HITACHI HA12175

HA12173 Series
Audio Signal Processor for Car Deck and Cassette Deck
(Dolby B/C-type NR with PB Amp)
ADE-204-016
1st Edition
Nov. 1992
Description
HA12173 series are silicon monolithic bipolar IC providing Dolby noise reduction system*, music sensor
and PB equalizer system in one chip.
Functions
• PB equalizer
× 2 channel
• Dolby B/C-NR
× 2 channel
• Music sensor
× 1 channel
Features
• Different type of PB equalizer characteristics selection (normal/chrome or metal) is available with fully
electronic control switching built-in.
• 2 type of input selection (RADIO/TAPE) is available.
• Changeable to Forward, Reverse-mode for PB head with fully electronic control switching built-in.
• Available to change music sensing level by external resistor.
• Music sensing level selection is available with fully electronic control switching built-in.
• Available to change frequency response of music sensor.
• NR-ON/OFF and REC/PB fully electronic control switching built-in.
• 4 type of PB-out level.
• Available to allow common PCB designs with HA12163 series.
*
Dolby is a trademark of Dolby Laboratories Licensing Corporation.
A license from Dolby Laboratories Licensing Corporation is required for the use of this IC.
HA12173 Series
Ordering Information
1
Operating voltage range*
Products
PB-OUT level
REC-OUT level
Dolby-level
Min
Max
HA12173
300 mVrms
300 mVrms
300 mVrms
7.0V
16V
HA12174
450 mVrms
300 mVrms
300 mVrms
8.0V
16V
HA12175
580 mVrms
300 mVrms
300 mVrms
9.5V
16V
HA12177
775 mVrms
300 mVrms
300 mVrms
12.0V
16V
Note:
1. The minimum operating voltage of HA12173 series are defferent from the HA12163 series
(Dolby B - type).
Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table
show typical value)
Pin No.
Terminal
name
Zin
DC
voltage Equivalent circuit
2, 41
TAI
100 kΩ VCC/2
Description
Tape input
VCC / 2
4, 39
RAI
Radio input
25
MSI
Music sensor
rectifier input
10, 33
HLS DET
11, 32
LLS DET
3
BIAS
—
2.5 V
Time constant
pin for rectifier
—
0.28 V
Reference
current input
GND
Rev.1, Nov. 1992, page 2 of 66
HA12173 Series
Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table
show typical value) (cont)
Pin No.
Terminal
name
Zin
DC
voltage Equivalent circuit
24
MS DET
—
VCC
Description
Time constant
pin for rectifier
GND
19
MS GV
100 kΩ —
Mode control
input
DGND
GND
40
RIP
—
VCC/2
Ripple filter
Rev.1, Nov. 1992, page 3 of 66
HA12173 Series
Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table
show typical value) (cont)
Pin No.
Terminal
name
Zin
DC
voltage Equivalent circuit
43, 56
EQ OUT
—
VCC/2
Description
Equalizer output
V CC
GND
6, 37
PB OUT
Play back
(Decode) output
30
MS VREF
Reference
voltage buffer
output
26
MA OUT
Music sensor
amp output
47, 52
VREF
Reference
voltage buffer
output
12, 31
REC OUT
Recording
(Encode) output
8, 35
SS2
Spectral skewing
amp. output
44, 55
EQ OUT-M
—
VCC/2
VCC
GND
Rev.1, Nov. 1992, page 4 of 66
Equalizer output
(Metal)
HA12173 Series
Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table
show typical value) (cont)
Pin No.
Terminal
name
Zin
DC
voltage Equivalent circuit
21
MS OUT
—
—
22
VCC
—
VCC
—
Power supply
23
MS VCC
20
D GND
—
0V
—
Digital (Logic)
ground
27
MS GND
Music sensor
ground
49, 50
GND
Ground
48, 51
FIN
46, 53
RIN
PB - EQ input for
reverse
45, 54
NFI
Negative
feedback
terminal of PB EQ amp.
28
NOI
Negative
feedback input
for normal speed
29
FFI
Negative
feedback input
for FF or REW
Description
MS VCC
Music sensor
output to MPU
D GND
—
VCC/2
PB - EQ input for
forward
Rev.1, Nov. 1992, page 5 of 66
HA12173 Series
Pin Description (VCC = 9 V Single supply, Ta = 25°C, No signal, The value in the table
show typical value) (cont)
Pin No.
Terminal
name
Zin
DC
voltage Equivalent circuit
13
C/B
100 kΩ —
Description
Mode control
input
D GND
GND
14
ON/OFF
15
REC/PB
16
TAPE/RADIO
17
120 µ/170 µ
18
F/R
7, 36
SS1
—
VCC/2
Spectral skewing
amp. input
9, 34
CCR
—
VCC/2
Current
controled
resistor output
1, 5, 38, 42 NC
Rev.1, Nov. 1992, page 6 of 66
No connection
HA12173 Series
Block Diagram
RADIO
IN(L)
EQOUT(L)
PBOUT(L)
RECOUT(L)
+
42
41
40
39
38
37
36
35
34
33
32
RIP
43
31
30
29
28
MS VREF
120/70
27
44
MS GND
– +
45
26
DOLBY B/C-NR
T/R
46
25
R/F
24
47 VREF (L)
+
×1
48
DET MS VCC
S/R
49 GND
–
+
–
50 GND
LPF
VCC
+
VCC
23
22
21
To Microcomputer
MS OUT
MS AMP
D GND 20
51
×1
19
52 VREF (R)
T/R
R/F
DOLBY B/C-NR
53
18
17
54
MS GV (S/R)
F/R
120 µ/70 µ
– +
16
55
TAPE/RADIO
From
Microcomputer
120/70
15
56
REC/PB
BIAS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
ON/OFF
EQOUT(R)
C/B
RADIO
IN(R)
RECOUT(R)
PBOUT(R)
Absolute Maximum Ratings
Item
Symbol
Ratings
Unit
Supply voltage
VCC max
16
V
Power dissipation
PT
500
mW
Operating temperature
Topr
–40 to +85
°C
Storage temperature
Tstg
–55 to +125
°C
Condition
Ta≤85°C
Rev.1, Nov. 1992, page 7 of 66
HA12173 Series
Electrical Characteristics (Ta = 25°C Dolby level 300 mVrms (Rec-out pin))
HA12173 VCC = 9.0 V
HA12175 VCC = 12.0 V
Item
Min
Typ
Max
Unit
Test Condition
Note
Quiescent current IQ
10.0
16.0
24.0
mA
No input
No Signal
NR-B70 µ
Input
HA12173 GvIA TAI
18.5
20.0
21.5
dB
Vin = 0 dB, f = 1 kHz
Amp.
