FUJITSU MB89P899PF

FUJITSU SEMICONDUCTOR
DATA SHEET
DS07-12524-3E
8-bit Proprietary Microcontroller
CMOS
F2MC-8L MB89890 Series
MB89898/899/P899/PV890
■ OUTLINE
The MB89890 series is a line of single-chip microcontrollers containing a great variety of peripheral functions
such as dual clock control systems, 4-stage operating speed controller, DTMF signal generator, timer, PWM timer,
serial interface, modem, A/D converter and external interrupt, as well as compact instruction set.
■ FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
F2MC-8L family CPU core
Dual clock control system
Maximum memory size: 64 Kbytes
Minimum execution time: 0.5 µs at 8 MHz
Interrupt processing time: 4.5 µs at 8 MHz
I/O ports: max. 85 ports
21-bit time-base counter
8-bit PWM timer
DTMF generator
8/16-bit timer
8-bit serial I/O
Serial I/O with 1-byte buffer
A/D converter
Modem timer (pulse-width counter)
Modem signal output
(Continued)
■ PACKAGE
100-pin Plastic QFP
100-pin Ceramic MQFP
(FPT-100P-M06)
(MQP-100C-P01)
MB89890 Series
(Continued)
• External interrupt: 16 channels
• Power-on reset function
• Low-power consumption modes (subclock mode, watch mode, sleep mode, stop mode)
• CMOS technology
■ PRODUCT LINEUP
Part number
Item
Classification
ROM size
RAM size
Instruction bit
length
MB89898
MB89899
MB89P899
MB89PV890
Mass-produced products
(mask ROM products)
One-time product
OTPROM product
Piggyback/
evaluation product
(for development)
48 K × 8 bits
60 K × 8 bits
(internal mask ROM) (internal mask ROM)
60 K × 8 bits
(internal OTPROM)
60 K × 8 bits
(external ROM)
1.5 K × 8 bits
2.0 K × 8 bits
8 bits
Instruction length
1 to 3 bytes
Data bit length
1, 8, 16 bits
The number of
instructions
136
Clock generator
Internal
Minimum
execution time
Interrupt
processing time
Ports
( ) indicate
shared function
ports.
PWM timer
Timer/counter
Serial I/O
A/D converter
DTMF generator
Soft modem
receiving timer
0.5 µs at 8 MHz to 8 µs at 8 MHz, 61 µs at 32.768 kHz
4.5 µs at 8 MHz to 72 µs at 8 MHz, 549.3 µs at 32.768 kHz
General-purpose output ports (N-ch open-drain):
General-purpose output ports (CMOS):
General-purpose I/O ports (N-ch open-drain):
General-purpose I/O ports (CMOS):
Total:
21 (8)
8 (0)
8 (6)
48 (29)
85 (43)
8 bits × 1 channel
8 bits × 2 channels or 16 bits × 1 channel
8-bit serial I/O (with 1-byte buffer) × 1
8 bits × 8 channels
CCITT all-tone output capable (1 to 0(10), *, #, A to D)
Single-tone output capable
5-bit noise reduction circuit + pulse-width measurement timer
(Continued)
2
MB89890 Series
(Continued)
Part number
Item
MB89899
MB89898
Soft modem
transmitting
circuit
MB89P899
MB89PV890
approximately 1208 bps, approximately 2415 bps modem output
External interrupt
16
Time-base timer
21 bits
Watch prescaler
15 bits
Standby mode
Watch mode, subclock mode, sleep mode, stop mode
Process
CMOS
Operating
voltage*
2.2 V to 6.0 V
2.7 V to 6.0 V
EPROM for use
MBM27C512-20TV
* : Varies with conditions such as operating frequencies.
■ PACKAGE AND CORRESPONDING MODELS
Package
MB89898
MB89899
MB89P899
MB89PV890
×
FPT-100P-M06
×
MQP-100C-P01
: Available
× : Not available
Note: For more information about each package, see “■ External Dimensions”.
■ DIFFERENCES AMONG MODELS
1. Memory Size
Before evaluating using the piggyback model, verify its difference from the model that will actually be used.
2. Current Consumption
• In the case of the MB89PV890, added is the current consumed by the EPROM which is connected to the top
socket.
• When operated at low speed the product with an OTPROM (EPROM) will consume more current than the
product with a mask ROM. However, the same is current consumption in sleep/stop mode.
3. Mask Options
Functions that can be selected as options and how to designate these options vary with product. Before using
options, check “■ Mask Options”. Take particular care on the following points:
• Options are fixed on the MB89PV890.
• Pull-up resistor options on the MB89P899 are in 2-bit units for P00 to P07, P10 to P17, P60 to P67, P90 to
P97, and PA0 to PA7. Options are in 1-bit units for P40 to P44, P70 to P77, P80 to P87.
3
MB89890 Series
■ PIN ASSIGNMENT
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
PA7/INT3
PA6/INT2
PA5/INT1
PA4/INT0
PA3/INTB
DTMF
AVR
(AVCC) VCC
P57/AN07
P56/AN06
P55/AN05
P54/AN04
P53/AN03
P52/AN02
P51/AN01
P50/AN00
(AVSS) VSS
PA2/INTA
PA1/INT29
PA0/INT28
(Top view)
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
P25
P26
P27
P40
P41
P42
P43
P44
P30/PWM
P31/BUZR
P32/MSKI
P33
P34
P35/SK1
P36/SI1
P37/SO1
P60/TMO1
P61/TMO2
P62/TCLK
VCC
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
VCC
X1A
X0A
MOD0
MOD1
X0
X1
VSS
RST
P00
P01
P02
P03
P04
P05
P06
P07
P10
P11
P12
P13
P14
P15
P16
P17
P20
P21
P22
P23
P24
(FPT-100P-M06)
4
P97/INT27
P96/INT26
P95/INT25
P94/INT24
P93/INT23
P92/INT22
P91/INT21
P90/INT20
P87
P86
P85
P84
P83
P82
P81
P80
P77
P76
P75/BSO2
P74/BSI2
P73/BSK2
VSS
P72/SO2
P71/SI2
P70/SK2
P67/BSO1
P66/BSI1
P65/BSK1
P64
P63/MSKO
MB89890 Series
O2
O3
VSS
N.C.
O4
O5
OE
A2
N.C.
A3
A11
A4
A9
A5
A8
A6
A7
A1
A12
A10
A15
A0
N.C.
CE
101
N.C.
VCC
O8
132
01
A14
O7
A13
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
P97/INT27
P96/INT26
P95/INT25
P94/INT24
P93/INT23
P92/INT22
P91/INT21
P90/INT20
P87
P86
P85
P84
P83
P82
P81
P80
P77
P76
P75/BSO2
P74/BSI2
P73/BSK2
VSS
P72/SO2
P71/SI2
P70/SK2
P67/BSO1
P66/BSI1
P65/BSK1
P64
P63/MSKO
P25
P26
P27
P40
P41
P42
P43
P44
P30/PWM
P31/BUZR
P32/MSKI
P33
P34
P35/SK1
P36/SI1
P37/SO1
P60/TMO1
P61/TMO2
P62/TCLK
VCC
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
VCC
X1A
X0A
MOD0
MOD1
X0
X1
VSS
RST
P00
P01
P02
P03
P04
P05
P06
P07
P10
P11
P12
P13
P14
P15
P16
P17
P20
P21
P22
P23
P24
O6
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
PA7/INT3
PA6/INT2
PA5/INT1
PA4/INT0
PA3/INTB
DTMF
AVR
(AVCC) VCC
P57/AN07
P56/AN06
P55/AN05
P54/AN04
P53/AN03
P52/AN02
P51/AN01
P50/AN00
(AVSS) VSS
PA2/INTA
PA1/INT29
PA0/INT28
(Top view)
(MQP-100C-P01)
• Pin assignment on package top (MB89PV890 only)
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
Pin no.
Pin name
101
N.C.
109
A2
117
N.C.
125
OE
102
A15
110
A1
118
O4
126
N.C.
103
A12
111
A0
119
O5
127
A11
104
A7
112
N.C.
120
O6
128
A9
105
A6
113
O1
121
O7
129
A8
106
A5
114
O2
122
O8
130
A13
107
A4
115
O3
123
CE
131
A14
108
A3
116
VSS
124
A10
132
VCC
N.C.: Internally connected. Do not use.
5
MB89890 Series
■ PIN DESCRIPTION
Pin no.
Pin name
QFP*1, MQP*2
6
X0
7
X1
3
X0A
2
X1A
4
MOD0
5
MOD1
9
Circuit type
A
B
Function
Crystal oscillator pins (8 MHz)
Crystal oscillator pins (32.768 kHz)
C
Operation mode select pins
Connect to VSS (GND) when using.
RST
D
Reset input pin
10 to 17
P00 to P07
E
General-purpose I/O ports
18 to 25
P10 to P17
E
General-purpose I/O ports
26 to 33
P20 to P27
G
General-purpose I/O ports
39
P30/PWM
F
General-purpose I/O port
Also serves as an 8-bit PWM.
40
P31/BUZR
F
General-purpose I/O port
Also serves as a buzzer output.
41
P32/MSKI
F
General-purpose I/O port
Also serves as a modem timer.
42,
43
P33,
P34
F
44,
45,
46
P35/SK1,
P36/SI1,
P37/SO1
F
34 to 38
P40 to P44
J
General-purpose I/O ports
85 to 92
P50/AN00 to
P57/AN07
H
General-purpose output ports
Also serve as an analog input.
47,
48,
49
P60/TMO1,
P61/TMO2,
P62/TCLK
F
51
P63/MSKO
F
General-purpose I/O port
Also serves as a modem output.
52
P64
F
General-purpose I/O port
53,
54,
55
P65/BSK1,
P66/BSI1,
P67/BSO1
F
56,
57,
58
P70/SK2,
P71/SI2,
P72/SO2
I
General-purpose I/O ports
General-purpose I/O ports
Also serve as an 8-bit serial I/O output 1.
