HA12173 Series Audio Signal Processor for Car Deck and Cassette Deck (Dolby B/C-type NR with PB Amp) ADE-204-016 1st Edition Nov. 1992 Description HA12173 series are silicon monolithic bipolar IC providing Dolby noise reduction system*, music sensor and PB equalizer system in one chip. Functions • PB equalizer × 2 channel • Dolby B/C-NR × 2 channel • Music sensor × 1 channel Features • Different type of PB equalizer characteristics selection (normal/chrome or metal) is available with fully electronic control switching built-in. • 2 type of input selection (RADIO/TAPE) is available. • Changeable to Forward, Reverse-mode for PB head with fully electronic control switching built-in. • Available to change music sensing level by external resistor. • Music sensing level selection is available with fully electronic control switching built-in. • Available to change frequency response of music sensor. • NR-ON/OFF and REC/PB fully electronic control switching built-in. • 4 type of PB-out level. • Available to allow common PCB designs with HA12163 series. * Dolby is a trademark of Dolby Laboratories Licensing Corporation. A license from Dolby Laboratories Licensing Corporation is required for the use of this IC. HA12173 Series Ordering Information 1 Operating voltage range* Products PB-OUT level REC-OUT level Dolby-level Min Max HA12173 300 mVrms 300 mVrms 300 mVrms 7.0V 16V HA12174 450 mVrms 300 mVrms 300 mVrms 8.0V 16V HA12175 580 mVrms 300 mVrms 300 mVrms 9.5V 16V HA12177 775 mVrms 300 mVrms 300 mVrms 12.0V 16V Note: 1. The minimum operating voltage of HA12173 series are defferent from the HA12163 series (Dolby B - type). Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table show typical value) Pin No. Terminal name Zin DC voltage Equivalent circuit 2, 41 TAI 100 kΩ VCC/2 Description Tape input VCC / 2 4, 39 RAI Radio input 25 MSI Music sensor rectifier input 10, 33 HLS DET 11, 32 LLS DET 3 BIAS — 2.5 V Time constant pin for rectifier — 0.28 V Reference current input GND Rev.1, Nov. 1992, page 2 of 66 HA12173 Series Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table show typical value) (cont) Pin No. Terminal name Zin DC voltage Equivalent circuit 24 MS DET — VCC Description Time constant pin for rectifier GND 19 MS GV 100 kΩ — Mode control input DGND GND 40 RIP — VCC/2 Ripple filter Rev.1, Nov. 1992, page 3 of 66 HA12173 Series Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table show typical value) (cont) Pin No. Terminal name Zin DC voltage Equivalent circuit 43, 56 EQ OUT — VCC/2 Description Equalizer output V CC GND 6, 37 PB OUT Play back (Decode) output 30 MS VREF Reference voltage buffer output 26 MA OUT Music sensor amp output 47, 52 VREF Reference voltage buffer output 12, 31 REC OUT Recording (Encode) output 8, 35 SS2 Spectral skewing amp. output 44, 55 EQ OUT-M — VCC/2 VCC GND Rev.1, Nov. 1992, page 4 of 66 Equalizer output (Metal) HA12173 Series Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table show typical value) (cont) Pin No. Terminal name Zin DC voltage Equivalent circuit 21 MS OUT — — 22 VCC — VCC — Power supply 23 MS VCC 20 D GND — 0V — Digital (Logic) ground 27 MS GND Music sensor ground 49, 50 GND Ground 48, 51 FIN 46, 53 RIN PB - EQ input for reverse 45, 54 NFI Negative feedback terminal of PB EQ amp. 28 NOI Negative feedback input for normal speed 29 FFI Negative feedback input for FF or REW Description MS VCC Music sensor output to MPU D GND — VCC/2 PB - EQ input for forward Rev.1, Nov. 1992, page 5 of 66 HA12173 Series Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table show typical value) (cont) Pin No. Terminal name Zin DC voltage Equivalent circuit 13 C/B 100 kΩ — Description Mode control input D GND GND 14 ON/OFF 15 REC/PB 16 TAPE/RADIO 17 120 µ/170 µ 18 F/R 7, 36 SS1 — VCC/2 Spectral skewing amp. input 9, 34 CCR — VCC/2 Current controled resistor output 1, 5, 38, 42 NC Rev.1, Nov. 1992, page 6 of 66 No connection HA12173 Series Block Diagram RADIO IN(L) EQOUT(L) PBOUT(L) RECOUT(L) + 42 41 40 39 38 37 36 35 34 33 32 RIP 43 31 30 29 28 MS VREF 120/70 27 44 MS GND – + 45 26 DOLBY B/C-NR T/R 46 25 R/F 24 47 VREF (L) + ×1 48 DET MS VCC S/R 49 GND – + – 50 GND LPF VCC + VCC 23 22 21 To Microcomputer MS OUT MS AMP D GND 20 51 ×1 19 52 VREF (R) T/R R/F DOLBY B/C-NR 53 18 17 54 MS GV (S/R) F/R 120 µ/70 µ – + 16 55 TAPE/RADIO From Microcomputer 120/70 15 56 REC/PB BIAS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ON/OFF EQOUT(R) C/B RADIO IN(R) RECOUT(R) PBOUT(R) Absolute Maximum Ratings Item Symbol Ratings Unit Supply voltage VCC max 16 V Power dissipation PT 500 mW Operating temperature Topr –40 to +85 °C Storage temperature Tstg –55 to +125 °C Condition Ta≤85°C Rev.1, Nov. 1992, page 7 of 66 HA12173 Series Electrical Characteristics (Ta = 25°C Dolby level 300 mVrms (Rec-out pin)) HA12173 VCC = 9.0 V HA12175 VCC = 12.0 V Item Min Typ Max Unit Test Condition Note Quiescent current IQ 10.0 16.0 24.0 mA No input No Signal NR-B70 µ Input HA12173 GvIA TAI 18.5 20.0 21.5 dB Vin = 0 dB, f = 1 kHz Amp. GvIA RAI 15.5 17.0 18.5 HA12174 GvIA TAI 22.0 23.5 25.0 GvIA RAI 19.0 20.5 22.0 HA12175 GvIA TAI 24.2 25.7 27.2 GvIA RAI 21.2 22.7 24.2 HA12177 GvIA TAI 26.7 28.2 29.7 gain Symbol HA12174 VCC = 9.0 V HA12177 VCC = 14.0 V Vin = 0 dB, f = 1 kHz Vin = 0 dB, f = 1 kHz Vin = 0 dB, f = 1 kHz GvIA RAI 23.7 25.2 26.7 B-type Encode ENC –2k 2.8 4.3 5.8 boost ENC –5k 1.7 3.2 4.7 C-type Encode ENC –1k (1) 3.9 5.9 7.9 boost ENC –1k (2) 18.1 19.6 21.6 Vin = –60 dB, f = 1 kHz ENC –700 