GvIA RAI
15.5
17.0
18.5
HA12174 GvIA TAI
22.0
23.5
25.0
GvIA RAI
19.0
20.5
22.0
HA12175 GvIA TAI
24.2
25.7
27.2
GvIA RAI
21.2
22.7
24.2
HA12177 GvIA TAI
26.7
28.2
29.7
gain
Symbol
HA12174 VCC = 9.0 V
HA12177 VCC = 14.0 V
Vin = 0 dB, f = 1 kHz
Vin = 0 dB, f = 1 kHz
Vin = 0 dB, f = 1 kHz
GvIA RAI
23.7
25.2
26.7
B-type Encode
ENC –2k
2.8
4.3
5.8
boost
ENC –5k
1.7
3.2
4.7
C-type Encode
ENC –1k (1)
3.9
5.9
7.9
boost
ENC –1k (2)
18.1
19.6
21.6
Vin = –60 dB, f = 1 kHz
ENC –700
9.8
11.8
13.8
Vin = –30 dB, f = 700 Hz
Signal handling
Vo max
12.0
13.0
—
dB
THD = 1%, f = 1 kHz
Signal to noise
ratio
S/N
60.0
64.0
—
dB
Rg = 5.1 kΩ, CCIR/ARM
THD
THD
—
0.05
0.3
%
Vin = 0 dB, f = 1 kHz
Channel
CT RL (1)
70.0
85.0
—
dB
Vin = 0 dB, f = 1 kHz
RAI input
separation
CT RL (2)
50.0
60.0
—
Vin = 0.6 mVrms, f = 1 kHz
EQ input
Crosstalk
CT EQ → RAI 70.0
80.0
—
Vin = 0.6 mVrms, f = 1 kHz
EQ input
CT RAI → EQ 50.0
60.0
—
Vin = 0 dB, f = 1 kHz
RAI input
Gv EQ 1k
37.0
40.0
43.0
Vin = 0.6 mVrms, f = 1 kHz
120 µ
Gv EQ 10k (1) 33.0
36.0
39.0
Gv EQ 10k (2) 29.0
32.0
35.0
PB - EQ gain
dB
Vin = –20 dB, f = 2 kHz
Vin = –20 dB, f = 5 kHz
dB
dB
Vin = –20 dB, f = 1 kHz
Vin = 0.6 mVrms, f = 10 kHz
70 µ
PB - EQ maximum VoM
output
300
600
—
mVrms THD = 1%, f = 1 kHz
PB - EQ THD
—
0.05
0.3
%
Vin = 0.6 mVrms, f = 1 kHz
Noise voltage level VN
converted in input
—
0.7
1.5
µVrms
Rg = 680 Ω, DIN - AUDIO
MS sensing level
VON (1)
–36.0 –32.0 –28.0 dB
f = 5 kHz, Normal speed
VON (2)
–18.0 –14.0 –10.0
f = 5 kHz, High speed
THD - EQ
Rev.1, Nov. 1992, page 8 of 66
*1
*1
HA12173 Series
Electrical Characteristics (Ta = 25°C Dolby level 300 mVrms (Rec-out pin)) (cont)
HA12173 VCC = 9.0 V
HA12175 VCC = 12.0 V
Item
Symbol
Min
Typ
Max
Unit
MS output low
level
VOL
—
1.0
1.5
V
MS output leak
current
IOH
—
0.0
2.0
µA
Control voltage
VIL
–0.2
—
1.5
V
VIH
3.5
—
5.3
Note:
Test Condition
HA12174 VCC = 9.0 V
HA12177 VCC = 14.0 V
Note
1. HA12173 VCC = 7.0 V, HA12174 VCC = 8.0 V, HA12175 VCC = 9.5 V, HA12177 VCC = 12.0 V
Rev.1, Nov. 1992, page 9 of 66
Rev.1, Nov. 1992, page 10 of 66
R
OFF
SW16
Unit R: Ω
C: F
AC VM1
SW17
ON
SW15
L
SW25
50
R1
680
51
GND
+ C1
22 µ
VREF
(R)
FIN
(R)
C25
0.01 µ
RIN
(R)
RIN
(L)
C2
22 µ
+
R2
680
R3
180
C3
0.01 µ
R5
330 k
R7
12 k
R6
18 k
56
EQ
EQ
NFI OUT-M OUT
(R)
(R)
(R)
55
C24
0.1 µ
R35
5.1 k
2
TAI
(R)
TAI
(L)
C4
0.1 µ
R8
5.1 k
1
N.C.
N.C.
R9
5.1 k
3
RAI
(L)
+
R32
22 k
N.C.
PB
OUT
(L)
SS1
(L)
38 37 36
C19
2.2 µ
R31
560
C18
2200 p
SS2
(L)
CCR
(L)
C15
2.2 µ
HLS
DET
(L)
+
C16
0.1 µ
R11
18 k
+
4
R10
5.1 k
R14
10 k
C6
2200 p
6
PB
OUT
(R)
R12
22 k
C8
2.2 µ +
5
N.C.
