFP
(FPT-100P-M05)
+0.20
16.00±0.20(.630±.008)SQ
75
1.50 −0.10 (Mounting height)
+.008
.059 −.004
51
14.00±0.10(.551±.004)SQ
76
50
12.00
(.472)
REF
15.00
(.591)
NOM
Details of "A" part
0.15(.006)
INDEX
100
0.15(.006)
26
0.15(.006)MAX
LEAD No.
"B"
25
1
0.40(.016)MAX
"A"
0.50(.0197)TYP
+0.08
0.18 −0.03
+.003
.007 −.001
+0.05
0.08(.003)
0.127 −0.02
+.002
.005 −.001
M
Details of "B" part
0.10±0.10
(STAND OFF)
(.004±.004)
0.50±0.20(.020±.008)
0.10(.004)
C
0~10˚
Dimensions in mm (inches)
1995 FUJITSU LIMITED F100007S-2C-3
120-pin plastic FBGA
(BGA-120P-M01)
12.00±0.10(.472±.004)SQ
+0.20
+.008
1.25 –0.10 .049 –.004
(Mounting height)
0.38±0.10(.015±.004)
(Stand off)
9.60(.378)REF
0.80(.031)TYP
13
12
11
10
9
8
7
6
0.10(.004)
5
4
3
INDEX
2
1
N M L K J H G F E D C B A
C0.80(.031)
C
1998 FUJITSU LIMITED B120001S-1C-1
120-Ø0.45±0.10
(120-Ø.018±.004)
0.08(.003)
M
Dimensions in mm (inches)
47
MB86615
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/
F9902
 FUJITSU LIMITED Printed in Japan
48
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications,
and are not intended to be incorporated in devices for actual use.
Also, FUJITSU is unable to assume responsibility for
infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and measurement
equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded (such
as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have an inherent chance of
failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for
export of those products from Japan.