9.8 11.8 13.8 Vin = –30 dB, f = 700 Hz Signal handling Vo max 12.0 13.0 — dB THD = 1%, f = 1 kHz Signal to noise ratio S/N 60.0 64.0 — dB Rg = 5.1 kΩ, CCIR/ARM THD THD — 0.05 0.3 % Vin = 0 dB, f = 1 kHz Channel CT RL (1) 70.0 85.0 — dB Vin = 0 dB, f = 1 kHz RAI input separation CT RL (2) 50.0 60.0 — Vin = 0.6 mVrms, f = 1 kHz EQ input Crosstalk CT EQ → RAI 70.0 80.0 — Vin = 0.6 mVrms, f = 1 kHz EQ input CT RAI → EQ 50.0 60.0 — Vin = 0 dB, f = 1 kHz RAI input Gv EQ 1k 37.0 40.0 43.0 Vin = 0.6 mVrms, f = 1 kHz 120 µ Gv EQ 10k (1) 33.0 36.0 39.0 Gv EQ 10k (2) 29.0 32.0 35.0 PB - EQ gain dB Vin = –20 dB, f = 2 kHz Vin = –20 dB, f = 5 kHz dB dB Vin = –20 dB, f = 1 kHz Vin = 0.6 mVrms, f = 10 kHz 70 µ PB - EQ maximum VoM output 300 600 — mVrms THD = 1%, f = 1 kHz PB - EQ THD — 0.05 0.3 % Vin = 0.6 mVrms, f = 1 kHz Noise voltage level VN converted in input — 0.7 1.5 µVrms Rg = 680 Ω, DIN - AUDIO MS sensing level VON (1) –36.0 –32.0 –28.0 dB f = 5 kHz, Normal speed VON (2) –18.0 –14.0 –10.0 f = 5 kHz, High speed THD - EQ Rev.1, Nov. 1992, page 8 of 66 *1 *1 HA12173 Series Electrical Characteristics (Ta = 25°C Dolby level 300 mVrms (Rec-out pin)) (cont) HA12173 VCC = 9.0 V HA12175 VCC = 12.0 V Item Symbol Min Typ Max Unit MS output low level VOL — 1.0 1.5 V MS output leak current IOH — 0.0 2.0 µA Control voltage VIL –0.2 — 1.5 V VIH 3.5 — 5.3 Note: Test Condition HA12174 VCC = 9.0 V HA12177 VCC = 14.0 V Note 1. HA12173 VCC = 7.0 V, HA12174 VCC = 8.0 V, HA12175 VCC = 9.5 V, HA12177 VCC = 12.0 V Rev.1, Nov. 1992, page 9 of 66 Rev.1, Nov. 1992, page 10 of 66 R OFF SW16 Unit R: Ω C: F AC VM1 SW17 ON SW15 L SW25 50 R1 680 51 GND + C1 22 µ VREF (R) FIN (R) C25 0.01 µ RIN (R) RIN (L) C2 22 µ + R2 680 R3 180 C3 0.01 µ R5 330 k R7 12 k R6 18 k 56 EQ EQ NFI OUT-M OUT (R) (R) (R) 55 C24 0.1 µ R35 5.1 k 2 TAI (R) TAI (L) C4 0.1 µ R8 5.1 k 1 N.C. N.C. R9 5.1 k 3 RAI (L) + R32 22 k N.C. PB OUT (L) SS1 (L) 38 37 36 C19 2.2 µ R31 560 C18 2200 p SS2 (L) CCR (L) C15 2.2 µ HLS DET (L) + C16 0.1 µ R11 18 k + 4 R10 5.1 k R14 10 k C6 2200 p 6 PB OUT (R) R12 22 k C8 2.2 µ + 5 N.C. C5 0.47 µ RAI (R) 7 SSI (R) C7 2200 p 8 R13 560 9 CCR (R) C9 2200 p SS2 (R) 10 LLS DET (L) REC OUT (R) C12 2.2 µ + ON/ OFF FFI + B R27 330 k RECOUT(L) R25 47 k R16 22 k RAD SW11 SW10 EQOUT(R) PBOUT(R) RECOUT(R) EQOUT(R) PBOUT(R) RECOUT(R) SW8 R23 3.9 k SW20 L AC VM2 SW19 R SW18 MSOUT SW21 SW22 Note 1) Resistor tolerance are ± 1% 2) Capacitor tolerance are ± 1% DISTORTION ANALYZER SW9 REP SW1 21 20 R22 22 k MS OUT D GND SW2 SER 22 V CC OFF MS VCC 23 R21 22 k FOR REV 70 µ SW3 120 µ R20 22 k R19 22 k OSCILLO SCOPE Noise meter with CCIR/ARM filter and DIN-AUDIO filter MS GV MS DET C13 0.33 µ + R ON RECOUT (L) SW24 25 24 MSI F/R SW4 SW12 TAP SW13 REC SW5 R18 22 k C33 22 µ + PB SW6 R17 22 k C32 22 µ SW14 MA OUT R24 330 k L EQOUT (L) PBOUT (L) 16 17 18 19 C OFF ON SW7 + MS GND SW23 C14 0.01 µ REC TAPE/ 120µ /PB RADIO /70µ NOI 13 14 15 C/B MS VREF NOISE METER R15 10 k C11 0.1 µ C28 4700 p R28 18 k PBOUT(L) EQOUT(L) 30 29 28 27 26 R26 33 k C31 22 µ REC OUT (L) 11 12 LLS DET (R) C10 0.1 µ HLS DET (R) R29 10 k 32 31 C17 0.1 µ 35 34 33 C20 2200 p C21 2200 p HA12173/4/5/7 (PB 1 Chip) RIP 40 39 + C23 0.47 µ + R33 5.1 k BIAS C22 1µ R34 5.1 k 43 42 41 NFI EQ EQ (L) OUT-M OUT (L) (L) R37 18 k R36 12 k R38 330 k 46 45 44 + R40 680 R39 180 52 53 54 VREF (L) FIN (L) C26 22 µ 48 47 R41 680 49 C27 22 µ GND + AUDIO SG RAI (R) EQIR (R) EQIF(R) EQIF(L) EQIR (L) RAI (L) R30 10 k + A GND D GND DC SOURCE3 DC SOURCE2 5V Note : The capacitor (C29) should be connected. It's recommended to be connected close to the IC. C29 100 µ DC SOURCE1 DC VM1 HA12173 Series Test Circuit HA12173 Series Functional Description Power Supply Range HA12173 series are provided with four line output level, which will permit on optimum overload margin for power supply conditions. And this series are designed to operate on either single supply or split supply. Table 1 Supply Voltage Item HA12173 HA12174 HA12175 HA12177 Single supply 7.0 V to 16.0 V 8.0 V to 16.0 V 9.5 V to 16.0 V 12.0 V to 16.0 V GND level ±5.0 V to 8.0 V ±5.0 V to 8.0 V ±5.0 V to 8.0 V ±6.0 V to 8.0 V VEE level ±3.5 V to ±8.0 V ±4.0 V to 8.0 V ±4.8 V to 8.0 V ±6.0 V to 8.0 V Split supply A. The lower limit of supply voltage depends on the line output reference level. The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories. B. In case of using digital GND terminal referring to GND level, operating voltage range varies depending on the condition at power on. On using the HA12173/174/175, use within the following ranges to avoid latch-ups. When power on in NR-OFF mode: ±5.0 V to ±8.0 V When power on in NR-ON mode: ±5.7 V to ±8.0 V C. In the reverse-voltage conditions such as ‘D-GND is higher than VCC’ or ‘D-GND is lower than GND’, excessive current flows into the D-GND to destory this IC. To prevent such destruction, pay attention to the followings on using. Single power supply : Short-circuit the D-GND and GND directory on the board mounting this IC. Split power supply : Avoid reverse conditions of D-GND and VCC or VEE voltage, including transient-time of power ON/OFF. Reference Voltage For the single supply operation these devices provide the reference voltage of half the supply voltage that is the signal grounds. As the peculiarity of these devices, the capacitor for the ripple filter is very small about 1/100 compared with their usual value. The Reference voltage are provided for the left channel and the right channel separately. The block