C5
0.47 µ
RAI
(R)
7
SSI
(R)
C7
2200 p
8
R13
560
9
CCR
(R)
C9
2200 p
SS2
(R)
10
LLS
DET
(L)
REC
OUT
(R)
C12
2.2 µ
+
ON/
OFF
FFI
+
B
R27
330 k
RECOUT(L)
R25
47 k
R16
22 k
RAD
SW11
SW10
EQOUT(R)
PBOUT(R)
RECOUT(R)
EQOUT(R)
PBOUT(R)
RECOUT(R)
SW8
R23
3.9 k
SW20
L
AC VM2
SW19
R
SW18
MSOUT
SW21
SW22
Note
1) Resistor tolerance are ± 1%
2) Capacitor tolerance are ± 1%
DISTORTION
ANALYZER
SW9
REP
SW1
21
20
R22
22 k
MS
OUT
D
GND
SW2
SER
22
V CC
OFF
MS
VCC
23
R21
22 k
FOR REV
70 µ
SW3
120 µ
R20
22 k
R19
22 k
OSCILLO SCOPE
Noise meter
with CCIR/ARM filter
and DIN-AUDIO filter
MS
GV
MS
DET
C13
0.33 µ
+
R
ON
RECOUT (L)
SW24
25 24
MSI
F/R
SW4
SW12
TAP
SW13
REC
SW5
R18
22 k
C33
22 µ +
PB
SW6
R17
22 k
C32
22 µ
SW14
MA
OUT
R24
330 k
L
EQOUT (L)
PBOUT (L)
16 17 18 19
C OFF ON
SW7
+
MS
GND
SW23
C14
0.01 µ
REC TAPE/ 120µ
/PB RADIO /70µ
NOI
13 14 15
C/B
MS
VREF
NOISE METER
R15
10 k
C11
0.1 µ
C28
4700 p
R28
18 k
PBOUT(L)
EQOUT(L)
30 29 28 27 26
R26
33 k
C31
22 µ
REC
OUT
(L)
11 12
LLS
DET
(R)
C10
0.1 µ
HLS
DET
(R)
R29
10 k
32 31
C17
0.1 µ
35 34 33
C20
2200 p
C21
2200 p
HA12173/4/5/7 (PB 1 Chip)
RIP
40 39
+
C23
0.47 µ +
R33
5.1 k
BIAS
C22
1µ
R34
5.1 k
43 42 41
NFI
EQ
EQ
(L) OUT-M OUT
(L)
(L)
R37
18 k
R36
12 k
R38
330 k
46 45 44
+
R40
680
R39
180
52 53 54
VREF
(L)
FIN
(L)
C26
22 µ
48 47
R41
680
49
C27
22 µ
GND
+
AUDIO SG
RAI (R)
EQIR (R)
EQIF(R)
EQIF(L)
EQIR (L)
RAI (L)
R30
10 k
+
A GND
D GND
DC SOURCE3
DC SOURCE2
5V
Note : The capacitor (C29) should
be connected.
It's recommended to be
connected close to the IC.
C29
100 µ
DC SOURCE1
DC VM1
HA12173 Series
Test Circuit
HA12173 Series
Functional Description
Power Supply Range
HA12173 series are provided with four line output level, which will permit on optimum overload margin
for power supply conditions. And this series are designed to operate on either single supply or split supply.
Table 1
Supply Voltage
Item
HA12173
HA12174
HA12175
HA12177
Single supply
7.0 V to 16.0 V
8.0 V to 16.0 V
9.5 V to 16.0 V
12.0 V to 16.0 V
GND level
±5.0 V to 8.0 V
±5.0 V to 8.0 V
±5.0 V to 8.0 V
±6.0 V to 8.0 V
VEE level
±3.5 V to ±8.0 V ±4.0 V to 8.0 V
±4.8 V to 8.0 V
±6.0 V to 8.0 V
Split supply
A. The lower limit of supply voltage depends on the line output reference level.
The minimum value of the overload margin is specified as 12 dB by Dolby Laboratories.
B. In case of using digital GND terminal referring to GND level, operating voltage range varies
depending on the condition at power on. On using the HA12173/174/175, use within the following
ranges to avoid latch-ups.
When power on in NR-OFF mode: ±5.0 V to ±8.0 V
When power on in NR-ON mode: ±5.7 V to ±8.0 V
C. In the reverse-voltage conditions such as ‘D-GND is higher than VCC’ or ‘D-GND is lower than
GND’, excessive current flows into the D-GND to destory this IC. To prevent such destruction, pay
attention to the followings on using.
Single power supply : Short-circuit the D-GND and GND directory on the board mounting this IC.
Split power supply
: Avoid reverse conditions of D-GND and VCC or VEE voltage, including
transient-time of power ON/OFF.
Reference Voltage
For the single supply operation these devices provide the reference voltage of half the supply voltage that is
the signal grounds. As the peculiarity of these devices, the capacitor for the ripple filter is very small about
1/100 compared with their usual value. The Reference voltage are provided for the left channel and the
right channel separately. The block diagram is shown as figure 1.
Rev.1, Nov. 1992, page 11 of 66
HA12173 Series
22
47 VREF(L)
VCC
+
–
L channel
reference
+
52 MS VREF
–
Music sensor
reference
+
R channel
reference
–
GND 49
50
40 RIP
+
C22
1 µF
52 VREF(R)
Figure 1 The Block Diagram of Reference Voltage Supply
Operating Mode Control
HA12173 series provide fully electronic switching circuits. And each operating mode control are
controlled by parallel data (DC voltage).
Table 2
Threshold Voltage (VTH)
Pin No.
Low
High
Unit
Test condition
13, 14, 15, 16,
17, 18, 19
–0.2 to 1.5
3.5 to 5.3
V
Input Pin
Measure
22 k
V
Rev.1, Nov. 1992, page 12 of 66
HA12173 Series
Table 3
Switching Truth Table
Pin No.
Low
High
13
B - NR
C - NR
14
NR - OFF
NR - ON
15
PB
REC
16
TAPE
RADIO
17
120 µ (NORMAL)
70 µ (METAL or CHROME)
18
FORWARD
REVERSE
19
SER (FF or REV)
REP (NORMAL SPEED)
Notes: 1. Voltages shown above are determined by internal circuits of LSI when take pin 20 (DGND pin) as
reference pin. On split supply use, same VTH can be offered by connecting DGND pin to GND
pin.
This means that it can be controlled directly by microprocessor. But power supply should be
over ±5 V, notwithstanding the prescription of table 1.
2. Each pins are on pulled down with 100 kΩ internal resistor.
Therefore, it will be low-level when each pins are open.
3. Over shoot level and under shoot level of input signal must be the standardized (High: 5.3 V,
Low: –0.2 V)
4. When connecting microcomputer or Logic-IC with HA12173 series directly, there is apprehension
of rush-current under some transition timming of raising voltage or falling voltage at VCC ON/OFF.