General-purpose I/O ports
Also serve as an 8/16-bit timer.
General-purpose I/O ports
Also serve as a serial I/O output 1 with 1-byte buffer.
General-purpose I/O ports
Also serve as an 8-bit serial I/O output 2.
(Continued)
*1: FPT-100P-M06
*2: MQP-100C-P01
6
MB89890 Series
(Continued)
Pin no.
Pin name
QFP*1, MQP*2
Circuit type
Function
60,
61,
62
P73/BSK2,
P74/BSI2,
P75/BSO2
I
63,
64
P76,
P77
I
65 to 72
P80 to P87
J
General-purpose output ports
73 to 80
P90/INT20 to
P97/INT27
F
General-purpose I/O ports
External interrupt input is hysteresis input.
81,
82,
83
PA0/INT28,
PA1/INT29,
PA2/INTA
F
96,
97 to 100
PA3/INTB,
PA4/INT0 to
PA7/INT3
F
DTMF
K
DTMF signal output pin
1, 50
VCC
–
Power supply pin
8, 59
VSS
–
Power supply (GND) pin
93
VCC (AVCC)
–
Power supply pin
84
VSS (AVSS)
–
Power supply GND pin
94
AVR
–
A/D converter reference input pin
95
General-purpose I/O ports
Also serve as a serial I/O output 2 with 1-byte buffer.
General-purpose I/O ports
General-purpose I/O ports
External interrupt input is hysteresis input.
General-purpose I/O ports
External interrupt input is hysteresis input.
*1: FPT-100P-M06
*2: MQP-100C-P01
7
MB89890 Series
■ I/O CIRCUIT TYPE
Type
Circuit
A
Remarks
Main clock
• Oscillator feedback resistor: approximately
2 MΩ at 5 V
X1
N-ch
P-ch
X0
P-ch
N-ch
Main clock control signal
B
Subclock
• Oscillator feedback resistor: approximately
4.5 MΩ at 5 V
X1A
N-ch
P-ch
X0A
P-ch
N-ch
Subclock control signal
C
D
• Output pull-up resistor (P-ch)
At approximately 50 kΩ/5 V
• Hysteresis input
R
P-ch
N-ch
E
• CMOS output
• CMOS input
• Pull-up resistor optional
R
P-ch
P-ch
N-ch
(Continued)
8
MB89890 Series
(Continued)
Type
Circuit
Remarks
F
• CMOS output
• Hysteresis input
• Pull-up resistor optional
R
P-ch
P-ch
N-ch
G
• CMOS output
P-ch
N-ch
H
• N-ch open-drain output
• Analog input
P-ch
N-ch
Analog input
I
• N-ch open-drain output
• Hysteresis input
• Pull-up resistor optional
R
P-ch
N-ch
(Continued)
9
MB89890 Series
(Continued)
Type
Circuit
J
Remarks
• N-ch open-drain output
• Pull-up resistor optional
R
P-ch
N-ch
K
• DTMF analog output
OPAMP
10
MB89890 Series
■ HANDLING DEVICES
1. Preventing Latchup
Latchup may occur on CMOS ICs if voltage higher than VCC or lower than VSS is applied to input and output pins
other than medium- and high-voltage pins or if higher than the voltage which shows on “1. Absolute Maximum
Ratings” in “■ Electrical Characteristics” is applied between VCC and VSS.
When latchup occurs, power supply current increases rapidly and might thermally damage elements. When
using, take great care not to exceed the absolute maximum ratings.
Also take care to prevent the analog power supply (AVCC and AVR) and analog input from exceeding the digital
power supply (VCC) when the analog system power supply is turned on and off.
2. Treatment of Unused Input Pins
Leaving unused input pins open could cause malfunctions. They should be connected to pull-up or pull-down
resistor.
3. Treatment of Power Supply Pins on Microcontrollers with A/D and D/A Converters
Connect to be AVCC = DAVC = VCC and AVSS = AVR = VSS even if the A/D and D/A converters are not in use.
4. Treatment of N.C. Pins
Be sure to leave (internally connected) N.C. pins open.
5. Power Supply Voltage Fluctuations
Although operation is assured within the rated range of VCC power supply voltage, a rapid fluctuation of the
voltage could cause malfunctions, even if it occurs within the rated range. Stabilizing voltage supplied to the IC
is therefore important. As stabilization guidelines, it is recommended to control power so that VCC ripple
fluctuations (P-P value) will be less than 10% of the standard VCC value at the commercial frequency (50 to 60
Hz) and the transient fluctuation rate will be less than 0.1 V/ms at the time of a momentary fluctuation such as
when power is switched.
6. Precautions when Using an External Clock
When an external clock is used, oscillation stabilization time is required for even power-on reset (optional) and
release from stop mode.
11
MB89890 Series
■ PROGRAMMING TO THE EPROM ON THE MB89P899
The MB89P899 is a one-time PROM version of the MB89890 series.
1. Features
• 60-Kbyte PROM on chip
• Option can be set using the EPROM programmer.
• Equivalency to the MBM27C1001, in EPROM mode (when programmed with the EPROM programmer),
supports 4-byte programming mode.
2. Memory Space
Memory space in each mode such as 60-Kbyte PROM, option area is diagrammed below.
Address
Single chip
00000H
EPROM mode
(Corresponding addresses
on the EPROM programmer)
00000H
I/O
00080H
RAM
2 KB
Not available
00880H
Not available
00FE4H
00FE4H
Option area
Option area
00FFCH
00FFCH
01000H
01000H
PROM
60 KB
PROM
60 KB
0FFFFH
0FFFFH
Not available
1FFFFH
3. Programming to the EPROM
In EPROM mode the MB89P899 functions equivalent to the MBM27C1001. This allows the EPROM to be
programmed with a general-purpose EPROM programmer (the electronic signature mode cannot be used) by
using the dedicated socket adapter.
When the operating ROM area for a single chip is 60 Kbytes (01000H to 0FFFFH ) the EPROM can be programmed
as follows:
• Programming procedure
(1) Set the EPROM programmer to MBM27C1001.
(2) Load program data into the EPROM programmer at 01000H to 0FFFFH.
Load option data into addresses 00FE4H to 00FFCH. (For information about each corresponding options,
see “7. Setting OTPROM Options.”)
(3) Program to 00FE4H to 00FFCH, and 01000H to 0FFFFH with the EPROM programmer.
12
MB89890 Series
4. Recommended Screening Conditions
High-Temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked
OTPROM microcomputer program.
Program, verify
Aging
+150°C, 48 Hrs.
Data verification
Assembly
5. Programming Yield
Due to its nature, bit programming test can’t be conducted as Fujitsu delivery test. For this reason, a programming
yield of 100% cannot be assured at all times.
6. EPROM Programmer Socket Adapter
Part number
MB89P899
Package
QFP-100
Compatible socket adapter
Sun Hayato Co., Ltd.
ROM-100QF-32DP-8LA
Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403
FAX (81)-3-5396-9106
13
MB89890 Series
7. Setting OTPROM Options
The programming procedure is the same as that for the program data. Options can be set by programming
values at the addresses shown on the memory map. The relationship between bits and options is shown on
the following bit map.
• PROM Option Bitmap
Bit 7
Bit 6
Bit 5
Vacancy
Vacancy
Vacancy
and writable
Readable
and writable
00FE8H
P17, P16
Pull-up
1: No
1: Yes
Address
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Readable
and writable
Single/
double clock
1: 2 clock
sytems
0: 1 clcok
system
Reset
output
1: Yes
0: No
Power-on
reset
1: Yes
0: No
Oscillation stabilization
time
11 218/FCH 10 216/FCH
01 212/FCH 00 23/FCH
P15, P14
Pull-up
1: No
1: Yes
P13, P12
Pull-up
1: No
0: Yes
P11, P10
Pull-up
1: No
0: Yes
P07, P06
Pull-up
1: No
0: Yes
P05, P04
Pull-up
1: No
0: Yes
P03, P02
Pull-up
1: No
0: Yes
P01, P00
Pull-up
1: No
0: Yes
00FECH
P67, P66
Pull-up
1: No
0: Yes
P65, P64
Pull-up
1: No
0: Yes
P63, P62
Pull-up
1: No
0: Yes
P61, P60
Pull-up
1: No
0: Yes
P37, P36
Pull-up
1: No
0: Yes
P35, P34
Pull-up
1: No
0: Yes
P33, P32
Pull-up
1: No
0: Yes
P31, P30
Pull-up
1: No
0: Yes
00FF0H
PA7, PA6
Pull-up
1: No
0: Yes
PA5, PA4
Pull-up
1: No
0: Yes
PA3, PA2
Pull-up
1: No
0: Yes
PA1, PA0
Pull-up
1: No
0: Yes
P97, P96
Pull-up
1: No
0: Yes
P95, P94
Pull-up
1: No
0: Yes
P93, P92
Pull-up
1: No
0: Yes
P91, P90
Pull-up
1: No
0: Yes
Vacancy
Vacancy
Vacancy
00FF4H
P44
Pull-up
Readable
Readable
Readable
1: No
and writable and writable and writable 0: Yes
P43
Pull-up
1: No
0: Yes
P42
Pull-up
1: No
0: Yes
P41
Pull-up
1: No
0: Yes
P40
Pull-up
1: No
0: Yes
00FF8H
P77
Pull-up
1: No
0: Yes
P76
Pull-up
1: No
0: Yes
P75
Pull-up
1: No
0: Yes
P74
Pull-up
1: No
0: Yes
P73
Pull-up
1: No
0: Yes
P72
Pull-up
1: No
0: Yes
P71
Pull-up
1: No
0: Yes
P70
Pull-up
1: No
0: Yes
00FFCH
P87
Pull-up
1: No
0: Yes
P86
Pull-up
1: No
0: Yes
P85
Pull-up
1: No
0: Yes
P84
Pull-up
1: No
0: Yes
P83
Pull-up
1: No
0: Yes
P82
Pull-up
1: No
0: Yes
P81
Pull-up
1: No
0: Yes
P80
Pull-up
1: No
0: Yes
00FE4H Readable
Notes: • Note that option area address values are equivalent to every fourth address to accommodate 4-byte
programming mode.