diagram is shown as figure 1. Rev.1, Nov. 1992, page 11 of 66 HA12173 Series 22 47 VREF(L) VCC + – L channel reference + 52 MS VREF – Music sensor reference + R channel reference – GND 49 50 40 RIP + C22 1 µF 52 VREF(R) Figure 1 The Block Diagram of Reference Voltage Supply Operating Mode Control HA12173 series provide fully electronic switching circuits. And each operating mode control are controlled by parallel data (DC voltage). Table 2 Threshold Voltage (VTH) Pin No. Low High Unit Test condition 13, 14, 15, 16, 17, 18, 19 –0.2 to 1.5 3.5 to 5.3 V Input Pin Measure 22 k V Rev.1, Nov. 1992, page 12 of 66 HA12173 Series Table 3 Switching Truth Table Pin No. Low High 13 B - NR C - NR 14 NR - OFF NR - ON 15 PB REC 16 TAPE RADIO 17 120 µ (NORMAL) 70 µ (METAL or CHROME) 18 FORWARD REVERSE 19 SER (FF or REV) REP (NORMAL SPEED) Notes: 1. Voltages shown above are determined by internal circuits of LSI when take pin 20 (DGND pin) as reference pin. On split supply use, same VTH can be offered by connecting DGND pin to GND pin. This means that it can be controlled directly by microprocessor. But power supply should be over ±5 V, notwithstanding the prescription of table 1. 2. Each pins are on pulled down with 100 kΩ internal resistor. Therefore, it will be low-level when each pins are open. 3. Over shoot level and under shoot level of input signal must be the standardized (High: 5.3 V, Low: –0.2 V) 4. When connecting microcomputer or Logic-IC with HA12173 series directly, there is apprehension of rush-current under some transition timming of raising voltage or falling voltage at VCC ON/OFF. On using, connect protective resistors of 10 to 22 kΩ to all the control pins. It is shown is test circuit on this data sheet. And pins fixed to low level should be preferably open. 5. Pay attention not to make digital GND voltage lower than GND voltage. Rev.1, Nov. 1992, page 13 of 66 HA12173 Series Input Block Diagram and Level Diagram R34 5.1 k R35 5.1 k R38 330 k R39 180 R36 12 k R37 18 k C25 0.01 µ HA12173: HA12174: HA12175: HA12177: C24 0.1 µ TAI EQ OUT EQ OUT-M 30 mVrms (–28.2 dBs) PBOUT 42.4 mVrms (–25.2 dBs) INPUT AMP EQ AMP NFI RAI 300 mVrms (–8.2 dBs) 450 mVrms (–4.7 dBs) 580 mVrms (–2.5 dBs) 775 mVrms (0.0 dBs) – + + NR circuit – RIN RECOUT 300 mVrms (–8.2 dBs) 0.6 mVrms (–62.2 dBs) VREF FIN Unit R: Ω C: F The each level shown above is typical value when offering PBOUT level to PBOUT pin. (EQ AMP Gv = 40 dB f = 1 kHz) Figure 2 Input Block Diagram Adjustment of Playback Dolby Level After replace R34 and R35 with a half-fix volume of 10 kΩ, adjust RECOUT level to be Dolby level with playback mode. Note on Connecting with Tape Head to IC This IC has no internal resistor to give the DC bias current to equalizer amp., therefore the DC bias current will give through the head. This IC provides the Vref buffer output pin for Rch and Lch separately (has two Vref terminal). In case of use that the Rch and Lch reference of head are connected commonly, please use one of Vref terminals of IC (47 pin or 52 pin) for head reference. If both 47 pin and 52 pin of IC are connected, rush current give the great damage to IC. The application circuit is shown in figure 3. Rev.1, Nov. 1992, page 14 of 66 HA12173 Series 43 44 –+ 45 46 R/F 47 VREF(L) 48 49 GND 50 GND 51 52 VREF(R) R/F 53 54 –+ 55 56 Figure 3 Application Circuit Rev.1, Nov. 1992, page 15 of 66 HA12173 Series The Sensitivity Adjustment of a Music Sensor Adjusting MS AMP. gain by external resistor, the sensitivity of music sensor can set up. R28 R27 R26 R25 C14 0.01 µ DVCC VCC R24 330 k + C13 0.33 µ C28 4700 p TAI (L) X1 MS VREF FFI NOI MA MSI MS OUT DET IL RL L·R signal addition circuit –6 dB MS OUT + DET + LPF Microcomputer – – D GND 26 dB X1 25 kHz MS AMP 100 k D GND TAI (R) Unit R: Ω C: F Figure 4 Music Sensor Block Diagram Rev.1, Nov. 1992, page 16 of 66 HA12173 Series f1 Gv1 f2 Normal speed Gv [dB] f3 Gv2 f4 FF or REV 10 100 1k f 10 k 25 k 100 k [Hz] Figure 5 Frequency Response 1. Normal mode R27 Gv1 = 20 log 1 + [dB] R28 1 [Hz], f 2 = 25 k [Hz] f1 = 2 ⋅π ⋅C14⋅100 k 2. FF or REW mode R25 Gv2 = 20 log 1 + [dB] R26 f3 = 1 [Hz], f4 = 25k [Hz] 2 ⋅π ⋅C28 ⋅ R26 A standard level of TAI pin is 30 mVrms and the gain for TAI to MS AMP input is 10, therefore, the other channel sensitivity of music sensor (S) is computed by the formula mentioned below. 1 C [dB] S = 20 log ⋅ 30 10 ⋅ A A = MS AMP. gain (B dB) S = –7.3–B [dB] C = 130 mVrms (typ.) S is 6 dB up in case of the both channels. C = The sensing level of music sensor Rev.1, Nov. 1992, page 17 of 66 HA12173 Series Music Sensor Output (MS OUT) As for the internal circuit of music sensor block, music sensor out pin is connected to the collector of NPN Type directly, Output level will be “high” when sensing no signal. And output level will be “low” when sensing signal. Connection with microcomputer, design IL at 1 mA typ. IL = DVCC – MSOUTLo * RL * MSOUTLo: Sensing signal (about 1 V) Notes: 1. Supply voltage of MS OUT pin must be less than VCC voltage. 