On using, connect protective resistors of 10 to 22 kΩ to all the control pins. It is shown is test
circuit on this data sheet. And pins fixed to low level should be preferably open.
5. Pay attention not to make digital GND voltage lower than GND voltage.
Rev.1, Nov. 1992, page 13 of 66
HA12173 Series
Input Block Diagram and Level Diagram
R34
5.1 k
R35
5.1 k
R38
330 k
R39
180
R36
12 k
R37
18 k
C25
0.01 µ
HA12173:
HA12174:
HA12175:
HA12177:
C24
0.1 µ
TAI
EQ OUT
EQ OUT-M
30 mVrms
(–28.2 dBs)
PBOUT
42.4 mVrms
(–25.2 dBs)
INPUT AMP
EQ AMP
NFI
RAI
300 mVrms (–8.2 dBs)
450 mVrms (–4.7 dBs)
580 mVrms (–2.5 dBs)
775 mVrms (0.0 dBs)
–
+
+
NR circuit
–
RIN
RECOUT
300 mVrms
(–8.2 dBs)
0.6 mVrms
(–62.2 dBs)
VREF
FIN
Unit R: Ω
C: F
The each level shown above is typical value
when offering PBOUT level to PBOUT pin.
(EQ AMP Gv = 40 dB f = 1 kHz)
Figure 2 Input Block Diagram
Adjustment of Playback Dolby Level
After replace R34 and R35 with a half-fix volume of 10 kΩ, adjust RECOUT level to be Dolby level with
playback mode.
Note on Connecting with Tape Head to IC
This IC has no internal resistor to give the DC bias current to equalizer amp., therefore the DC bias current
will give through the head. This IC provides the Vref buffer output pin for Rch and Lch separately (has
two Vref terminal). In case of use that the Rch and Lch reference of head are connected commonly, please
use one of Vref terminals of IC (47 pin or 52 pin) for head reference. If both 47 pin and 52 pin of IC are
connected, rush current give the great damage to IC. The application circuit is shown in figure 3.
Rev.1, Nov. 1992, page 14 of 66
HA12173 Series
43
44
–+
45
46
R/F
47 VREF(L)
48
49 GND
50 GND
51
52 VREF(R)
R/F
53
54
–+
55
56
Figure 3 Application Circuit
Rev.1, Nov. 1992, page 15 of 66
HA12173 Series
The Sensitivity Adjustment of a Music Sensor
Adjusting MS AMP. gain by external resistor, the sensitivity of music sensor can set up.
R28
R27
R26
R25
C14
0.01 µ
DVCC
VCC
R24
330 k
+ C13
0.33 µ
C28
4700 p
TAI (L)
X1
MS
VREF
FFI
NOI
MA MSI MS
OUT
DET
IL
RL
L·R signal addition circuit
–6 dB
MS OUT
+
DET
+
LPF
Microcomputer
–
–
D GND
26 dB
X1
25 kHz
MS AMP
100 k
D GND
TAI (R)
Unit R: Ω
C: F
Figure 4 Music Sensor Block Diagram
Rev.1, Nov. 1992, page 16 of 66
HA12173 Series
f1
Gv1
f2
Normal speed
Gv
[dB]
f3
Gv2
f4
FF or REV
10
100
1k
f
10 k
25 k
100 k
[Hz]
Figure 5 Frequency Response
1. Normal mode
R27

Gv1 = 20 log 1 +
 [dB]

R28
1
[Hz], f 2 = 25 k [Hz]
f1 =
2 ⋅π ⋅C14⋅100 k
2. FF or REW mode
 R25 
Gv2 = 20 log 1 +
 [dB]
 R26 
f3 =
1
[Hz], f4 = 25k [Hz]
2 ⋅π ⋅C28 ⋅ R26
A standard level of TAI pin is 30 mVrms and the gain for TAI to MS AMP input is 10, therefore, the
other channel sensitivity of music sensor (S) is computed by the formula mentioned below.
1
C
[dB]
S = 20 log ⋅
30 10 ⋅ A
A = MS AMP. gain (B dB)
S = –7.3–B [dB]
C = 130 mVrms (typ.)
S is 6 dB up in case of the both channels.
C = The sensing level of music sensor
Rev.1, Nov. 1992, page 17 of 66
HA12173 Series
Music Sensor Output (MS OUT)
As for the internal circuit of music sensor block, music sensor out pin is connected to the collector of NPN
Type directly, Output level will be “high” when sensing no signal. And output level will be “low” when
sensing signal.
Connection with microcomputer, design IL at 1 mA typ.
IL =
DVCC – MSOUTLo *
RL
* MSOUTLo: Sensing signal (about 1 V)
Notes: 1. Supply voltage of MS OUT pin must be less than VCC voltage.
2. MS VCC pin and VCC pin are required the same voltage.
The Tolerances of External Components for Dolby NR-block
For adequate Dolby NR tracking response, take external components shown below.
C21
2200 p
±5%
C20
2200 p
±5%
R32
22 k
±2%
R31
560
±2%
C18
2200 p
±5%
C16
0.1 µ
±10%
C17
0.1 µ
±10%
37
36
35
34
33
32
PB OUT
(L)
SS1
(L)
SS2
(L)
CCR
(L)
HLS
DET (L)
LLS
DET (L)
HA12173 Series (PB 1 Chip)
BIAS
PB OUT
(R)
SS1
(R)
SS2
(R)
CCR
(R)
HLS
DET(R)
LLS
DET(R)
3
6
7
8
9
10
11
R11
18 k
±2%
R12
22 k
±2%
C7
2200 p
±5%
C6
2200 p
±5%
R13
560
±2%
C9
2200 p
±5%
C10
0.1 µ
±10%
C11
0.1 µ
±10%
Unit R: Ω
C: F
Figure 6 Tolerances of External Components
PB Equalizer for Double Speed
PB equalizer can be design for double speed by using external components shown in figure 7. Application
data is shown in figure 8.