• Each bit is set to ‘1’ as the initialized value, therefore the pull-up option is not selected.
14
MB89890 Series
■ PROGRAMMING TO THE EPROM WITH PIGGYBACK/EVALUATION DEVICE
1. EPROM for Use
MBM27C512-20TV
2. Programming Socket Adapter
To program to the PROM using an EPROM programmer, use the socket adapter (manufacturer: Sun Hayato
Co., Ltd.) listed below.
Package
LCC-32 (Rectangle)
Adapter socket part mumber
ROM-32LC-28DP-YG
Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403
FAX (81)-3-5396-9106
3. Memory Space
MB89PV890
MBM27C512-20TV
0000H
I/O
0080H
0100H
Register
0200H
RAM
2 KB
0880H
1000H
1000H
External ROM
60 KB
FFFFH
EPROM
60 KB
FFFFH
4. Programming Procedure
(1) Set the EPROM programmer to MBM27C512-20TV.
(2) Load program data into the EPROM programmer at 1000H to FFFFH.
(3) Program to 1000H to FFFFH with the EPROM programmer.
15
MB89890 Series
■ BLOCK DIAGRAM
CMOS I/O port 3
Timebase timer
RST
Reset circuit
(watchdog)
X0
X1
Oscillator
(max. 8 MHz)
Oscillator
(32.768 kHz)
Modem timer
P32/MSKI
P33
P34
P35/SK1
P36/SI1
P37/SO1
P40 to P44
N-ch open-drain output port 5
8-bit
A/D converter
8
8
8
P50/AN00
to P57/AN07
8
CMOS output port 2
Internal bus
CMOS I/O port 1
Internal bus
P2 0 to P27
P31/BUZR
5
CMOS I/O port 0
P1 0 to P17
Buzzer output
N-ch open-drain output port 4
8
P0 0 to P07
P30/PWM
8-bit
serial I/O
Clock control
X0A
X1A
8-bit
PWM timer
CMOS I/O port 6
P60/TMO1
P61/TMO2
P62/TCLK
8/16-bit timer
Modem output
P63/MSKO
P64
P65/BSK1
P66/BSI1
P67/BSO1
8-bit serial I/O
with 1-byte buffer
RAM
1.5 Kbytes or 2.0 Kbytes
P70/SK2
P71/SI2
P72/SO2
P73/BSK2
P74/BSI2
P75/BSO2
P76
P77
F 2 M C- 8L
CPU
ROM
48 Kbytes or 60 Kbytes
N-ch open-drain I/O port 7
8
N-ch open-drain output port 8
DTMF
DTMF generator
P80 to P87
8
CMOS I/O pots 9, A
4
The other pins
V CC × 2, V SS × 2
M O D0, M O D1
AV CC , AVR, AV SS
16
External interrupt 2
External interrupt 1
12
4
4
P90/INT20
to P97/INT27
PA0/INT28
to PA3/INTB
PA4/INT0
to PA7/INT3
MB89890 Series
■ CPU CORE
1. Memory Space
The microcontrollers of the MB89890 series offer 64 Kbytes of memory for storing all of I/O, data, and program
areas. The I/O area is allocated from the lowest address. The data area is allocated immediately above the I/
O area. The data area can be divided into register, stack, and direct areas, according to the application. The
program area is allocated from exactly the opposite end, that is, near the highest address. The tables of interrupt
reset vectors and vector call instructions are allocated from the highest address within the program area. The
memory space of the MB89890 series is structured as illustrated below:
• Memory Space
MB89898
MB89899
0000H
0000H
I/O
MB89P899
0000H
I/O
MB89PV890
0000H
I/O
I/O
007FH
0080H
007FH
0080H
007FH
0080H
007FH
0080H
00FFH
0100H
00FFH
0100H
00FFH
0100H
00FFH
0100H
Register
01FFH
0200H
RAM
1.5 KB
Register
01FFH
0200H
RAM
2.0 KB
Register
01FFH
0200H
RAM
2.0 KB
Register
01FFH
0200H
RAM
2.0 KB
067FH
0680H
3FFFH
4000H
FFFFH
087FH
0880H
087FH
0880H
087FH
0880H
0FFFH
1000H
0FFFH
1000H
0FFFH
1000H
ROM
48 KB
ROM
60 KB
FFFFH
ROM
60 KB
FFFFH
External ROM
60 KB
FFFFH
17
MB89890 Series
2. Registers
The F2MC-8L family has two types of registers; dedicated hardware registers in the CPU and general-purpose
memory registers. The following dedicated registers are provided:
Program counter (PC):
A 16-bit-long register for indicating the instruction storage positions
Accumulator (A):
A 16-bit-long temporary register for arithmetic operations, etc. When the
instruction is an 8-bit data processing instruction, the lower byte is used.
Temporary accumulator (T):
A 16-bit-long register which is used for arithmetic operations with the accumulator
When the instruction is an 8-bit data processing instruction, the lower byte is used.
Index register (IX):
A 16-bit-long register for index modification
Extra pointer (EP) :
A 16-bit-long pointer for indicating a memory address
Stack pointer (SP) :
A 16-bit-long pointer for indicating a stack area
Program status (PS) :
A 16-bit-long register for storing a register pointer, a condition code
Initial value
16 bits
FFFDH
: Program counter
PC
A
: Accumulator
indeterminate
T
: Temporary accumulator
indeterminate
IX
: Index register
indeterminate
EP
: Extra pointer
indeterminate
SP
: Stack pointer
indeterminate
PS
: Program status
I-flag = 0, IL1, 0 = 11
The other bit values are indeterminate.
The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and the lower 8 bits for
use as a condition code register (CCR) (see the diagram below).
• Structure of the Program Status Register
15
PS
14
13
12
10
9
8
Vacancy Vacancy Vacancy
RP
RP
18
11
7
6
H
I
5
4
IL1, 0
3
2
1
0
N
Z
V
C
CCR
MB89890 Series
The RP indicates the address of the register bank currently in use. The relationship between the pointer contents
and the actual address is based on the conversion rule illustrated below.
• Rule for Conversion of Actual Addresses of the General-purpose Register Area
RP
Lower OP codes
“0” “0” “0” “0” “0” “0” “0” “1” R4 R3 R2 R1 R0 b2
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
b1
b0
↓
↓
Generated addresses A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
The CCR consists of bits indicating the results of arithmetic operations and the contents of transfer data, and
bits for control of CPU operations at the time of an interrupt.
H-flag: Set to ‘1’ when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation.
Cleared to ‘0’ otherwise. This flag is for decimal adjustment instructions.
I-flag:
Interrupt is enabled when this flag is set to ‘1’. Interrupt is disabled when the flag is cleared to ‘0’. Cleared
to ‘0’ at the reset.
IL1, 0:
Indicates the level of the interrupt currently allowed. Processes an interrupt only if its request level is
higher than the value indicated by this bit.
IL1
IL0
Interrupt level
High-low
0
0
0
High
0
1
1
1
0
2
1
1
3
Low
N-flag: Set to ‘1’ if the highest bit becomes ‘1’ as the result of an arithmetic operation. Cleared to ‘0’ otherwise.
Z-flag:
Set to ‘1’ when an arithmetic operation results in ‘0’. Cleared to ‘0’ otherwise.
V-flag:
Set to ‘1’ if the complement on ‘2’ overflows as a result of an arithmetic operation. Cleared to ‘0’ if the
overflow does not occur.
C-flag: Set to ‘1’ when a carry or borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to ‘0’
otherwise. Set to the shift-out value in the case of a shift instruction.
19
MB89890 Series
The following general-purpose registers are provided:
General-purpose registers: An 8-bit-long register for storing data
The general-purpose registers are of 8 bits and located in the register banks of the memory. One bank contains
eight registers and up to a total of 32 banks can be used. The bank currently in use is indicated by the register
bank pointer (RP).