2. MS VCC pin and VCC pin are required the same voltage. The Tolerances of External Components for Dolby NR-block For adequate Dolby NR tracking response, take external components shown below. C21 2200 p ±5% C20 2200 p ±5% R32 22 k ±2% R31 560 ±2% C18 2200 p ±5% C16 0.1 µ ±10% C17 0.1 µ ±10% 37 36 35 34 33 32 PB OUT (L) SS1 (L) SS2 (L) CCR (L) HLS DET (L) LLS DET (L) HA12173 Series (PB 1 Chip) BIAS PB OUT (R) SS1 (R) SS2 (R) CCR (R) HLS DET(R) LLS DET(R) 3 6 7 8 9 10 11 R11 18 k ±2% R12 22 k ±2% C7 2200 p ±5% C6 2200 p ±5% R13 560 ±2% C9 2200 p ±5% C10 0.1 µ ±10% C11 0.1 µ ±10% Unit R: Ω C: F Figure 6 Tolerances of External Components PB Equalizer for Double Speed PB equalizer can be design for double speed by using external components shown in figure 7. Application data is shown in figure 8. Rev.1, Nov. 1992, page 18 of 66 HA12173 Series R35 5.1 k No : Normal speed Do : Double speed 0.015 µ 4.7 µ + No 22 k VR1 R Do 0.1 µ EQ OUT R38 330 k R39 180 R36 12 k EQ OUT-M R37 18 k C25 0.01 µ EQ AMP. – + NFI TAI * Please ajust RECOUT level to be Dolby level with volume of VR 1. + RAI PBOUT INPUT AMP. + – NR circuit RECOUT RIN VREF Unit R: Ω C: F FIN Figure 7 Application Circuit for Double Speed 60 G V (dB) 50 40 30 120 µ Normal speed 70 µ R = 2.7 k R = 2.2 k Double speed R = 1.8 k R = 1.3 k 20 10 20 100 1k 10 k Frequency (Hz) 100 k * OUTPUT = TAIpin Figure 8 Application data Rev.1, Nov. 1992, page 19 of 66 Rev.1, Nov. 1992, page 20 of 66 R OFF SW16 Unit R: Ω C: F AC VM1 SW17 ON SW15 L SW25 R1 680 51 50 + C1 22 µ VREF (R) FIN (R) GND C25 0.01 µ RIN (R) RIN (L) C2 22 µ + R2 680 R3 180 C3 0.01 µ R5 330 k R7 12 k R6 18 k 56 EQ EQ NFI OUT-M OUT (R) (R) (R) 55 C24 0.1 µ R35 5.1 k 2 TAI (R) TAI (L) C4 0.1 µ R8 5.1 k 1 N.C. N.C. 43 42 41 NFI EQ EQ (L) OUT-M OUT (L) (L) R37 18 k R36 12 k R38 330 k 46 45 44 + R40 680 R39 180 52 53 54 VREF (L) FIN (L) C26 22 µ GND R41 680 48 47 C27 22 µ 49 + AUDIO SG RAI (R) EQIR (R) EQIF(R) EQIF(L) EQIR (L) RAI (L) 3 RAI (L) + R32 22 k N.C. PB OUT (L) SS1 (L) 38 37 36 C19 2.2 µ R31 560 C18 2200 p SS2 (L) CCR (L) C15 2.2 µ HLS DET (L) C16 0.1 µ + R11 18 k + 4 R10 5.1 k R14 10 k C6 2200 p 6 PB OUT (R) R12 22 k C8 2.2 µ + 5 N.C. C5 0.47 µ RAI (R) 7 SSI (R) C7 2200 p 8 R13 560 9 CCR (R) C9 2200 p SS2 (R) 10 LLS DET (L) REC OUT (R) C12 2.2 µ + ON/ OFF FFI + B R27 330 k RECOUT(L) R25 47 k R16 22 k PB SW14 MA OUT RAD SW11 OSCILLO SCOPE Noise meter with CCIR/ARM filter and DIN-AUDIO filter MS GV MS DET SW10 EQOUT(R) PBOUT(R) RECOUT(R) EQOUT(R) PBOUT(R) RECOUT(R) SW8 R23 3.9 k DISTORTION ANALYZER SW9 REP SW1 SER R22 22 k 21 SW2 MS OUT V CC 22 20 MS VCC OFF D GND R21 22 k FOR REV 70 µ SW3 120 µ R20 22 k R19 22 k SW4 SW12 TAP REC SW5 R18 22 k F/R MSI 23 C13 0.33 µ + R ON RECOUT (L) SW24 25 24 R24 330 k L EQOUT (L) PBOUT (L) 16 17 18 19 C33 22 µ + SW13 SW6 R17 22 k C32 22 µ C OFF ON SW7 + MS GND SW23 C14 0.01 µ REC TAPE/ 120µ /PB RADIO /70µ NOI 13 14 15 C/B MS VREF NOISE METER R15 10 k C11 0.1 µ C28 4700 p R28 18 k EQOUT(L) PBOUT(L) 30 29 28 27 26 R26 33 k C31 22 µ REC OUT (L) 11 12 LLS DET (R) C10 0.1 µ HLS DET (R) R29 10 k 32 31 C17 0.1 µ 35 34 33 C20 2200 p C21 2200 p HA12173/4/5/7 (PB 1 Chip) RIP 40 39 C23 0.47 µ + BIAS R9 5.1 k R34 5.1 k R33 5.1 k R30 10 k SW20 L AC VM2 SW19 R SW18 MSOUT SW21 SW22 D GND DC SOURCE3 DC SOURCE2 5V Note : In case of using digital GND terminal referring to VEE level, separate digital GND and analog GND and connect digital GND terminal to VEE . (VEE) DC SOURCE2 A GND (VCC) DC SOURCE1 C29 100 µ + C30 100 µ + DC VM1 HA12173 Series Circuit For Split Supply HA12173 HA12173 Series Typical Characteristic Curves HA12173 Quiescent Current vs. Supply Voltage 17 HA12173/174/175/177 Quiescent Current I CC (mA) 16 NR-B (70µ) NR-B (120µ) NR-C (120µ) 15 NR-OFF (120µ) 14 13 6 8 10 12 14 16 18 Supply Voltage VCC (V) TAlin Input Amp. Gain vs. Frequency 22 HA12173 Gain (dB) 18 PBout-OFF, RECout-OFF/B/C 14 10 6 VCC = 9V PBmode 2 20 100 1k 10 k 100 k Frequency (Hz) Rev.1, Nov. 1992, page 21 of 66 HA12173 Series RAlin Input Amp. Gain vs. Frequency 22 HA12173 Gain (dB) 18 PBout-OFF/B/C, RECout-OFF 14 10 6 VCC = 9V RECmode 2 20 100 1k Frequency (Hz) Rev.1, Nov. 1992, page 22 of 66 10 k 100 k HA12173 Series Encode Boost vs. Frequency (1) 24 HA12173 21 Vin = –60 dB NR-C VCC = 7 V, 9 V, 16 V 18 16 V Encode Boost (dB) 15 –40 dB 7 V, 9 V 12 –30 dB 9 6 3 –20 dB 0 –10 dB –3 0 dB –6 100 300 1k 3k 10k 15k Frequency (Hz) Encode Boost Frequency (2) 10.8 HA12173 9.6 8.4 Vin = –40 dB NR-B VCC = 7 V, 9 V, 16 V –30 dB Encode Boost (dB) 7.2 6.0 16 V 4.8 3.6 7 V, 9 V –20 dB 2.4 –10 dB 1.2 0 –1.2 100 0 dB 300 1k 3k 10 k 20 k Frequency (Hz) Rev.1, Nov. 1992, page 23 of 66 HA12173 Series Decode Cut vs. Frequency (1) 6 3 HA12173 NR-C VCC = 7 V, 9 V, 16 V Vin = 0 dB –10 dB 0 –20 dB Decode Cut (dB) –3 –6 –30 dB 7 V, 9 V –9 –12 –40 dB 16 V –15 –18 –60 dB –21 –24 100 300 1k 3k 10 k 15 k Frequency (Hz) Decode Cut vs. Frequency (2) 1.2 HA12173 Vin = 0 dB 0 –10 dB –1.2 Decode Cut (dB) –2.4 –20 dB 7 V, 9 V –3.6 –4.8 16 V –6.0 –30 dB –7.2 –8.4 –9.6 NR-B VCC = 7 V, 9 V, 16 V –10.8 100 300 –40 dB 1k 3k Frequency (Hz) Rev.1, Nov. 1992, page 24 of 66 10 k 20 k HA12173 Series 20 25 Maximum Output Level Vo max (dB) HA12173 T.H.D. = 1 % FF 0 dB = 300 mVrms -O R f = 1 kHz N RAIin -B R PBmode N PBout N R -C Maximum Output Level Vo max (dB) 25 Maximum Output Level vs. Supply Voltage (2) 15 RECout 20 -B R N 15 10 10 6 8 10 12 14 6 16 8 10 12 14 16 Supply Voltage VCC (V) Supply Voltage VCC (V) Signal to Noise Ratio vs. Supply Voltage (1) Signal to Noise Ratio vs. Supply Voltage (2) 100 90 HA12173 f = 1 kHz CCIR / ARM PBmode PBout 90 HA12173 NR-OFF Signal to Noise Ratio S/N (dB) Signal to Noise Ratio S/N (dB) HA12173 T.H.D. = 1 % 0 dB = 300 mVrms f = 1 kHz FF -O RAIin R N RECmode NR -C Maximum Output Level vs. Supply Voltage (1) NR-B NR-C NR-OFF 80 f = 1 kHz CCIR / ARM RECmode RECout 80 NR-B 70 NR-C 60 70 6 8 10 12 14 Supply Voltage VCC (V) 16 6 8 10 12 14 16 Supply Voltage VCC (V) Rev.1, Nov. 1992, page 25 of 66 HA12173 