Rev.1, Nov. 1992, page 18 of 66
HA12173 Series
R35
5.1 k
No : Normal speed
Do : Double speed
0.015 µ
4.7 µ
+
No
22 k
VR1
R
Do
0.1 µ
EQ OUT
R38
330 k
R39
180
R36
12 k
EQ
OUT-M
R37
18 k
C25
0.01 µ
EQ
AMP.
– +
NFI
TAI
* Please ajust RECOUT level to
be Dolby level with volume of
VR 1.
+
RAI
PBOUT
INPUT AMP.
+
–
NR
circuit
RECOUT
RIN
VREF
Unit R: Ω
C: F
FIN
Figure 7 Application Circuit for Double Speed
60
G V (dB)
50
40
30
120 µ
Normal speed
70 µ
R = 2.7 k
R = 2.2 k
Double speed
R = 1.8 k
R = 1.3 k
20
10
20
100
1k
10 k
Frequency (Hz)
100 k
* OUTPUT = TAIpin
Figure 8 Application data
Rev.1, Nov. 1992, page 19 of 66
Rev.1, Nov. 1992, page 20 of 66
R
OFF
SW16
Unit R: Ω
C: F
AC VM1
SW17
ON
SW15
L
SW25
R1
680
51
50
+ C1
22 µ
VREF
(R)
FIN
(R)
GND
C25
0.01 µ
RIN
(R)
RIN
(L)
C2
22 µ
+
R2
680
R3
180
C3
0.01 µ
R5
330 k
R7
12 k
R6
18 k
56
EQ
EQ
NFI OUT-M OUT
(R)
(R)
(R)
55
C24
0.1 µ
R35
5.1 k
2
TAI
(R)
TAI
(L)
C4
0.1 µ
R8
5.1 k
1
N.C.
N.C.
43 42 41
NFI
EQ
EQ
(L) OUT-M OUT
(L)
(L)
R37
18 k
R36
12 k
R38
330 k
46 45 44
+
R40
680
R39
180
52 53 54
VREF
(L)
FIN
(L)
C26
22 µ
GND
R41
680
48 47
C27
22 µ
49
+
AUDIO SG
RAI (R)
EQIR (R)
EQIF(R)
EQIF(L)
EQIR (L)
RAI (L)
3
RAI
(L)
+
R32
22 k
N.C.
PB
OUT
(L)
SS1
(L)
38 37 36
C19
2.2 µ
R31
560
C18
2200 p
SS2
(L)
CCR
(L)
C15
2.2 µ
HLS
DET
(L)
C16
0.1 µ
+
R11
18 k
+
4
R10
5.1 k
R14
10 k
C6
2200 p
6
PB
OUT
(R)
R12
22 k
C8
2.2 µ +
5
N.C.
C5
0.47 µ
RAI
(R)
7
SSI
(R)
C7
2200 p
8
R13
560
9
CCR
(R)
C9
2200 p
SS2
(R)
10
LLS
DET
(L)
REC
OUT
(R)
C12
2.2 µ
+
ON/
OFF
FFI
+
B
R27
330 k
RECOUT(L)
R25
47 k
R16
22 k
PB
SW14
MA
OUT
RAD
SW11
OSCILLO SCOPE
Noise meter
with CCIR/ARM filter
and DIN-AUDIO filter
MS
GV
MS
DET
SW10
EQOUT(R)
PBOUT(R)
RECOUT(R)
EQOUT(R)
PBOUT(R)
RECOUT(R)
SW8
R23
3.9 k
DISTORTION
ANALYZER
SW9
REP
SW1
SER
R22
22 k
21
SW2
MS
OUT
V CC
22
20
MS
VCC
OFF
D
GND
R21
22 k
FOR REV
70 µ
SW3
120 µ
R20
22 k
R19
22 k
SW4
SW12
TAP
REC
SW5
R18
22 k
F/R
MSI
23
C13
0.33 µ
+
R
ON
RECOUT (L)
SW24
25 24
R24
330 k
L
EQOUT (L)
PBOUT (L)
16 17 18 19
C33
22 µ +
SW13
SW6
R17
22 k
C32
22 µ
C OFF ON
SW7
+
MS
GND
SW23
C14
0.01 µ
REC TAPE/ 120µ
/PB RADIO /70µ
NOI
13 14 15
C/B
MS
VREF
NOISE METER
R15
10 k
C11
0.1 µ
C28
4700 p
R28
18 k
EQOUT(L)
PBOUT(L)
30 29 28 27 26
R26
33 k
C31
22 µ
REC
OUT
(L)
11 12
LLS
DET
(R)
C10
0.1 µ
HLS
DET
(R)
R29
10 k
32 31
C17
0.1 µ
35 34 33
C20
2200 p
C21
2200 p
HA12173/4/5/7 (PB 1 Chip)
RIP
40 39
C23
0.47 µ +
BIAS
R9
5.1 k
R34
5.1 k
R33
5.1 k
R30
10 k
SW20
L
AC VM2
SW19
R
SW18
MSOUT
SW21
SW22
D GND
DC SOURCE3
DC SOURCE2
5V
Note : In case of using digital GND
terminal referring to VEE level,
separate digital GND and
analog GND and connect
digital GND terminal to VEE .