• Register Bank Configuraiton
This address = 0100H + 2 × (RP)
R0
R1
R2
R3
R4
R5
R6
R7
32 banks
Memory area
20
MB89890 Series
■ I/O MAP
Address
Write/read
Register name
Register description
00H
(R/W)
PDR0
Port 0 data register
01H
(W)
DDR0
Port 0 data direction register
02H
(R/W)
PDR1
Port 1 data register
03H
(W)
DDR1
Port 1 data direction register
04H
(R/W)
PDR2
Port 2 data register
05H
Vacancy
06H
Vacancy
07H
(R/W)
SCC
System clock control register
08H
(R/W)
SMC
Standby control register
09H
(R/W)
WDTC
Watchdog control register
0AH
(R/W)
TBTC
Time-base timer control register
0BH
(R/W)
WPCR
Watch prescaler control register
0CH
(R/W)
PDR3
Port 3 data register
0DH
(R/W)
DDR3
Port 3 data direction register
0EH
(R/W)
PDR4
Port 4 data register
0FH
(R/W)
BZCR
Buzzer register
10H
(R/W)
PDR5
Port 5 data register
11H
Vacancy
12H
(R/W)
PDR6
Port 6 data register
13H
(R/W)
DDR6
Port 6 direction register
14H
(R/W)
PDR7
Port 7 data register
Vacancy
15H
16H
(R/W)
PDR8
17H
Port 8 data register
Vacancy
18H
(R/W)
PDR9
Port 9 data register
19H
(R/W)
DDR9
Port 9 data direction register
1AH
(R/W)
PDRA
Port A data register
1BH
(R/W)
DDRA
Port A data direction register
1CH
(R/W)
SMR
Serial mode register
1DH
(R/W)
SDR
Serial data register
1EH
(R/W)
CNTR
PWM control register
1FH
(W)
COMR
PWM compare register
(Continued)
21
MB89890 Series
(Continued)
Address
Write/read
Register name
20H
(R/W)
DTMC
DTMF control register
21H
(R/W)
DTMD
DTMF data register
22H
(R/W)
SBMR
Serial mode register with1-byte buffer
23H
(R/W)
SBFR
Serial flag register with1-byte buffer
(W)
SBUFW
Serial write register with1-byte buffer
(R)
SBUFR
Serial read register with1-byte buffer
25H
(R)
SBDR
Serial data register with1-byte buffer
26H
(R/W)
T2CR
Timer 2 control register
27H
(R/W)
T1CR
Timer 1 control register
28H
(R/W)
T2DR
Timer 2 data register
29H
(R/W)
T1DR
Timer 1 data register
2AH
(R/W)
MODC
Modem output control register
2BH
(R/W)
MODA
Modem output data register
24H
2CH
Register description
Vacancy
2DH
(R/W)
ADC1
A/D converter control register 1
2EH
(R/W)
ADC2
A/D converter control register 2
2FH
(R/W)
ADCD
A/D converter data register
30H
(R/W)
EIE1
External interrupt 1 enable register
31H
(R/W)
EIF1
External interrupt 1 flag register
32H
(R/W)
EIE2
External interrupt 2 enable register
33H
(R/W)
EIF2
External interrupt 2 flag register
34H
(R/W)
MDC1
Modem timer control 1 register
35H
(R/W)
MDC2
Modem timer control 2 register
36H
(R/W)
MLDH
Modem timer “H” level data register
37H
(R/W)
MLDL
Modem timer “L” level data register
38H
Vacancy
39H
Vacancy
3AH
Vacancy
3BH
Vacancy
3CH
Vacancy
3DH
(R/W)
SSEL
Serial I/O port switching register
3EH
Vacancy
3FH
Vacancy
(Continued)
22
MB89890 Series
(Continued)
Address
Write/read
Register name
40H to 7BH
Register description
Vacancy
7CH
(W)
ILR1
Interrupt level register 1
7DH
(W)
ILR2
Interrupt level register 2
7EH
(W)
ILR3
Interrupt level register 3
7FH
Vacancy
Note: Do not use vacancies.
23
MB89890 Series
■ ELECTRICAL CHARACTERISTICS
1. Absolute Maximum Ratings
(AVSS = VSS = 0.0 V)
Parameter
Power supply voltage
Input voltage
Symbol
Value
Unit
Remarks
Min.
Max.
VCC
VSS – 0.3
VSS + 7.0
V
AVCC
VSS – 0.3
VSS + 7.0
V
Set VCC = AVCC*
AVR
VSS – 0.3
VSS + 7.0
V
AVR must not exceed “AVCC +
0.3 V”.
VSS – 0.3
VCC + 0.3
V
Except P40 to P44, P70 to P77,
P80 to P87
VSS – 0.3
VSS + 7.0
V
P40 to P44, P70 to P77,
P80 to P87
VI
Output voltage
VO
VSS – 0.3
VCC + 0.3
V
“L” level maximum output
current
IOL

20
mA
Peak value
“L” level average output current
IOLAV

10
mA
Specified by the average value
of 1 hour.
“L” level total maximum output
current
∑IOL

120
mA
Peak value
“L” level total average output
current
∑IOLAV

40
mA
Specified by the average value
of 1 hour.
“H” level maximum output
current
IOH

–20
mA
Peak value
“H” level average output current
IOHAV

–10
mA
Specified by the average value
of 1 hour.
“H” level total maximum output
current
∑IOH

–60
mA
Peak value
“H” level total average output
current
∑IOHAV

–20
mA
Specified by the average value
of 1 hour.
Power consumption
PD

200
mW
Operating temperature
TA
–20
+85
°C
Storage temperature
Tstg
–55
+150
°C
* : Use AVCC and VCC set to the same voltage.
Take care so that AVCC does not exceed VCC, such as when power is turned on.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
24
MB89890 Series
2. Recommended Operating Conditions
(AVSS = VSS = 0.0 V)
Value
Symbol
Parameter
Operating temperature
Remarks
Max.
2.2*
6.0
V
See Figure 1.
1.5
6.0
V
Retains the RAM state in the
stop mode
AVR
2.0
AVCC
V
TA
–20
+85
°C
VCC
AVCC
Power supply voltage
Unit
Min.
* : This value varies with the DTMF generator assurance range.
Figure 1 Operation Assurance Range
6
Operating voltage (V)
5
: Highest gear speed
: Lowest gear speed
Operation assurance range
4
3
2
1
1
2
3
4
5
6
7
8
9
10
Main clock operating frequency (MHz)
WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All
the device’s electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside
these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representative beforehand.
25
MB89890 Series
3. DC Characteristics
(AVCC = VCC = 5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)
Parameter
Pin
Condition
VIH
P00 to P07, P10 to P17
Symbol
Value
Unit
Remarks
Min.
Typ.
Max.
—
0.7 VCC
—
VCC + 0.3
V
VIHS
P30 to P37, P60 to P67,
P90 to P97, PA0 to PA7,
RST, MOD0, MOD1,
X0, X0A
—
0.8 VCC
—
VCC + 0.3
V
VIL
P00 to P07, P10 to P17
—
VSS − 0.3
—
0.3 VCC
V
VILS
P30 to P37, P60 to P67,
P90 to P97, PA0 to PA7,
RST, MOD0, MOD1,
X0, X0A
—
VSS − 0.3
—
0.2 VCC
V
P40 to P47, P70 to P77,
P80 to P87
—
VSS − 0.3
—
VSS + 7.0
V
N-ch opendrain
P50 to P57
—
VSS − 0.3
—
VCC + 0.3
V
N-ch opendrain
“H” level output
VOH
voltage
P00 to P07, P10 to P17,
P20 to P27, P30 to P37,
P60 to P67, P90 to P97,
PA0 to PA7
IOH = –2.0 mA
2.4
—
—
V
VOL1
P00 to P07, P10 to P17,
P20 to P27, P30 to P37,
P60 to P67, P90 to P97,
PA0 to PA7
IOL = 4.0 mA
—
—
0.4
V
VOL2
RST
IOL = 4.0 mA
—
—
0.4
V
VOL3
P40 to P44, P70 to P77,
P80 to P87
IOL = 8.0 mA
—
—
0.6
V
ILI
P00 to P07, P10 to P17,
P20 to P27, P30 to P37,
P40 to P44, P50 to P57,
P60 to P67, P70 to P77,
P80 to P87, P90 to P97,
PA0 to PA7, MOD0,
MOD1
0.45 V < VI < VCC
—
—
±5
µA
“H” level input
voltage
“L” level input
voltage
Open-drain
output pin
VD
applied voltage
“L” level output
voltage
Input leakage
current
(Hi-z output
leakage
current)
(Continued)
26
MB89890 Series
(Continued)
(AVCC = VCC = 5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)
Parameter
Pin
Condition
Value
Unit
Remarks
9
mA
Highest
gear speed
1.2
1.8
mA
Lowest
gear speed
—
13
26
mA
Highest
gear speed
FCH = 8 MHz
VCC = 3.0 V
in the main
clock
operation
—
3
5
mA
Lowest
gear speed
FCH = 4 MHz
VCC = 5.0 V
in the main
sleep mode
—
2.5
4
mA
Highest
gear speed
FCH = 8 MHz
VCC = 5.0 V
in the main
sleep mode
—
4
8
mA
Highest
gear speed
ICCS2
FCL =
32.768 kHz
VCC = 3.0 V
in the
subclock
sleep mode
—
15
2.5
µA
ICCH1
TA = +25°C
VCC = 3.0 V
in the
subclock
stop mode
—
—
1
µA
Symbol
Power supply
current
VCC
ICCS1
When DTMF operation is stopped
ICC
Min.
Typ.
Max.
FCH = 4 MHz
VCC = 5.0 V
in the main
clock
operation
—
6
FCH = 4 MHz
VCC = 3.0 V
in the main
clock
operation
—
FCH = 8 MHz
VCC = 5.0 V
in the main
clock
operation
(Continued)
27
MB89890 Series
(Continued)
(AVCC = VCC = 5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)
Pin
Symbol
Condition
When DTMF operation is stopped
Parameter
ICCH2
ICSB
ICCT
VCC
During DTMF operation
Power supply
current
ICCD
28
Other than AVCC,
AVSS, VCC, and VSS
Remarks
Typ.
Max.
TA = +85°C
VCC = 3.0 V
in the
subclock
stop mode
—
1
10
µA
FCL =
32.768 kHz
VCC = 3.0 V
in the
subclock
operation
—
50
75
µA
FCL =
32.768 kHz
VCC = 3.0 V
in the watch
mode
—
—
15
µA
FCH = 4 MHz
VCC = 5.0 V
in the main
clock
operation
—
8
12
mA
Highest
gear speed
FCH = 4 MHz
VCC = 3.0 V
in the main
clock
operation
—
2.3
3.4
mA
Lowest
gear speed
FCH = 8 MHz
VCC = 5.0 V
in the main
clock
operation
—
17
31
mA
Highest
gear speed
FCH = 8 MHz
VCC = 3.0 V
in the main
clock
operation
—
6
11
mA
Lowest
gear speed
—
1.5
3.5
When A/D
mA conversion
is operating
FCH = 8 MHz
IAH
Input capacitance CIN
Unit
Min.