Series Total Harmonic Distortion vs. Supply Voltage (1) Total Harmonic Distortion vs. Supply Voltage (2) 1.0 1.0 HA12173 0.5 RAIin PBmode PBout NR-OFF 0.2 0.1 0.05 f = 10 kHz 0.02 Total Harmonic Distortion T.H.D. (%) Total Harmonic Distortion T.H.D. (%) HA12173 100 Hz 0.5 RAIin PBmode PBout NR-B 0.2 0.1 f = 100Hz 0.05 0.02 10 kHz 1 kHz 1 kHz 0.01 0.01 6 8 10 12 14 16 6 10 12 14 16 Supply Voltage VCC (V) Total Harmonic Distortion vs. Supply Voltage (3) Total Harmonic Distortion vs. Supply Voltage (4) 1.0 1.0 HA12173 HA12173 RAIin PBmode PBout NR-C 0.5 Total Harmonic Distortion T.H.D. (%) Total Harmonic Distortion T.H.D. (%) 8 Supply Voltage VCC (V) f = 100 Hz 0.2 10 kHz 0.1 0.05 1 kHz 0.02 RAIin RECmode RECout NR-OFF 0.5 0.2 0.1 0.05 f = 10 kHz 0.02 100 Hz, 1 kHz 0.01 0.01 6 8 10 12 14 Supply Voltage VCC (V) Rev.1, Nov. 1992, page 26 of 66 16 6 8 10 12 14 Supply Voltage VCC (V) 16 HA12173 Series Total Harmonic Distortion vs. Supply Voltage (6) Total Harmonic Distortion vs. Supply Voltage (5) 1.0 1.0 HA12173 Total Harmonic Distortion T.H.D. (%) 0.5 RAIin RECmode RECout NR-B 0.2 0.1 f = 100 Hz 0.05 1 kHz 10 kHz 0.02 0.5 f = 100 Hz 0.2 10 kHz 0.1 1 kHz 0.05 RAIin RECmode RECout NR-C 0.02 0.01 0.01 6 8 10 12 14 6 16 8 Supply Voltage VCC (V) 10 12 14 16 Supply Voltage VCC (V) Total Harmonic Distortion vs. Output Level (1) 5 Total Harmonic Distortion T.H.D. (%) Total Harmonic Distortion T.H.D. (%) HA12173 HA12173 VCC = 9 V 0 dB = 300 mVrms 2 RAIin PBmode 1.0 PBout NR-OFF 0.5 0.2 0.1 0.05 10 0.02 f= 10 0 H kHz z 1 kHz 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Rev.1, Nov. 1992, page 27 of 66 HA12173 Series Total Harmonic Distortion vs. Output Level (2) 5 Total Harmonic Distortion T.H.D. (%) HA12173 VCC = 9 V 0 dB = 300 mVrms RAIin PBmode PBout NR-B 2 1.0 0.5 0.2 0.1 f = 100 Hz 0.05 10 kHz 0.02 1 kHz 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Output Level (3) 5 Total Harmonic Distortion T.H.D. (%) HA12173 2 1.0 0.5 VCC = 9 V 0 dB = 300 mVrms RAIin PBmode PBout NR-C f = 100 Hz 0.2 10 kHz 0.1 1 kHz 0.05 0.02 0.01 –15 –10 –5 0 5 10 Output Level Vout (dB) Rev.1, Nov. 1992, page 28 of 66 15 20 HA12173 Series Total Harmonic Distortion vs. Output Level (4) Total Harmonic Distortion T.H.D. (%) 5 HA12173 VCC = 9 V 0 dB = 300 mVrms RAIin RECmode RECout NR-OFF 2 1.0 0.5 0.2 0.1 0.05 f = 10 kHz 0.02 100 Hz, 1 kHz 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Output Level (5) 5 HA12173 Total Harmonic Distortion T.H.D. (%) 2 1.0 VCC = 9 V 0 dB = 300 mVrms RAIin RECmode RECout NR-B 0.5 0.2 0.1 f = 100 Hz 0.05 1 kHz 10 kHz 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Rev.1, Nov. 1992, page 29 of 66 HA12173 Series Total Harmonic Distortion vs. Output Level (6) Total Harmonic Distortion T.H.D. (%) 5 HA12173 VCC = 9 V 0 dB = 300 mVrms 2 RAIin RECmode RECout 1.0 NR-C f = 100 Hz 0.5 0.2 1 kHz 0.1 10 kHz 0.05 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Frequency (1) Total Harmonic Distortion T.H.D. (%) 0.2 HA12173 RAIin PBmode PBout NR-OFF 0.1 0.05 Vin = +10 dB –10 dB 0.02 0 dB 0.01 100 200 500 1k 2k Frequency (Hz) Rev.1, Nov. 1992, page 30 of 66 5k 10 k 20 k HA12173 Series Total Harmonic Distortion vs. Frequency (2) Total Harmonic Distortion T.H.D. (%) 0.2 HA12173 RAIin PBmode PBout NR-B 0.1 0.05 Vin = +10 dB –10 dB 0.02 0 dB 0.01 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Total Harmonic Distortion vs. Frequency (3) 5 Total Harmonic Distortion T.H.D. (%) HA12173 2 RAIin PBmode PBout NR-C 1.0 Vin = +10 dB 0.5 0.2 0.1 –10 dB 0.05 0 dB 0.02 0.01 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Rev.1, Nov. 1992, page 31 of 66 HA12173 Series Total Harmonic Distortion vs. Frequency (4) Total Harmonic Distortion T.H.D. (%) 0.2 HA12173 RAIin RECmode RECout NR-OFF 0.1 Vin = +10 dB 0.05 –10 dB 0 dB 0.02 0.01 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Total Harmonic Distortion vs. Frequency (5) 0.2 RAIin RECmode RECout NR-B Total Harmonic Distortion T.H.D. (%) HA12173 0.1 Vin = +10 dB 0.05 –10 dB 0 dB 0.02 0.01 100 200 500 1k 2k Frequency (Hz) Rev.1, Nov. 1992, page 32 of 66 5k 10 k 20 k HA12173 Series Total Harmonic Distortion vs. Frequency (6) 2 1.0 HA12173 RAIin RECmode RECout NR-C 0.5 Vin = +10 dB 0.2 –10 dB 0.1 0 dB 0.05 0.02 0.01 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Crosstalk vs. Frequency (1) –20 HA12173 VCC = 9V Radio Tape PBmode PBout –40 Crosstalk (dB) Total Harmonic Distortion T.H.D. (%) 5 –60 NR-OFF NR-B –80 NR-C –100 –120 20 50 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Rev.1, Nov. 1992, page 33 of 66 HA12173 Series Crosstalk vs. Frequency (2) –20 HA12173 VCC = 9V Radio Tape RECmode RECout –40 Crosstalk (dB) NR-C –60 NR-B –80 NR-OFF –100 –120 20 50 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Crosstalk vs. Frequency (3) –20 HA12173 VCC = 9 V L R RAIin PBmode PBout Crosstalk (dB) –40 –60 NR-C –80 NR-B NR-OFF –100 –120 20 50 100 200 500 1k Frequency (Hz) Rev.1, Nov. 1992, page 34 of 66 2k 5k 10 k 20 k HA12173 Series Crosstalk vs. Frequency (4) –20 HA12173 VCC = 9 V R L RAIin PBmode PBout Crosstalk (dB) –40 –60 –80 NR-C –100 NR-OFF NR-B –120 20 50 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Crosstalk vs. Frequency (5) –20 HA12173 VCC = 9 V Tape Radio PBmode PBout Crosstalk (dB) –40 –60 NR-OFF NR-B –80 NR-C –100 –120 20 50 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Rev.1, Nov. 1992, page 35 of 66 HA12173 Series Crosstalk vs. Frequency (6) –20 HA12173 VCC = 9 V Forward Reverse PBmode PBout Crosstalk (dB) –40 –60 NR-OFF NR-B –80 NR-C –100 –120 20 50 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Crosstalk vs. Frequency (7) –20 HA12173 VCC = 9 V Reverse Forward PBmode PBout Crosstalk (dB) –40 –60 NR-OFF NR-B –80 NR-C –100 –120 20 50 100 200 500 1k Frequency (Hz) Rev.1, Nov. 1992, page 36 of 66 2k 5k 10 k 20 k HA12173 Series Crosstalk vs. Frequency (8) 0 HA12173 VCC = 9 V L R PBmode PBout Crosstalk (dB) –20 –40 NR-OFF –60 NR-B –80 –100 20 NR-C 50 100 200 500 1k 2k 5k 10 k 20 k 5k 10 k 20 k Frequency (Hz) Crosstalk vs. Frequency (9) 0 HA12173 VCC = 9 V R L PBmode PBout Crosstalk (dB) –20 –40 NR-OFF –60 NR-B –80 NR-C –100 20 50 100 200 500 1k 2k Frequency (Hz) Rev.1, Nov. 1992, page 37 of 66 HA12173 Series Ripple Rejection Ratio vs. Frequency 0 HA12173 Ripple Rejection Ratio R.R.R. (dB) PBmode PBout –20 NR-C –40 NR-OFF –60 NR-B –80 –100 20 50 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) EQ-AMP. Gain vs. Frequency 70 HA12173/174/175/177 VCC = 9 V Gain (dB) 60 50 40 120 µ 70 µ 30 20 20 50 100 200 500 1k 2k Frequency (Hz) Rev.1, Nov. 1992, page 38 of 66 5k 10 k 20 k 50 k 100 k HA12173 Series EQOUT Maximum Output Level vs. Supply Voltage Maximum Output Voltage Vo max (dB) 40 HA12173/174/175/177 EQin EQout 0 dB = 60 mVrms (EQout) f = 1 kHz T.H.D. = 1% 35 30 25 6 8 10 12 14 16 Supply Voltage VCC (V) Signal to Noise Ratio vs. Supply Voltage 65 HA12173 NR-C(70µ) NR-C(120µ) Total Harmonic Distortion vs. Supply Voltage HA12173 Tortal Harmonic Distortion (%) Signal to Noise Ratio S/N (dB) 1.0 60 NR-B(70µ) NR-B(120µ) NR-OFF(70µ) NR-OFF(120µ) 55 PBmode PBout DIN-AUDIO f = 1 kHz 0 dB = 300 mVrms f = 1 kHz Vin = +6 dB EQin PBout NR-C (70µ, 120µ) NR-OFF (120µ) NR-OFF (70µ) 0.1 NR-B (120µ) NR-B (70µ) 0.01 50 6 8 10 12 14 Supply Voltage VCC (V) 16 6 8 10 12 14 16 Supply Voltage VCC (V) Rev.1, Nov. 1992, page 39 of 66 HA12173 Series EQOUT, PBOUT T.H.D. vs. Output Voltage (EQin EQOUT, PBOUT) EQOUT, PBOUT T.H.D. (%) 5 : PBmode PBout NR-OFF : PBmode PBout NR-B : PBmode PBout NR-C : PBmode PBout NR-OFF : PBmode PBout NR-B : PBmode PBout NR-C 1: — — EQout — — 2: EQout 10 120µ 120µ 120µ 70µ 70µ 70µ 120µ 70µ 0 dB = 300 mVrms (PBout) 1 2 1 2 2 1 1 2 1 2 0.1 1 2 1 2 1 2 1 2 1 2 1 2 HA12173 –10 1 2 VCC = 9 V f = 1kHz 0.01 –20 0 dB = 60 mVrms (EQout) 0 10 20 30 Output Voltage (dB) Total Harmonic Distortion vs. Frequency 0.5 Total Harmonic Distortion (%) HA12173 V CC = 9 V EQin PBout PBmode 0.2 0.1 NR-OFF (120µ) NR-OFF (70µ) 0.05 NR-ON (120µ) NR-ON (70µ) 0.02 0.01 20 50 100 200 500 1k Frequency (Hz) Rev.1, Nov. 1992, page 40 of 66 2k 5k 10 k 20 k HA12173 Series MS-AMP. Gain vs. Frequency 50 HA12173/174/175/177 MAOUTout 40 Normal 30 MAOUTout 20 FF or REV 10 MSIout 0 20 50 100 200 500 1k 2k 5 k 10 k 20 k 50 k 100 k Frequency (Hz) MS Sensing Level vs. Frequency 15 HA12173/174/175/177 5 MS Sensing Level (dB) Gain (dB) MSIout –5 –15 FF or REW –25 Normal –35 10 20 50 100 200 500 1k 2k 5 k 10 k 20 k 50 k 100 k Frequency (Hz) Rev.1, Nov. 1992, page 41 of 66 HA12173 Series Signal Sensing Time vs. Resistance Signal Sensing Time (ms) 500 HA12173/174/175/177 V CC = 9 V f = 5 kHz TAI 41 MSout 21 200 REPmode : 0 dB : –20 dB 0 dB : 300 mVrms 100 50 PBout 20 VCC 22 C13 0.33 m MSout + R24 MS DET 24 10 50 k 100 k 200 k 500 k 1M Resistance R24 (W) Signal Sensing Time vs. Capacitance 50 Signal Sensing Time (ms) 20 HA12173/174/175/177 V CC = 9 V f = 5 kHz TAI 41 MSout 21 REPmode 10 5 2 : 0 dB : –20 dB : –30 dB 0 dB = 300 mVrms PBout 1.0 0.5 0.2 0.01 MSout 22 C13 24 + 0.1 Capacitance C13 (mF) Rev.1, Nov. 1992, page 42 of 66 R24 330 k 0.5 HA12173 Series HA12174 TAlin Input Amp. Gain vs. Frequency 26 HA12174 PBout-OFF 22 Gain (dB) RECout-OFF/B/C 18 14 VCC = 9 V PBmode 10 6 20 100 1k 10 k 100 k Frequency (Hz) RAlin Input Amp. Gain vs. Frequency 26 HA12174 22 Gain (dB) PBout-OFF/B/C 18 RECout-OFF 14 VCC = 9 V 10 RECmode 6 20 100 1k 10 k 100 k Frequency (Hz) Rev.1, Nov. 1992, page 43 of 66 HA12173 Series Encode Boost vs. Frequency (1) 24 HA12174 21 Vin = –60 dB NR-C VCC = 8 V, 9 V, 16 V 16 V 18 Encode Boost (dB) 15 –40 dB 8 V, 9 V 12 –30 dB 9 6 3 –20 dB 0 –10 dB –3 0 dB –6 100 300 1k 3k 10 k 15 k Frequency (Hz) Encode Boost vs. Frequency (2) 10.8 HA12174 9.6 Vin = –40 dB NR-B VCC = 8 V, 9 V, 16 V 8.4 –30 dB Encode Boost (dB) 7.2 6.0 16 V 4.8 3.6 8 V, 9 V –20 dB 2.4 –10 dB 1.2 0 –1.2 100 0 dB 300 1k 3k Frequency (Hz) Rev.1, Nov. 1992, page 44 of 66 10 k 20 k HA12173 Series Decode Cut vs. Frequency (1) 6 HA12174 3 Vin = 0 dB NR-C VCC = 8 V, 9 V, 16 V –10 dB 0 –20 dB Decode Cut (dB) –3 –6 –30 dB 8 V, 9 V –9 –12 –40 dB 16 V –15 –18 –60 dB –21 –24 100 300 1k 3k 10 k 15 k Frequency (Hz) Decode Cut vs. Frequency (2) 1.2 HA12174 Vin = 0 dB 0 –10 dB –1.2 Decode Cut (dB) –2.4 –20 dB 8 V, 9 V –3.6 –4.8 16 V –6.0 –30 dB –7.2 –8.4 –9.6 –10.8 100 NR-B VCC = 8 V, 9 V, 16 V 300 –40 dB 1k 3k 10 k 20 k Frequency (Hz) Rev.1, Nov. 1992, page 45 of 66 HA12173 Series Maximum Output Level vs. Supply Voltage (1) Maximum Output Level vs. Supply Voltage (2) 25 HA12174 T.H.D. = 1 % 0 dB = 450 mVrms f = 1 kHz RAIin PBmode PBout Maximum Output Level Vo max (dB) Maximum Output Level Vo max (dB) 25 20 NR-B,NB-OFF NR-C 15 10 T.H.D. = 1 % 0 dB = 300 mVrms f = 1 kHz RAIin RECmode RECout 20 NR-B,NB-OFF NR-C 15 10 6 8 10 12 14 16 6 8 10 12 14 16 Supply Voltage VCC (V) Supply Voltage VCC (V) Signal to Noise Ratio vs. Supply Voltage (1) Signal to Noise Ratio vs. Supply Voltage (2) 100 90 HA12174 f = 1 kHz CCIR/ARM PBmode PBout HA12174 NR-OFF Signal to Noise Ratio S/N (dB) Signal to Noise Ratio S/N (dB) HA12174 