(VEE)
DC SOURCE2
A GND
(VCC)
DC SOURCE1
C29
100 µ
+ C30
100 µ
+
DC VM1
HA12173 Series
Circuit For Split Supply
HA12173
HA12173 Series
Typical Characteristic Curves
HA12173
Quiescent Current vs. Supply Voltage
17
HA12173/174/175/177
Quiescent Current I CC (mA)
16
NR-B (70µ)
NR-B (120µ)
NR-C (120µ)
15
NR-OFF (120µ)
14
13
6
8
10
12
14
16
18
Supply Voltage VCC (V)
TAlin Input Amp. Gain vs. Frequency
22
HA12173
Gain (dB)
18
PBout-OFF,
RECout-OFF/B/C
14
10
6
VCC = 9V
PBmode
2
20
100
1k
10 k
100 k
Frequency (Hz)
Rev.1, Nov. 1992, page 21 of 66
HA12173 Series
RAlin Input Amp. Gain vs. Frequency
22
HA12173
Gain (dB)
18
PBout-OFF/B/C,
RECout-OFF
14
10
6
VCC = 9V
RECmode
2
20
100
1k
Frequency (Hz)
Rev.1, Nov. 1992, page 22 of 66
10 k
100 k
HA12173 Series
Encode Boost vs. Frequency (1)
24
HA12173
21
Vin = –60 dB
NR-C
VCC = 7 V, 9 V, 16 V
18
16 V
Encode Boost (dB)
15
–40 dB
7 V, 9 V
12
–30 dB
9
6
3
–20 dB
0
–10 dB
–3
0 dB
–6
100
300
1k
3k
10k 15k
Frequency (Hz)
Encode Boost Frequency (2)
10.8
HA12173
9.6
8.4
Vin = –40 dB
NR-B
VCC = 7 V, 9 V, 16 V
–30 dB
Encode Boost (dB)
7.2
6.0
16 V
4.8
3.6
7 V, 9 V
–20 dB
2.4
–10 dB
1.2
0
–1.2
100
0 dB
300
1k
3k
10 k
20 k
Frequency (Hz)
Rev.1, Nov. 1992, page 23 of 66
HA12173 Series
Decode Cut vs. Frequency (1)
6
3
HA12173
NR-C
VCC = 7 V, 9 V, 16 V
Vin = 0 dB
–10 dB
0
–20 dB
Decode Cut (dB)
–3
–6
–30 dB
7 V, 9 V
–9
–12
–40 dB
16 V
–15
–18
–60 dB
–21
–24
100
300
1k
3k
10 k 15 k
Frequency (Hz)
Decode Cut vs. Frequency (2)
1.2
HA12173
Vin = 0 dB
0
–10 dB
–1.2
Decode Cut (dB)
–2.4
–20 dB
7 V, 9 V
–3.6
–4.8
16 V
–6.0
–30 dB
–7.2
–8.4
–9.6
NR-B
VCC = 7 V, 9 V, 16 V
–10.8
100
300
–40 dB
1k
3k
Frequency (Hz)
Rev.1, Nov. 1992, page 24 of 66
10 k
20 k
HA12173 Series
20
25
Maximum Output Level Vo max (dB)
HA12173
T.H.D. = 1 %
FF
0 dB = 300 mVrms
-O
R
f = 1 kHz
N
RAIin
-B
R
PBmode
N
PBout
N
R
-C
Maximum Output Level Vo max (dB)
25
Maximum Output Level vs. Supply Voltage (2)
15
RECout
20
-B
R
N
15
10
10
6
8
10
12
14
6
16
8
10
12
14
16
Supply Voltage VCC (V)
Supply Voltage VCC (V)
Signal to Noise Ratio vs. Supply Voltage (1)
Signal to Noise Ratio vs. Supply Voltage (2)
100
90
HA12173
f = 1 kHz
CCIR / ARM
PBmode
PBout
90
HA12173
NR-OFF
Signal to Noise Ratio S/N (dB)
Signal to Noise Ratio S/N (dB)
HA12173
T.H.D. = 1 %
0 dB = 300 mVrms
f = 1 kHz
FF
-O
RAIin
R
N
RECmode
NR
-C
Maximum Output Level vs. Supply Voltage (1)
NR-B
NR-C
NR-OFF
80
f = 1 kHz
CCIR / ARM
RECmode
RECout
80
NR-B
70
NR-C
60
70
6
8
10
12
14
Supply Voltage VCC (V)
16
6
8
10
12
14
16
Supply Voltage VCC (V)
Rev.1, Nov. 1992, page 25 of 66
HA12173 Series
Total Harmonic Distortion vs. Supply Voltage (1)
Total Harmonic Distortion vs. Supply Voltage (2)
1.0
1.0
HA12173
0.5
RAIin
PBmode
PBout
NR-OFF
0.2
0.1
0.05
f = 10 kHz
0.02
Total Harmonic Distortion T.H.D. (%)
Total Harmonic Distortion T.H.D. (%)
HA12173
100 Hz
0.5
RAIin
PBmode
PBout
NR-B
0.2
0.1
f = 100Hz
0.05
0.02
10 kHz
1 kHz
1 kHz
0.01
0.01
6
8
10
12
14
16
6
10
12
14
16
Supply Voltage VCC (V)
Total Harmonic Distortion vs. Supply Voltage (3)
Total Harmonic Distortion vs. Supply Voltage (4)
1.0
1.0
HA12173
HA12173
RAIin
PBmode
PBout
NR-C
0.5
Total Harmonic Distortion T.H.D. (%)
Total Harmonic Distortion T.H.D. (%)
8
Supply Voltage VCC (V)
f = 100 Hz
0.2
10 kHz
0.1
0.05
1 kHz
0.02
RAIin
RECmode
RECout
NR-OFF
0.5
0.2
0.1
0.05
f = 10 kHz
0.02
100 Hz, 1 kHz
0.01
0.01
6
8
10
12
14
Supply Voltage VCC (V)
Rev.1, Nov. 1992, page 26 of 66
16
6
8
10
12
14
Supply Voltage VCC (V)
16
HA12173 Series
Total Harmonic Distortion vs. Supply Voltage (6)
Total Harmonic Distortion vs. Supply Voltage (5)
1.0
1.0
HA12173
Total Harmonic Distortion T.H.D. (%)
0.5
RAIin
RECmode
RECout
NR-B
0.2
0.1
f = 100 Hz
0.05
1 kHz
10 kHz
0.02
0.5
f = 100 Hz
0.2
10 kHz
0.1
1 kHz
0.05
RAIin
RECmode
RECout
NR-C
0.02
0.01
0.01
6
8
10
12
14
6
16
8
Supply Voltage VCC (V)
10
12
14
16
Supply Voltage VCC (V)
Total Harmonic Distortion vs. Output Level (1)
5
Total Harmonic Distortion T.H.D. (%)
Total Harmonic Distortion T.H.D. (%)
HA12173
HA12173
VCC = 9 V
0 dB = 300 mVrms
2
RAIin
PBmode
1.0
PBout
NR-OFF
0.5
0.2
0.1
0.05
10
0.02
f=
10
0 H kHz
z
1 kHz
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Rev.1, Nov. 1992, page 27 of 66
HA12173 Series
Total Harmonic Distortion vs. Output Level (2)
5
Total Harmonic Distortion T.H.D. (%)
HA12173
VCC = 9 V
0 dB = 300 mVrms
RAIin
PBmode
PBout
NR-B
2
1.0
0.5
0.2
0.1
f = 100 Hz
0.05
10 kHz
0.02
1 kHz
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (3)
5
Total Harmonic Distortion T.H.D. (%)
HA12173
2
1.0
0.5
VCC = 9 V
0 dB = 300 mVrms
RAIin
PBmode
PBout
NR-C
f = 100 Hz
0.2
10 kHz
0.1