IA
AVCC
Value
—
—
1
5
When A/D
conversion
µA
is not
operating
—
10
—
pF
MB89890 Series
4. AC Characteristics
(1) Reset Timing
(VCC = +5.0 V±10%, VSS = 0.0 V, TA = –20°C to +85°C)
Symbol
Parameter
RST “L” pulse width
tZLZH
RST “H” pulse width
tZHZL
Value
Condition
—
Unit
Min.
Max.
48 tXCYL
—
ns
24 tXCYL
—
ns
Remarks
Note: tXCYL is the oscillation cycle input to the X0.
tZHZL
tZLZH
RST
0.8 VCC
0.2 VCC
0.2 VCC
0.2 VCC
(2) Power-on Reset
(VSS = 0.0 V, TA = –20°C to +85°C)
Parameter
Symbol
Power supply rising time
tR
Power supply cut-off time
tOFF
Condition
—
Value
Unit
Remarks
Min.
Max.
—
50
ms
Power-on reset function only
1
—
ms
Due to repeated operations
Note: Make sure that power supply rises within the selected oscillation stabilization time selected.
If power supply voltage needs to be varied in the course of operation, a smooth voltage rise is
recommended.
tR
tOFF
2.0 V
VCC
0.2 V
0.2 V
0.2 V
29
MB89890 Series
(3) Clock Timing
(VCC = +5.0 V±10%, VSS = 0.0 V, TA = –20°C to +85°C)
Parameter
Clock frequency
Clock cycle time
Input clock pulse width
Input clock rising/falling
time
30
Symbol
Pin name
Condition
Value
Min.
Typ.
Max.
Unit
Remarks
FCH
X0, X1
1
—
8
MHz Main clock
FCL
X0A, X1A
—
32.768
—
kHz
tHCYL
X0, X1
125
—
1000
ns
Main clock
tLCYL
X0A, X1A
—
30.5
—
µs
Subclock
PWH
PWL
X0
20
—
—
ns
External clock
PWLH
PWLL
X0A
—
15.2
—
µs
External clock
tCR1
tCF1
X0
—
—
24
ns
tCR2
tCF2
X0A
—
Subclock
External clock
—
—
200
ns
MB89890 Series
• X0 and X1 Timing and Conditions of Applied Voltage
tHCYL
0.8 VCC
X0
0.2 VCC
PWH
PWL
tCF1
tCR1
• Main Clock Conditions
When a crystal
or
ceramic resonator is used
X0
When an external clock is used
X0
X1
X1
Open
FCH
C0
FCH
C1
• X0A and X1A Timing and Conditions of Applied Voltage
tLCYL
0.8 VCC
X0A
0.2 VCC
PWHL
PWLL
tCF2
tCR2
• Subclock Conditions
When a crystal
or
ceramic resonator is used
X0A
When an external clock is used
X0A
X1A
X1A
Open
Rd
FCL
FCL
C0
C1
31
MB89890 Series
(4) Instruction Cycle
Parameter
Symbol
Instruction cycle
tinst
(minimum execution time)
Value
Unit
Remarks
4/FCH, 8/FCH, 16/FCH, 64/FCH
µs
(4/FCH) tinst = 0.5 µs when
operating at FCH = 8 MHz
2/FCL
µs
tinst = 61.036 µs when operating at
FCL = 32.768 kHz
*1: When operating at the main clock, tinst varies with the execution time (gear) setting, within the following range:
Min. = 4/FCH, Max. = 64/FCH.
*2: When operating at the subclock, tinst = 2/FCL.
(5) Recommended Resonator Manufacturers
• Sample Application of Piezoelectric Resonator (FAR Series)
X0
X1
FAR*1
C1*2
C2*2
*1: Fujitsu Acoustic Resonator
FAR part number
Frequency (MHz)
(built-in capacitor type)
Temperature
Loading
characteristics of
FAR frequency
capacitors*2
(TA = –20°C to +60°C)
FAR-C4 A-03580- 01
3.58
±0.5%
±0.5%
FAR-C4 G-10000- 05
10.00
±0.5%
±0.5%
Inquiry: FUJITSU LIMITED
32
Initial deviation of
FAR frequency
(TA = +25°C)
Built-in
MB89890 Series
• Sample Application of Ceramic Resonator
X0
X1
C1
C2
• Mask ROM products
Resonator
manufacturer
Murata Mfg. Co., Ltd.
Resonator
CSA8.00MTZ
CST8.00MTW
Frequency (MHz)
8.00
C1 (pF)
C2 (pF)
R
30
30
Not required
Built-in
Built-in
Not required
Inquiry: Murata Mfg. Co., Ltd
• Murata Electronics North America. Inc.: TEL 1-404-436-1300
• Murata Europe Mnagement GmbH: TEL 49-911-66870
• Murata Electronics Singapore (Pte.) Ltd.: TEL 65-758-4233
33
MB89890 Series
(6) Serial I/O Timing
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)
Parameter
Symbol
Pin name
Serial clock cycle time
tSCYC
SCK
SCK ↓ → SO time
tSLOV
SCK, SO
Valid SI → SCK ↑
tIVSH
SI, SCK
SCK ↑ → valid SI hold time
tSHIX
SCK, SI
Serial clock “H” pulse width
tSHSL
Serial clock “L” pulse width
tSLSH
Condition
Internal shift
clock mode
SCK
External shift
clock mode
Value
Max.
2 tinst*
—
µs
–200
200
ns
200
—
ns
200
—
ns
1 tinst*
—
µs
1 tinst*
—
µs
0
200
ns
Remarks
SCK ↓ → SO time
tSLOV
SCK, SO
Valid SI → SCK ↑
tIVSH
SI, SCK
200
—
ns
2 × tXCYL
SCK ↑ → valid SI hold time
tSHIX
SCK, SI
200
—
ns
2 × tXCYL
* : For information on tinst, see “(4) Instruction Cycle.”
• Internal Shift Clock Mode
tSCYC
SCK
2.4 V
0.8 V
0.8 V
t SLOV
2.4 V
SO
0.8 V
tIVSH
SI
tSHIX
0.8 VCC
0.8 VCC
0.2 VCC
0.2 VCC
• External Shift Clock Mode
tSLSH
SCK
tSHSL
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
tSLOV
SO
2.4 V
0.8 V
tIVSH
SI
34
Unit
Min.
tSHIX
0.8 VCC
0.8 VCC
0.2 VCC
0.2 VCC
MB89890 Series
(7) Peripheral Input Timing
(VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)
Parameter
Symbol
Value
Pin
Min.
Max.
Unit
Peripheral input “H” level pulse
width
tILIH
INT20 to INTA
INT0 to INT3
2 tinst*
—
µs
Peripheral input “L” level pulse
width
tIHIL
INT20 to INTA
INT0 to INT3
2 tinst*
—
µs
Remarks
* : For information on tinst, see “(4) Instruction Cycle.”
tILIH
tIHIL
INT20 to INTA
INT0 to INT3
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
35
MB89890 Series
(8) Electrical Characteristics of DTMF Generator
(AVSS = VSS = 0.0 V, TA = –20°C to +85°C)
Parameter
Symbol
Condition
—
—
Operating voltage range
Value
Min.
Typ.
Max.
2.5
5.0
6.0
Unit
V
Output load requirements
RO
VCC = 2.5 V to 6.0
V
20
—
—
kΩ
DTMF output offset voltage
(at signal output)
VMOF
VCC = 5.0 V
—
0.4
—
V
DTMF output amplitude
(ROW single tone)
VMFOR
VCC = 5.0 V
–16.3
–14.0
–12.5
dBm
Difference between
COLUMN and ROW levels
RMF
—
1.6
2.0
2.4
dB
—
—
—
7
%
Distortion ratio
—
Remarks
Defined when
the DTMF pin
is connected to
a pull-down
resistor.
When the
DTMF pin is
open.
RO = 200 kΩ
• Output Level Measurement Circuit
VCC
X0
0.1 µF
8 MHz
Lowpass filter
16.0 kHz
DTMF
RO
X1
–48 dB/oct
VSS
36
Audio analizer
Output level
MB89890 Series
5. A/D Converter Electrical Characteristics
(AVCC = VCC = +5.0 V±10%, AVSS = VSS = 0.0 V, TA = –20°C to +85°C)
Parameter
Symbol
Pin
name
Condition
Resolution
Total error
—
Linearity error
Differential linearity
error
AVR =
AVCC = 5.0 V
Zero transition
voltage
V0T
Full-scale transition
voltage
VFST
—
Interchannel disparity
A/D mode conversion
time
—
Sense mode
conversion time
Analog port input
current
Value
Typ.
Max.
—
—
8
bit
—
—
±1.5
LSB
—
—
±1.0
LSB
—
—
±0.9
LSB
AVSS – 1.5
LSB
AVSS + 0.5
LSB
AVSS + 1.5
LSB
mV
AVR – 1.5
LSB
AVR – 1.5
LSB
AVR + 1.5
LSB
mV
Analog input voltage
—
Reference voltage
—
AN0 to
AN7
IR
AVR
Reference voltage
supply current
IRH
Remarks
1 LSB =
AVR/256
—
—
0.5
LSB
—
44 tinst*
—
µs
—
12 tinst*
—
µs
—
—
10
µA
0.0
—
AVR
V
0.0
—
AVCC
V
—
100
300
µA
When
starting A/D
conversion
—
—
1
µA
When
starting A/D
conversion
—
IAIN
Unit
Min.
AVR =
AVCC = 5.0 V
* : For information on tinst, see “(4) Instruction Cycle” in “4. AC Characteristics.”
6. A/D Converter Glossary
• Resolution
Analog changes that are identifiable by the A/D converter
When the number of bits is 8, analog voltage can be divided into 28 = 256.