NR-C NR-B 90 NR-OFF 80 f = 1 kHz CCIR/ARM RECmode RECout 80 NR-B 70 NR-C 70 60 6 8 10 12 14 Supply Voltage VCC (V) Rev.1, Nov. 1992, page 46 of 66 16 6 8 10 12 14 Supply Voltage VCC (V) 16 HA12173 Series Total Harmonic Distortion vs. Output Level (1) 5 Total Harmonic Distortion T.H.D. (%) HA12174 VCC = 9 V 0 dB = 450 mVrms RAIin PBmode PBout NR-OFF 2 1.0 0.5 0.2 f = 100 Hz 10 kHz 1 kHz 0.1 0.05 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Output Level (2) Total Harmonic Distortion T.H.D. (%) 5 2 1.0 HA12174 V CC = 9 V 0 dB = 450 mVrms RAIin PBmode PBout NR-B 0.5 0.2 0.1 f = 100 Hz 1 kHz 10 kHz 0.05 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Rev.1, Nov. 1992, page 47 of 66 HA12173 Series Total Harmonic Distortion vs. Output Level (3) 5 Total Harmonic Distortion T.H.D. (%) HA12174 VCC = 9 V 0 dB = 450 dB RAIin PBmode PBout NR-C 2 1.0 0.5 f = 100 Hz 0.2 0.1 10 kHz 0.05 1 kHz 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Output Level (4) Total Harmonic Distortion T.H.D. (%) 5 2 1.0 HA12174 VCC = 9 V 0 dB = 300 mVrms RAIin RECmode RECout NR-OFF 0.5 0.2 0.1 f = 100 Hz 10 kHz 0.05 0.02 0.01 –15 1 kHz –10 –5 0 5 10 Output Level Vout (dB) Rev.1, Nov. 1992, page 48 of 66 15 20 HA12173 Series Total Harmonic Distortion vs. Output Level (5) Total Harmonic Distortion T.H.D. (%) 5 2 1.0 HA12174 VCC = 9 V 0 dB = 300 mVrms RAIin RECmode RECout NR-B 0.5 0.2 f = 100 Hz 1 kHz 10 kHz 0.1 0.05 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Output Level (6) Total Harmonic Distortion T.H.D. (%) 5 2 1.0 0.5 HA12174 VCC = 9 V 0 dB = 300 mVrms RAIin RECmode RECout NR-C f = 100 Hz 0.2 10 kHz 0.1 1 kHz 0.05 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Rev.1, Nov. 1992, page 49 of 66 HA12173 Series Ripple Rejection Ratio vs. Frequency 0 Ripple Rejection Ratio R.R.R. (dB) HA12174 PBmode PBout –20 NR-C –40 NR-OFF NR-B –60 –80 –100 20 50 100 200 500 1k 2k 5k Frequency (Hz) HA12175 TAlin Input Amp. Gain vs. Frequency 28 HA12175 PBout-OFF Gain (dB) 24 RECout-OFF/B/C 20 16 V CC = 12 V PBmode 12 8 20 100 1k Frequency (Hz) Rev.1, Nov. 1992, page 50 of 66 10 k 100 k 10 k 20 k HA12173 Series RAlin Input Amp. Gain vs. Frequency 28 HA12175 Gain (dB) 24 PBout-OFF/B/C 20 RECout-OFF 16 VCC = 12 V RECmode 12 8 20 100 1k 10 k 100 k Frequency (Hz) Encode Boost vs. Frequency (1) 24 HA12175 21 Vin = –60 dB NR-C VCC = 9.5 V, 12 V, 16V 16 V 18 Encode Boost (dB) 15 –40 dB 9.5 V, 12 V 12 –30 dB 9 6 3 –20 dB 0 –10 dB –3 0 dB –6 100 300 1k 3k 10k 15k Frequency (Hz) Rev.1, Nov. 1992, page 51 of 66 HA12173 Series Encode Boost vs. Frequency (2) 10.8 HA12175 9.6 Vin = –40 dB NR-B VCC = 9.5 V, 12 V, 16 V 8.4 –30 dB Encode Boost (dB) 7.2 6.0 16 V 4.8 3.6 –20 dB 9.5 V, 12 V 2.4 –10 dB 1.2 0 0 dB –1.2 100 300 1k 3k 10k 20k Frequency (Hz) Decode Cut vs. Frequency (1) 6 HA12175 3 Vin = 0 dB NR-C VCC = 9.5 V, 12 V, 16 V –10 dB 0 –20 dB Decode Cut (dB) –3 –6 –30 dB 16 V –9 –12 –40 dB 9.5 V, 12V –15 –18 –60 dB –21 –24 100 300 1k Frequency (Hz) Rev.1, Nov. 1992, page 52 of 66 3k 10 k 15 k HA12173 Series Decode Cut vs. Frequency (2) 1.2 HA12175 Vin = 0 dB 0 –10 dB –1.2 Decode Cut (dB) –2.4 –20 dB 9.5 V, 12 V –3.6 –4.8 16 V –6.0 –30 dB –7.2 –8.4 NR-B VCC = 9.5 V, 12 V, 16 V –9.6 –10.8 100 –40 dB 300 1k 3k 10 k 20 k Frequency (Hz) Maximum Output Level vs. Supply Voltage (1) Maximum Output Level vs. Supply Voltage (2) 25 25 HA12175 T.H.D. = 1 % 0 dB = 580 mVrms f = 1 kHz RAIin PBmode PBout 20 Maximum Output Level Vo max (dB) Maximum Output Level Vo max (dB) HA12175 FF -O R ,N -B R -C N NR 15 10 T.H.D. = 1 % 0 dB = 300 mVrms f = 1 kHz RAIin RECmode RECout 20 F OF , -B NR NR -C NR 15 10 8 10 12 14 Supply Voltage VCC (V) 16 8 10 12 14 16 Supply Voltage VCC (V) Rev.1, Nov. 1992, page 53 of 66 HA12173 Series Signal to Noise Ratio vs. Supply Voltage (2) Signal to Noise Ratio vs. Supply Voltage (1) 90 HA12175 HA12175 f = 1 kHz CCIR/ARM PBmode PBout NR-OFF Signal to Noise Ratio S/N (dB) Signal to Noise Ratio S/N (dB) 100 NR-C NR-B 90 NR-OFF 80 f = 1 kHz CCIR/ARM RECmode RECout 80 NR-B 70 NR-C 70 60 8 10 12 14 16 8 Supply Voltage VCC (V) 10 12 Total Harmonic Distortion vs. Output Level (1) 5 Total Harmonic Distortion T.H.D. (%) HA12175 2 1.0 VCC = 12 V 0 dB = 580 mVrms RAIin PBmode PBout NR-OFF 0.5 0.2 f = 10 kHz 0.1 100 Hz 0.05 1 kHz 0.02 0.01 –15 –10 –5 0 5 10 Output Level Vout (dB) Rev.1, Nov. 1992, page 54 of 66 14 Supply Voltage VCC (V) 15 20 16 HA12173 Series Total Harmonic Distortion vs. Output Level (2) Total Harmonic Distortion T.H.D. (%) 5 2 1.0 HA12175 VCC = 12 V 0 dB = 580 mVrms RAIin PBmode PBout NR-B 0.5 0.2 0.1 0.05 f = 100 Hz 10 kHz 0.02 1 kHz 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Output Level (3) Total Harmonic Distortion T.H.D. (%) 5 HA12175 VCC = 12 V 0 dB = 580 mVrms 2 RAIin PBmode 1.0 PBout NR-C 0.5 f = 100 Hz 0.2 0.1 10 kHz 1 kHz 0.05 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Rev.1, Nov. 1992, page 55 of 66 HA12173 Series Total Harmonic Distortion vs. Output Level (4) Total Harmonic Distortion T.H.D. (%) 5 HA12175 VCC = 12 V 0 dB = 300 mVrms 2 RAIin RECmode 1.0 RECout NR-OFF 0.5 0.2 0.1 f = 100 Hz 0.05 10 kHz 0.02 1 kHz 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Output Level (5) 5 Total Harmonic Distortion T.H.D. (%) HA12175 2 1.0 VCC = 12 V 0 dB = 300 mVrms RAIin RECmode RECout NR-B 0.5 0.2 f = 100 Hz 1 kHz 10 kHz 0.1 0.05 0.02 0.01 –15 –10 –5 0 5 10 Output Level Vout (dB) Rev.1, Nov. 1992, page 56 of 66 15 20 HA12173 Series Total Harmonic Distortion vs. Output Level (6) Total Harmonic Distortion