1 kHz
0.05
0.02
0.01
–15
–10
–5
0
5
10
Output Level Vout (dB)
Rev.1, Nov. 1992, page 28 of 66
15
20
HA12173 Series
Total Harmonic Distortion vs. Output Level (4)
Total Harmonic Distortion T.H.D. (%)
5
HA12173
VCC = 9 V
0 dB = 300 mVrms
RAIin
RECmode
RECout
NR-OFF
2
1.0
0.5
0.2
0.1
0.05
f = 10 kHz
0.02
100 Hz, 1 kHz
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (5)
5
HA12173
Total Harmonic Distortion T.H.D. (%)
2
1.0
VCC = 9 V
0 dB = 300 mVrms
RAIin
RECmode
RECout
NR-B
0.5
0.2
0.1
f = 100 Hz
0.05
1 kHz
10 kHz
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Rev.1, Nov. 1992, page 29 of 66
HA12173 Series
Total Harmonic Distortion vs. Output Level (6)
Total Harmonic Distortion T.H.D. (%)
5
HA12173
VCC = 9 V
0 dB = 300 mVrms
2
RAIin
RECmode
RECout
1.0
NR-C
f = 100 Hz
0.5
0.2
1 kHz
0.1
10 kHz
0.05
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Frequency (1)
Total Harmonic Distortion T.H.D. (%)
0.2
HA12173
RAIin
PBmode
PBout
NR-OFF
0.1
0.05
Vin = +10 dB
–10 dB
0.02
0 dB
0.01
100
200
500
1k
2k
Frequency (Hz)
Rev.1, Nov. 1992, page 30 of 66
5k
10 k
20 k
HA12173 Series
Total Harmonic Distortion vs. Frequency (2)
Total Harmonic Distortion T.H.D. (%)
0.2
HA12173
RAIin
PBmode
PBout
NR-B
0.1
0.05
Vin = +10 dB
–10 dB
0.02
0 dB
0.01
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Total Harmonic Distortion vs. Frequency (3)
5
Total Harmonic Distortion T.H.D. (%)
HA12173
2
RAIin
PBmode
PBout
NR-C
1.0
Vin = +10 dB
0.5
0.2
0.1
–10 dB
0.05
0 dB
0.02
0.01
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Rev.1, Nov. 1992, page 31 of 66
HA12173 Series
Total Harmonic Distortion vs. Frequency (4)
Total Harmonic Distortion T.H.D. (%)
0.2
HA12173
RAIin
RECmode
RECout
NR-OFF
0.1
Vin = +10 dB
0.05
–10 dB
0 dB
0.02
0.01
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Total Harmonic Distortion vs. Frequency (5)
0.2
RAIin
RECmode
RECout
NR-B
Total Harmonic Distortion T.H.D. (%)
HA12173
0.1
Vin = +10 dB
0.05
–10 dB
0 dB
0.02
0.01
100
200
500
1k
2k
Frequency (Hz)
Rev.1, Nov. 1992, page 32 of 66
5k
10 k
20 k
HA12173 Series
Total Harmonic Distortion vs. Frequency (6)
2
1.0
HA12173
RAIin
RECmode
RECout
NR-C
0.5
Vin = +10 dB
0.2
–10 dB
0.1
0 dB
0.05
0.02
0.01
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Crosstalk vs. Frequency (1)
–20
HA12173
VCC = 9V
Radio Tape
PBmode
PBout
–40
Crosstalk (dB)
Total Harmonic Distortion T.H.D. (%)
5
–60
NR-OFF
NR-B
–80
NR-C
–100
–120
20
50
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Rev.1, Nov. 1992, page 33 of 66
HA12173 Series
Crosstalk vs. Frequency (2)
–20
HA12173
VCC = 9V
Radio Tape
RECmode
RECout
–40
Crosstalk (dB)
NR-C
–60
NR-B
–80
NR-OFF
–100
–120
20
50
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Crosstalk vs. Frequency (3)
–20
HA12173
VCC = 9 V
L R
RAIin
PBmode
PBout
Crosstalk (dB)
–40
–60
NR-C
–80
NR-B
NR-OFF
–100
–120
20
50
100
200
500
1k
Frequency (Hz)
Rev.1, Nov. 1992, page 34 of 66
2k
5k
10 k
20 k
HA12173 Series
Crosstalk vs. Frequency (4)
–20
HA12173
VCC = 9 V
R L
RAIin
PBmode
PBout
Crosstalk (dB)
–40
–60
–80
NR-C
–100
NR-OFF
NR-B
–120
20
50
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Crosstalk vs. Frequency (5)
–20
HA12173
VCC = 9 V
Tape Radio
PBmode
PBout
Crosstalk (dB)
–40
–60
NR-OFF
NR-B
–80
NR-C
–100
–120
20
50
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Rev.1, Nov. 1992, page 35 of 66
HA12173 Series
Crosstalk vs. Frequency (6)
–20
HA12173
VCC = 9 V
Forward
Reverse
PBmode
PBout
Crosstalk (dB)
–40
–60
NR-OFF
NR-B
–80
NR-C
–100
–120
20
50
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Crosstalk vs. Frequency (7)
–20
HA12173
VCC = 9 V
Reverse
Forward
PBmode
PBout
Crosstalk (dB)
–40
–60
NR-OFF
NR-B
–80
NR-C
–100
–120
20
50
100
200
500
1k
Frequency (Hz)
Rev.1, Nov. 1992, page 36 of 66
2k
5k
10 k
20 k
HA12173 Series
Crosstalk vs. Frequency (8)
0
HA12173
VCC = 9 V
L R
PBmode
PBout
Crosstalk (dB)
–20
–40
NR-OFF
–60
NR-B
–80
–100
20
NR-C
50
100
200
500
1k
2k
5k
10 k
20 k
5k
10 k
20 k
Frequency (Hz)
Crosstalk vs. Frequency (9)
0
HA12173
VCC = 9 V
R L
PBmode
PBout
Crosstalk (dB)
–20
–40
NR-OFF
–60
NR-B
–80
NR-C
–100
20
50
100
200
500
1k
2k
Frequency (Hz)
Rev.1, Nov. 1992, page 37 of 66
HA12173 Series
Ripple Rejection Ratio vs. Frequency
0
HA12173
Ripple Rejection Ratio R.R.R. (dB)
PBmode
PBout
–20
NR-C
–40
NR-OFF
–60
NR-B
–80
–100
20
50
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
EQ-AMP. Gain vs. Frequency
70
HA12173/174/175/177
VCC = 9 V
Gain (dB)
60
50
40
120 µ
70 µ
30
20
20
50
100 200
500
1k
2k
Frequency (Hz)
Rev.1, Nov. 1992, page 38 of 66
5k
10 k 20 k
50 k 100 k
HA12173 Series
EQOUT Maximum Output Level vs.