• Linearity error (unit: LSB)
The deviation of the straight line connecting the zero transition point (“0000 0000” ↔ “0000 0001”) with the
full-scale transition point (“1111 1111” ↔ “1111 1110”) from actual conversion characteristics
• Differential linearity error (unit: LSB)
The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value
• Total error (unit: LSB)
The difference between theoretical and actual conversion values
37
MB89890 Series
Digital output
1111 1111
1111 • 1110
0000
0000
0000
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Theoretical conversion value
Actual conversion value
(1 LSB × N + VOT)
1 LSB =
AVR
256
Linearity error =
Differential linearity error =
Linearity error
Total error =
VNT – (1 LSB × N + VOT)
1 LSB
V( N + 1 ) T – VNT – 1
1 LSB
VNT – (1 LSB × N + 1 LSB)
1 LSB
0010
0001
0000
VOT
VNT
V(N + 1)T
VFST
Analog input
7. Notes on Using A/D Converter
• Input impedance of the analog input pins
The A/D converter used for the MB89890 series contains a sample hold circuit as illustrated below to fetch
analog input voltage into the sample hold capacitor for eight instruction cycles after starting A/D conversion.
For this reason, if the output impedance of the external circuit for the analog input is high, analog input voltage
might not stabilize within the analog input sampling period. Therefore, it is recommended to keep the output
impedance of the external circuit low (below 10 kΩ).
Note that if the impedance cannot be kept low, it is recommended to connect an external capacitor of approx.
0.1 µF for the analog input pin.
Analog Input Equivalent Circuit
Sample hold circuit
.
C =. 33 pF
Analog input pin
Comparator
If the analog input
impedance is higher
than 10 kΩ, it is
recommended to
connect an external
capacitor of approx.
0.1 µF.
.
R =. 6 kΩ
Close for 8 instruction cycles after starting
A/D conversion.
Analog channel selector
• Error
The smaller the | AVR – AVSS |, the greater the error would become relatively.
• Order of turning on A/D converter and analog input
Make sure to turn on the digital power supply (VCC) before or at the same time with turning on the A/D converter
power supply (AVCC, AVSS) and application of AN00 to AN07.
To turn off the power, turn off the A/D converter power supply (AVCC, AVSS) and stop the analog input (AN00
to AN07) before or at the same time with turning off the digital power supply (VCC).
38
MB89890 Series
■ ELECTRICAL CHARACTERISTICS
(1) “L” Level Output Voltage
(2) “H” Level Output Voltage
VOL vs. IOL
V CC – VOH vs. IOL
V OL (V)
V CC – V OH (V)
V CC = 2.2 V
1.1
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
V CC = 2.5 V
V CC = 3.0 V
V CC = 4.0 V
V CC = 5.0 V
V CC = 6.0 V
T A = +25°C
0
1
2
3
4
5
6
7
8
9 10
I OL (mA)
V CC = 2.2 V
1.1
T A = +25°C
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0
–.5
–1.0 –1.5 –2.0
V CC = 2.5 V
V CC = 3.0 V
V CC = 4.0 V
V CC = 5.0 V
V CC = 6.0 V
–2.5 –3.0
I OH (mA)
(3) “H” Level Input Voltage/“L” Level Input Voltage (4) “H” Level Input Voltage/“L” Level Input Voltage
(CMOS Input)
(Hysteresis Input)
V IN vs. V CC
V IN (V)
4.5
4.0
T A = +25°C
4.5
T A = +25°C
4.0
3.5
3.5
3.0
3.0
2.5
2.5
2.0
2.0
1.5
1.5
1.0
1.0
0.5
0.5
–0
.00
V IN vs. V CC
V IN (V)
5.0
5.0
1.00
2.00 3.00
4.00
5.00
6.00 7.00
V CC (V)
–0
.00
V IHS
V ILS
1.00
2.00 3.00
4.00
5.00
6.00 7.00
V CC (V)
V IHS : “H” level input voltage threshold as
hysteresis input
V ILS : “L” level input voltage threshold as
hysteresis input
39
MB89890 Series
(5) Power Supply Current (External Clock)
Characteristics of Current Consumption
in the Main Clock Operation
Characteristics of Current Consumption
in the DTMF and Main Clock Operation
I CC (mA)
I CC vs. V CC
10
9 T A = +25°C
F CH = 8 MHz
8
7
Dividing
-by-4
Dividing
-by-8
6
5
Dividing
-by-16
Dividing
-by-64
4
3
2
1
0
2
3
4
5
6
V CC (V)
I CCD vs. V CC
I CCD (mA)
12
11 T A = +25°C
10 F CH = 8 MHz
9
8
7
6
5
4
3
2
1
0
4
2
3
Characteristics of Current Consumption
in the Main Sleep Mode
6
6
5
5
4
4
3
3
2
1
2
1
4
4.5
6
V CC (V)
7
Dividing
-by-4
3.5
5
I CCSB vs. V CC
I CCSB (µA)
10
9 T A = +25°C
8 F CL = 32.768 KHz
7
3
Dividing
-by-8
Dividing
-by-16
Dividing
-by-64
Characteristics of Current Consumption
in the Subclock Operation
I CCS vs. V CC
I CCS (mA)
10
T A = +25°C
9
F CH = 8 MHz
8
0
2.5
Dividing
-by-4
5
5.5
0
2.5
6
3
3.5
4
4.5
5
5.5
V CC (V)
6
V CC (V)
Characteristics of Current Consumption
in the Watch Mode
Characteristics of Current Consumption
in the Subclock Stop
I CCT vs. V CC
I CCT (µA)
30
T A = +25°C
25 F CL = 32.768 KHz
I CCH vs. V CC
I CCH (A)
2.0
1.8 T A = +25°C
F CL = 32.768 KHz
1.6
1.4
20
1.2
15
1.0
0.8
10
0.6
0.4
5
0.2
0
0.0
2
40
2.5
3
3.5
4
4.5
5
5.5 6
V CC (V)
2
2.5
3
3.5
4
4.5
5
5.5 6
V CC (V)
MB89890 Series
(6) Pull-up Resistance
R PULL vs. VCC
R PULL (kΩ)
1000
T A = +25°C
300
100
50
10
0
1
2
3
4
5
6
7
V CC (V)
41
MB89890 Series
■ INSTRUCTIONS (136 INSTRUCTIONS)
Execution instructions can be divided into the following four groups:
•
•
•
•
Transfer
Arithmetic operation
Branch
Others
Table 1 lists symbols used for notation of instructions.
Table 1
Instruction Symbols
Symbol
dir
Direct address (8 bits)
off
Offset (8 bits)
ext
Extended address (16 bits)
#vct
Vector table number (3 bits)
#d8
Immediate data (8 bits)
#d16
Immediate data (16 bits)
dir: b
Bit direct address (8:3 bits)
rel
Branch relative address (8 bits)
@
Register indirect (Example: @A, @IX, @EP)
A
Accumulator A (Whether its length is 8 or 16 bits is determined by the instruction in use.)
AH
Upper 8 bits of accumulator A (8 bits)
AL
Lower 8 bits of accumulator A (8 bits)
T
Temporary accumulator T (Whether its length is 8 or 16 bits is determined by the instruction in use.)
TH
Upper 8 bits of temporary accumulator T (8 bits)
TL
Lower 8 bits of temporary accumulator T (8 bits)
IX
Index register IX (16 bits)
EP
Extra pointer EP (16 bits)
PC
Program counter PC (16 bits)
SP
Stack pointer SP (16 bits)
PS
Program status PS (16 bits)
dr
Accumulator A or index register IX (16 bits)
CCR
42
Meaning
Condition code register CCR (8 bits)
RP
Register bank pointer RP (5 bits)
Ri
General-purpose register Ri (8 bits, i = 0 to 7)
×
Indicates that the very × is the immediate data.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
(×)
Indicates that the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
(( × ))
The address indicated by the contents of × is the target of accessing.
(Whether its length is 8 or 16 bits is determined by the instruction in use.)
MB89890 Series
Columns indicate the following:
Mnemonic:
Assembler notation of an instruction
~:
The number of instructions
#:
The number of bytes
Operation:
Operation of an instruction
TL, TH, AH:
A content change when each of the TL, TH, and AH instructions is executed. Symbols in
the column indicate the following:
•
•
•
•
“–” indicates no change.
dH is the 8 upper bits of operation description data.
AL and AH must become the contents of AL and AH prior to the instruction executed.
00 becomes 00.
N, Z, V, C:
An instruction of which the corresponding flag will change. If + is written in this column,
the relevant instruction will change its corresponding flag.
OP code:
Code of an instruction. If an instruction is more than one code, it is written according to
the following rule:
Example: 48 to 4F ← This indicates 48, 49, ... 4F.