T.H.D. (%) 5 2 1.0 HA12175 VCC = 12 V 0 dB = 300 mVrms RAIin RECmode RECout NR-C f = 100 Hz 0.5 10 kHz 0.2 0.1 1 kHz 0.05 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Ripple Rejection Ratio vs. Frequency 0 Ripple Rejection Ratio R.R.R. (dB) HA12175 PBmode PBout –20 NR-C –40 NR-OFF NR-B –60 –80 –100 20 50 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Rev.1, Nov. 1992, page 57 of 66 HA12173 Series HA12177 TAlin Input Amp. Gain vs. Frequency 30 HA12177 PBout-OFF Gain (dB) 26 22 RECout-OFF/B/C 18 14 V CC = 14 V PBmode 10 20 100 1k 10 k 100 k Frequency (Hz) RAlin Input Amp. Gain vs. Frequency 30 HA12177 Gain (dB) 26 PBout-OFF/B/C 22 18 RECout-OFF 14 V CC = 14 V RECmode 10 20 100 1k Frequency (Hz) Rev.1, Nov. 1992, page 58 of 66 10 k 100 k HA12173 Series Encode Boost vs. Frequency (1) 24 HA12177 21 Vin = –60 dB NR-C VCC = 12 V, 14 V, 16 V 18 Encode Boost (dB) 15 –40 dB 12 16 V –30 dB 9 12 V, 14 V 6 3 –20 dB 0 –10 dB –3 0 dB –6 100 300 1k 3k 10 k 15 k Frequency (Hz) Encode Boost vs. Frequency (2) 10.8 HA12177 9.6 Vin = –40 dB NR-B VCC = 12 V, 14 V, 16 V 8.4 –30 dB Encode Boost (dB) 7.2 6.0 16 V 4.8 3.6 12 V, 14 V –20 dB 2.4 –10 dB 1.2 0 –1.2 100 0 dB 300 1k 3k 10 k 20 k Frequency (Hz) Rev.1, Nov. 1992, page 59 of 66 HA12173 Series Decode Cut vs. Frequency (1) 6 HA12177 3 Vin = 0 dB NR-C VCC = 12 V, 14 V, 16 V –10 dB 0 –20 dB Decode Cut (dB) –3 –6 –30 dB 12 V, 14 V –9 –12 –40 dB 16 V –15 –18 –60 dB –21 –24 100 300 1k 3k 10 k 15 k Frequency (Hz) Decode Cut vs. Frequency (2) 1.2 HA12177 Vin = 0 dB 0 –10 dB –1.2 Decode Cut (dB) –2.4 –20 dB 12 V, 14 V –3.6 –4.8 16 V –6.0 –30 dB –7.2 –8.4 –9.6 NR-B VCC = 12 V, 14 V, 16 V –10.8 100 300 –40 dB 1k 3k Frequency (Hz) Rev.1, Nov. 1992, page 60 of 66 10 k 20 k HA12173 Series Maximum Output Level vs. Supply Voltage (2) Maximum Output Level vs. Supply Voltage (1) 20 20 HA12177 T.H.D. = 1% 0 dB = 775 mVrms f = 1 kHz RAIin PBmode PBout Maximum Output Level Vo max (dB) Maximum Output Level Vo max (dB) HA12177 F OF B, 15 NR NR NR-C 10 10 12 14 T.H.D. = 1% 0 dB = 300 mVrms f = 1 kHz RAIin RECmode RECout , -B Supply Voltage VCC (V) Signal to Noise Ratio vs. Supply Voltage (1) Signal to Noise Ratio vs. Supply Voltage (2) NR-OFF NR-C Signal to Noise Ratio S/N (dB) Signal to Noise Ratio S/N (dB) 16 HA12177 NR-B NR-OFF 80 12 14 90 90 70 10 12 -C NR Supply Voltage VCC (V) 100 HA12177 f = 1 kHz CCIR/ARM PBmode PBout NR NR 10 10 16 F OF 15 14 Supply Voltage VCC (V) 16 80 f = 1 kHz CCIR/ARM RECmode RECout NR-B 70 NR-C 60 10 12 14 16 Supply Voltage VCC (V) Rev.1, Nov. 1992, page 61 of 66 HA12173 Series Total Harmonic Distortion vs. Output Level (1) 5 HA12177 VCC = 14 V 0 dB = 775 mVrms RAIin PBmode PBout NR-OFF Total Harmonic Distortion T.H.D. (%) 2 1.0 0.5 0.2 f = 10 kHz 0.1 1 kHz, 100 Hz 0.05 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Output Level (2) 5 Total Harmonic Distortion T.H.D. (%) HA12177 2 1.0 VCC = 14 V 0 dB = 775 mVrms RAIin PBmode PBout NR-B 0.5 f = 100 Hz 0.2 1 kHz 10 kHz 0.1 0.05 0.02 0.01 –15 –10 –5 0 5 10 Output Level Vout (dB) Rev.1, Nov. 1992, page 62 of 66 15 20 HA12173 Series Total Harmonic Distortion vs. Output Level (3) Total Harmonic Distortion T.H.D. (%) 5 HA12177 VCC = 14 V 0 dB = 775 mVrms 2 RAIin PBmode 1.0 PBout NR-C 0.5 f = 100 Hz 0.2 0.1 1 kHz 0.05 10 kHz 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Output Level (4) 5 HA12177 Total Harmonic Distortion T.H.D. (%) 2 1.0 VCC = 14 V 0 dB = 300 mVrms RAIin RECmode RECout NR-OFF 0.5 0.2 0.1 0.05 f = 100 Hz 10 kHz 0.02 1 kHz 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Rev.1, Nov. 1992, page 63 of 66 HA12173 Series Total Harmonic Distortion vs. Output Level (5) 5 HA12177 Total Harmonic Distortion T.H.D. (%) 2 1.0 VCC = 14 V 0 dB = 300 mVrms RAIin RECmode RECout NR-B 0.5 0.2 0.1 f = 1 kHz 100 Hz 0.05 10 kHz 0.02 0.01 –15 –10 –5 0 5 10 15 20 Output Level Vout (dB) Total Harmonic Distortion vs. Output Level (6) Total Harmonic Distortion T.H.D. (%) 5 HA12177 VCC = 14 V 2 0 dB = 300 mVrms RAIin RECmode 1.0 RECout NR-C 0.5 f = 100 Hz 0.2 1 kHz 0.1 10 kHz 0.05 0.02 0.01 –15 –10 –5 0 5 10 Output Level Vout (dB) Rev.1, Nov. 1992, page 64 of 66 15 20 HA12173 Series Ripple Rejection Ratio vs. Frequency 0 Ripple Rejection Ratio R.R.R. (dB) HA12177 PBmode PBout –20 NR-C –40 NR-OFF NR-B –60 –80 –100 20 50 100 200 500 1k 2k 5k 10 k 20 k Frequency (Hz) Rev.1, Nov. 1992, page 65 of 66 HA12173 Series Disclaimer 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party’s rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi’s sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor products. Sales Offices Hitachi, Ltd. Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica : http://semiconductor.hitachi.com/ Europe : http://www.hitachi-eu.com/hel/ecg Asia : http://sicapac.hitachi-asia.com Japan : http://www.hitachi.co.jp/Sicd/indx.htm For further information write to: Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic Components Group Dornacher Straße 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585160 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00, Singapore 049318 Tel : <65>-538-6533/538-8577 Fax : <65>-538-6933/538-3877 URL : http://www.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road, Hung-Kuo Building, Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon, Hong Kong Tel : <852>-(2)-735-9218 Fax : <852>-(2)-730-0281 URL : http://www.hitachi.com.hk Copyright Hitachi, Ltd., 2000. All rights reserved. Printed in Japan. Colophon 2.0 Rev.1, Nov. 1992, page 66 of 66