43
MB89890 Series
Table 2
Transfer Instructions (48 instructions)
Mnemonic
~
#
Operation
TL
TH
AH
NZVC
OP code
MOV dir,A
MOV @IX +off,A
MOV ext,A
MOV @EP,A
MOV Ri,A
MOV A,#d8
MOV A,dir
MOV A,@IX +off
MOV A,ext
MOV A,@A
MOV A,@EP
MOV A,Ri
MOV dir,#d8
MOV @IX +off,#d8
MOV @EP,#d8
MOV Ri,#d8
MOVW dir,A
MOVW @IX +off,A
3
4
4
3
3
2
3
4
4
3
3
3
4
5
4
4
4
5
2
2
3
1
1
2
2
2
3
1
1
1
3
3
2
2
2
2
–
–
–
–
–
AL
AL
AL
AL
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
++––
++––
++––
++––
++––
++––
++––
––––
––––
––––
––––
––––
––––
45
46
61
47
48 to 4F
04
05
06
60
92
07
08 to 0F
85
86
87
88 to 8F
D5
D6
MOVW ext,A
MOVW @EP,A
MOVW EP,A
MOVW A,#d16
MOVW A,dir
MOVW A,@IX +off
5
4
2
3
4
5
3
1
1
3
2
2
–
–
–
AL
AL
AL
–
–
–
AH
AH
AH
–
–
–
dH
dH
dH
––––
––––
––––
++––
++––
++––
D4
D7
E3
E4
C5
C6
MOVW A,ext
MOVW A,@A
MOVW A,@EP
MOVW A,EP
MOVW EP,#d16
MOVW IX,A
MOVW A,IX
MOVW SP,A
MOVW A,SP
MOV @A,T
MOVW @A,T
MOVW IX,#d16
MOVW A,PS
MOVW PS,A
MOVW SP,#d16
SWAP
SETB dir: b
CLRB dir: b
XCH A,T
XCHW A,T
XCHW A,EP
XCHW A,IX
XCHW A,SP
MOVW A,PC
5
4
4
2
3
2
2
2
2
3
4
3
2
2
3
2
4
4
2
3
3
3
3
2
3
1
1
1
3
1
1
1
1
1
1
3
1
1
3
1
2
2
1
1
1
1
1
1
(dir) ← (A)
( (IX) +off ) ← (A)
(ext) ← (A)
( (EP) ) ← (A)
(Ri) ← (A)
(A) ← d8
(A) ← (dir)
(A) ← ( (IX) +off)
(A) ← (ext)
(A) ← ( (A) )
(A) ← ( (EP) )
(A) ← (Ri)
(dir) ← d8
( (IX) +off ) ← d8
( (EP) ) ← d8
(Ri) ← d8
(dir) ← (AH),(dir + 1) ← (AL)
( (IX) +off) ← (AH),
( (IX) +off + 1) ← (AL)
(ext) ← (AH), (ext + 1) ← (AL)
( (EP) ) ← (AH),( (EP) + 1) ← (AL)
(EP) ← (A)
(A) ← d16
(AH) ← (dir), (AL) ← (dir + 1)
(AH) ← ( (IX) +off),
(AL) ← ( (IX) +off + 1)
(AH) ← (ext), (AL) ← (ext + 1)
(AH) ← ( (A) ), (AL) ← ( (A) ) + 1)
(AH) ← ( (EP) ), (AL) ← ( (EP) + 1)
(A) ← (EP)
(EP) ← d16
(IX) ← (A)
(A) ← (IX)
(SP) ← (A)
(A) ← (SP)
( (A) ) ← (T)
( (A) ) ← (TH),( (A) + 1) ← (TL)
(IX) ← d16
(A) ← (PS)
(PS) ← (A)
(SP) ← d16
(AH) ↔ (AL)
(dir): b ← 1
(dir): b ← 0
(AL) ↔ (TL)
(A) ↔ (T)
(A) ↔ (EP)
(A) ↔ (IX)
(A) ↔ (SP)
(A) ← (PC)
AL
AL
AL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AL
AL
–
–
–
–
AH
AH
AH
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
AH
–
–
–
–
dH
dH
dH
dH
–
–
dH
–
dH
–
–
–
dH
–
–
AL
–
–
–
dH
dH
dH
dH
dH
++––
++––
++––
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
++++
––––
––––
––––
––––
––––
––––
––––
––––
––––
––––
C4
93
C7
F3
E7
E2
F2
E1
F1
82
83
E6
70
71
E5
10
A8 to AF
A0 to A7
42
43
F7
F6
F5
F0
Notes: • During byte transfer to A, T ← A is restricted to low bytes.
• Operands in more than one operand instruction must be stored in the order in which their mnemonics
are written. (Reverse arrangement of F2MC-8 family)
44
MB89890 Series
Table 3
Mnemonic
~
#
ADDC A,Ri
ADDC A,#d8
ADDC A,dir
ADDC A,@IX +off
ADDC A,@EP
ADDCW A
ADDC A
SUBC A,Ri
SUBC A,#d8
SUBC A,dir
SUBC A,@IX +off
SUBC A,@EP
SUBCW A
SUBC A
INC Ri
INCW EP
INCW IX
INCW A
DEC Ri
DECW EP
DECW IX
DECW A
MULU A
DIVU A
ANDW A
ORW A
XORW A
CMP A
CMPW A
RORC A
3
2
3
4
3
3
2
3
2
3
4
3
3
2
4
3
3
3
4
3
3
3
19
21
3
3
3
2
3
2
1
2
2
2
1
1
1
1
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
ROLC A
2
1
CMP A,#d8
CMP A,dir
CMP A,@EP
CMP A,@IX +off
CMP A,Ri
DAA
DAS
XOR A
XOR A,#d8
XOR A,dir
XOR A,@EP
XOR A,@IX +off
XOR A,Ri
AND A
AND A,#d8
AND A,dir
2
3
3
4
3
2
2
2
2
3
3
4
3
2
2
3
2
2
1
2
1
1
1
1
2
2
1
2
1
1
2
2
Arithmetic Operation Instructions (62 instructions)
Operation
TL
TH
AH
NZVC
OP code
(A) ← (A) + (Ri) + C
(A) ← (A) + d8 + C
(A) ← (A) + (dir) + C
(A) ← (A) + ( (IX) +off) + C
(A) ← (A) + ( (EP) ) + C
(A) ← (A) + (T) + C
(AL) ← (AL) + (TL) + C
(A) ← (A) − (Ri) − C
(A) ← (A) − d8 − C
(A) ← (A) − (dir) − C
(A) ← (A) − ( (IX) +off) − C
(A) ← (A) − ( (EP) ) − C
(A) ← (T) − (A) − C
(AL) ← (TL) − (AL) − C
(Ri) ← (Ri) + 1
(EP) ← (EP) + 1
(IX) ← (IX) + 1
(A) ← (A) + 1
(Ri) ← (Ri) − 1
(EP) ← (EP) − 1
(IX) ← (IX) − 1
(A) ← (A) − 1
(A) ← (AL) × (TL)
(A) ← (T) / (AL),MOD → (T)
(A) ← (A) ∧ (T)
(A) ← (A) ∨ (T)
(A) ← (A) ∀ (T)
(TL) − (AL)
(T) − (A)
→ C→A
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dL
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
00
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
dH
–
–
–
–
dH
–
–
–
dH
dH
00
dH
dH
dH
–
–
–
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++++
+++–
––––
––––
++––
+++–
––––
––––
++––
––––
––––
++R–
++R–
++R–
++++
++++
++–+
28 to 2F
24
25
26
27
23
22
38 to 3F
34
35
36
37
33
32
C8 to CF
C3
C2
C0
D8 to DF
D3
D2
D0
01
11
63
73
53
12
13
03
C ← A←
–
–
–
++–+
02
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++++
++++
++++
++++
++++
++++
++++
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
14
15
17
16
18 to 1F
84
94
52
54
55
57
56
58 to 5F
62
64
65
(A) − d8
(A) − (dir)
(A) − ( (EP) )
(A) − ( (IX) +off)
(A) − (Ri)
Decimal adjust for addition
Decimal adjust for subtraction
(A) ← (AL) ∀ (TL)
(A) ← (AL) ∀ d8
(A) ← (AL) ∀ (dir)
(A) ← (AL) ∀ ( (EP) )
(A) ← (AL) ∀ ( (IX) +off)
(A) ← (AL) ∀ (Ri)
(A) ← (AL) ∧ (TL)
(A) ← (AL) ∧ d8
(A) ← (AL) ∧ (dir)
(Continued)
45
MB89890 Series
(Continued)
Mnemonic
~
#
AND A,@EP
AND A,@IX +off
AND A,Ri
OR A
OR A,#d8
OR A,dir
OR A,@EP
OR A,@IX +off
OR A,Ri
CMP dir,#d8
CMP @EP,#d8
CMP @IX +off,#d8
CMP Ri,#d8
INCW SP
DECW SP
3
4
3
2
2
3
3
4
3
5
4
5
4
3
3
1
2
1
1
2
2
1
2
1
3
2
3
2
1
1
Operation
(A) ← (AL) ∧ ( (EP) )
(A) ← (AL) ∧ ( (IX) +off)
(A) ← (AL) ∧ (Ri)
(A) ← (AL) ∨ (TL)
(A) ← (AL) ∨ d8
(A) ← (AL) ∨ (dir)
(A) ← (AL) ∨ ( (EP) )
(A) ← (AL) ∨ ( (IX) +off)
(A) ← (AL) ∨ (Ri)
(dir) – d8
( (EP) ) – d8
( (IX) + off) – d8
(Ri) – d8
(SP) ← (SP) + 1
(SP) ← (SP) – 1
Table 4
Mnemonic
BZ/BEQ rel
BNZ/BNE rel
BC/BLO rel
BNC/BHS rel
BN rel
BP rel
BLT rel
BGE rel
BBC dir: b,rel
BBS dir: b,rel
JMP @A
JMP ext
CALLV #vct
CALL ext
XCHW A,PC
RET
RETI
~
#
3
3
3
3
3
3
3
3
5
5
2
3
6
6
3
4
6
2
2
2
2
2
2
2
2
3
3
1
3
1
3
1
1
1
Mnemonic
PUSHW A
POPW A
PUSHW IX
POPW IX
NOP
CLRC
SETC
CLRI
SETI
46
~
#
4
4
4
4
1
1
1
1
1
1
1
1
1
1
1
1
1
1
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++R–
++++
++++
++++
++++
––––
––––
67
66
68 to 6F
72
74
75
77
76
78 to 7F
95
97
96
98 to 9F
C1
D1
Branch Instructions (17 instructions)
Operation
If Z = 1 then PC ← PC + rel
If Z = 0 then PC ← PC + rel
If C = 1 then PC ← PC + rel
If C = 0 then PC ← PC + rel
If N = 1 then PC ← PC + rel
If N = 0 then PC ← PC + rel
If V ∀ N = 1 then PC ← PC + rel
If V ∀ N = 0 then PC ← PC + reI
If (dir: b) = 0 then PC ← PC + rel
If (dir: b) = 1 then PC ← PC + rel
(PC) ← (A)
(PC) ← ext
Vector call
Subroutine call
(PC) ← (A),(A) ← (PC) + 1
Return from subrountine
Return form interrupt
Table 5
TL
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
––––
––––
––––
––––
––––
––––
––––
––––
–+––
–+––
––––
––––
––––
––––
––––
––––
Restore
FD
FC
F9
F8
FB
FA
FF
FE
B0 to B7
B8 to BF
E0
21
E8 to EF
31
F4
20
30
Other Instructions (9 instructions)
Operation
TL
TH
AH
NZVC
OP code
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
–
dH
–
–
–
–
–
–
–
––––
––––
––––
––––
––––
–––R
–––S
––––
––––
40
50
41
51
00
81
91
80
90
L
47
B
C
D
E
F
MOV
CMP
ADDC SUBC
A,#d8
A,#d8
A,#d8
A,#d8
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
CLRB
BBC
MOVW MOVW MOVW XCHW
A,dir
A,dir
A,dir
A,dir
dir,A
A,dir
A,dir
A,dir dir,#d8 dir,#d8
dir: 5 dir: 5,rel
A,dir
dir,A SP,#d16
A,SP
5
ADDC
A
SUBC
A
XCH
XOR
AND
OR
A, T
A
A
A
MOV
MOV
CLRB
BBC
INCW
DECW MOVW MOVW
@A,T
A,@A
dir: 2 dir: 2,rel
IX
IX
IX,A
A,IX
CLRB
BBC
INCW
DECW MOVW MOVW
dir: 1 dir: 1,rel
SP
SP
SP,A
A,SP
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BN
A,R3
A,R3
A,R3
A,R3
R3,A
A,R3
A,R3
A,R3 R3,#d8 R3,#d8
dir: 3 dir: 3,rel
R3
R3
#3
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BNZ
A,R4
A,R4
A,R4
A,R4
R4,A
A,R4
A,R4
A,R4 R4,#d8 R4,#d8
dir: 4 dir: 4,rel
R4
R4
#4
rel
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BZ
A,R5
A,R5
A,R5
A,R5
R5,A
A,R5
A,R5
A,R5 R5,#d8 R5,#d8
dir: 5 dir: 5,rel
R5
R5
#5
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BGE
A,R6
A,R6
A,R6
A,R6
R6,A
A,R6
A,R6
A,R6 R6,#d8 R6,#d8
dir: 6 dir: 6,rel
R6
R6
#6
rel
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BLT
A,R7
A,R7
A,R7
A,R7
R7,A
A,R7
A,R7
A,R7 R7,#d8 R7,#d8
dir: 7 dir: 7,rel
R7
R7
#7
rel
C
D
E
F
rel
rel
rel
rel
B
MOVW XCHW
IX,#d16
A,IX
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BP
A,R2
A,R2
A,R2
A,R2
R2,A
A,R2
A,R2
A,R2 R2,#d8 R2,#d8
dir: 2 dir: 2,rel
R2
R2
#2
MOVW
MOVW
A,@IX +d @IX +d,A
A
CLRB
BBC
dir: 6 dir: 6,rel
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BC
A,R1
A,R1
A,R1
A,R1
R1,A
A,R1
A,R1
A,R1 R1,#d8 R1,#d8
dir: 1 dir: 1,rel
R1
R1
#1
CMP
@IX +d,#d8 @IX +d,#d8
9
MOV
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
MOV
CMP
SETB
BBS
INC
DEC
CALLV BNC
A,R0
A,R0
A,R0
A,R0
R0,A
A,R0
A,R0
A,R0 R0,#d8 R0,#d8
dir: 0 dir: 0,rel
R0
R0
#0
rel
OR
A,@IX +d
8
XOR
AND
A,@IX +d A,@IX +d
MOV
CMP
MOV
CMP
ADDC SUBC
MOV
XOR
AND
OR
CLRB
BBC
MOVW MOVW MOVW XCHW
A,@EP A,@EP A,@EP A,@EP @EP,A A,@EP A,@EP A,@EP @EP,#d8 @EP,#d8
dir: 7 dir: 7,rel A,@EP @EP,A EP,#d16
A,EP
MOV @IX
+d,A
7
SUBC
A,@IX +d
CLRB
BBC
MOVW MOVW MOVW XCHW
dir: 4 dir: 4,rel
A,ext
ext,A A,#d16
A,PC
MOV
A,@IX +d
ADDC
A,@IX +d
DAS
6
CMP
A,@IX +d
XOR
AND
OR
DAA
A,#d8
A,#d8
A,#d8
MOVW MOVW CLRB
BBC
INCW
DECW MOVW MOVW
CMPW ADDCW SUBCW XCHW XORW ANDW ORW
A
A
A, T
A
A
A
@A,T
A,@A
dir: 3 dir: 3,rel
EP
EP
EP,A
A,EP
A
A
SETC
4
A
CMP
PUSHW POPW MOV
JMP
CALL
MOVW CLRC
IX
addr16 addr16
IX
ext,A
PS,A
RORC
A
DIVU
3
CLRB
BBC
INCW
DECW JMP
MOVW
dir: 0 dir: 0,rel
A
A
@A
A,PC
A
ROLC
A
SETI
7
PUSHW POPW MOV
MOVW CLRI
A
A
A,ext
A,PS
6
9
5
8
4
2
A
RETI
3
MULU
RET
2
1
SWAP
1
NOP
0
0
H
MB89890 Series
■ INSTRUCTION MAP
MB89890 Series
■ MASK OPTIONS
No.
1
Part number
MB89898/9
MB89P899
MB89PV890
Specifying procedure
Specify when
ordering masking
Specify with EPROM
programmer
Specifying not
possible
Pull-up resistors
• P00 to P07
• P10 to P17
• P30 to P37
• P40 to P44
• P60 to P67
• P70 to P77
• P80 to P87
• P90 to P97
• PA0 to PA7
Select by single pin
• P00 to P07
• P10 to P17
• P30 to P37
• P40 to P44
• P60 to P67
• P70 to P77
• P80 to P87
• P90 to P97
• PA0 to PA7
Fixed to no
pull-up resistor
Set in the above
combinations
Select by 2-pin pair
• P00 to P07
• P10 to P17
• P30 to P37
• P60 to P67
• P90 to P97
• PA0 to PA7
Select by single pin
• P40 to P44
• P70 to P77
• P80 to P87
Set in the above
combinations
Fixed to
power-on reset
optional
2
Power-on reset (POR)
• Power-on reset provided
• No power-on reset
Selectable
Selectable
3
Selection of the oscillation
stabilization time (OSC)
The oscillation stabilization time
initial value can be set with
WTM1 bit and WTM0 bit.
Selectable
WTM1 WTM0
0
0:
0
1:
1
0:
1
1:
Selectable
WTM1 WTM0
0
0:
0
1:
1
0:
1
1:
4
Reset pin output (RST)
• Reset output provided
• No reset output
Selectable
Selectable
Fixed to reset
output optional
5
Selection of clock mode (CLK)
• Double clock mode
• Single clock mode
Selectable
Selectable
Fixed to double
clock mode
23/FCH
212/FCH
216/FCH
218/FCH
23/FCH
212/FCH
216/FCH
218/FCH
Fixed to oscillator
stabilization 218/FCH
■ ORDERING INFORMATION
Part number
MB89898PF
MB89899PF
MB89P899PF
MB89PV890CF
48
Package
100-pin Plastic QFP
(FPT-100P-M06)
100-pin Ceramic MQFP
(MQP-100C-P01)
Remarks
MB89890 Series
■ PACKAGE DIMENSION
100-pin Plastic QFP
(FPT-100P-M06)
23.90±0.40(.941±.016)
3.35(.132)MAX
(Mounting height)
0.05(.002)MIN
(STAND OFF)
20.00±0.20(.787±.008)
80
51
81
50
14.00±0.20
(.551±.008)
12.35(.486)
REF
17.90±0.40
(.705±.016)
16.30±0.40
(.642±.016)
INDEX
31
100
"A"
LEAD No.
1
30
0.65(.0256)TYP
0.30±0.10
(.012±.004)
0.13(.005)
0.15±0.05(.006±.002)
M
Details of "A" part
0.25(.010)
Details of "B" part
"B"
0.10(.004)
18.85(.742)REF
22.30±0.40(.878±.016)
C
49
1994 FUJITSU LIMITED F100008-3C-2
0.30(.012)
0.18(.007)MAX
0.53(.021)MAX
0
10°
0.80±0.20
(.031±.008)
Dimensions in mm (inches)
MB89890 Series
100-pin Ceramic MQFP
(MQP-100C-P01)
17.20±0.40 SQ
(.677±.016)
+0.30
12.00 –0.10 SQ
2.70(.106)MAX
(Mounting height)
0.05(.002)MIN
(STAND OFF)
+.012
36
.472 –.004
25
37
Details of "A" part
24
0.15(.006)
8.80
(.346)
REF
13.60±0.40
(.535±.016)
0.20(.008)
0.15(.006)MAX
INDEX
0.50(.020)MAX
48
13
"A"
Details of "B" part
LEAD No.
1
0.80(.0315)TYP
12
+0.05
0.15 –0.01
0.30±0.06
(.012±.002)
0.16(.006)
"B"
+.002
M
.006 –.0004
0~10°
1.80±0.30
(.071±.012)
0.15(.006)
C
50
1994 FUJITSU LIMITED F48026S-1C-1
Dimensions in mm (inches)
MB89890 Series
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-ede.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document presented
as examples of semiconductor device applications, and are not
intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the
use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and measurement
equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded (such
as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have inherently a certain rate of
failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Control Law of Japan, the
prior authorization by Japanese government should be required
for export of those products from Japan.
http://www.fmap.com.sg/
F9711
 FUJITSU LIMITED Printed in Japan
51