Supply Voltage
Maximum Output Voltage Vo max (dB)
40
HA12173/174/175/177
EQin EQout
0 dB = 60 mVrms (EQout)
f = 1 kHz
T.H.D. = 1%
35
30
25
6
8
10
12
14
16
Supply Voltage VCC (V)
Signal to Noise Ratio vs. Supply Voltage
65
HA12173
NR-C(70µ)
NR-C(120µ)
Total Harmonic Distortion vs.
Supply Voltage
HA12173
Tortal Harmonic Distortion (%)
Signal to Noise Ratio S/N (dB)
1.0
60
NR-B(70µ)
NR-B(120µ)
NR-OFF(70µ)
NR-OFF(120µ)
55
PBmode
PBout
DIN-AUDIO
f = 1 kHz
0 dB = 300 mVrms
f = 1 kHz
Vin = +6 dB
EQin PBout
NR-C (70µ, 120µ)
NR-OFF (120µ)
NR-OFF (70µ)
0.1
NR-B (120µ)
NR-B (70µ)
0.01
50
6
8
10
12
14
Supply Voltage VCC (V)
16
6
8
10
12
14
16
Supply Voltage VCC (V)
Rev.1, Nov. 1992, page 39 of 66
HA12173 Series
EQOUT, PBOUT T.H.D. vs. Output Voltage
(EQin EQOUT, PBOUT)
EQOUT, PBOUT T.H.D. (%)
5
: PBmode PBout NR-OFF
: PBmode PBout NR-B
: PBmode PBout NR-C
: PBmode PBout NR-OFF
: PBmode PBout NR-B
: PBmode PBout NR-C
1:
—
—
EQout
—
—
2:
EQout
10
120µ
120µ
120µ
70µ
70µ
70µ
120µ
70µ
0 dB =
300 mVrms
(PBout)
1
2
1
2
2
1
1
2
1
2
0.1
1
2
1
2
1
2
1
2
1
2
1
2
HA12173
–10
1
2
VCC = 9 V
f = 1kHz
0.01
–20
0 dB =
60 mVrms
(EQout)
0
10
20
30
Output Voltage (dB)
Total Harmonic Distortion vs. Frequency
0.5
Total Harmonic Distortion (%)
HA12173
V CC = 9 V
EQin PBout
PBmode
0.2
0.1
NR-OFF (120µ)
NR-OFF (70µ)
0.05
NR-ON (120µ)
NR-ON (70µ)
0.02
0.01
20
50
100
200
500
1k
Frequency (Hz)
Rev.1, Nov. 1992, page 40 of 66
2k
5k
10 k
20 k
HA12173 Series
MS-AMP. Gain vs. Frequency
50
HA12173/174/175/177
MAOUTout
40
Normal
30
MAOUTout
20
FF or REV
10
MSIout
0
20
50
100 200
500
1k
2k
5 k 10 k 20 k
50 k 100 k
Frequency (Hz)
MS Sensing Level vs. Frequency
15
HA12173/174/175/177
5
MS Sensing Level (dB)
Gain (dB)
MSIout
–5
–15
FF or REW
–25
Normal
–35
10
20
50
100 200
500
1k
2k
5 k 10 k 20 k
50 k 100 k
Frequency (Hz)
Rev.1, Nov. 1992, page 41 of 66
HA12173 Series
Signal Sensing Time vs. Resistance
Signal Sensing Time (ms)
500
HA12173/174/175/177
V CC = 9 V
f = 5 kHz
TAI 41 MSout 21
200
REPmode
: 0 dB
: –20 dB
0 dB : 300 mVrms
100
50
PBout
20
VCC 22
C13
0.33 m
MSout
+
R24
MS DET 24
10
50 k
100 k
200 k
500 k
1M
Resistance R24 (W)
Signal Sensing Time vs. Capacitance
50
Signal Sensing Time (ms)
20
HA12173/174/175/177
V CC = 9 V
f = 5 kHz
TAI 41
MSout 21
REPmode
10
5
2
: 0 dB
: –20 dB
: –30 dB
0 dB = 300 mVrms
PBout
1.0
0.5
0.2
0.01
MSout
22
C13
24
+
0.1
Capacitance C13 (mF)
Rev.1, Nov. 1992, page 42 of 66
R24
330 k
0.5
HA12173 Series
HA12174
TAlin Input Amp. Gain vs. Frequency
26
HA12174
PBout-OFF
22
Gain (dB)
RECout-OFF/B/C
18
14
VCC = 9 V
PBmode
10
6
20
100
1k
10 k
100 k
Frequency (Hz)
RAlin Input Amp. Gain vs. Frequency
26
HA12174
22
Gain (dB)
PBout-OFF/B/C
18
RECout-OFF
14
VCC = 9 V
10
RECmode
6
20
100
1k
10 k
100 k
Frequency (Hz)
Rev.1, Nov. 1992, page 43 of 66
HA12173 Series
Encode Boost vs. Frequency (1)
24
HA12174
21
Vin = –60 dB
NR-C
VCC = 8 V, 9 V, 16 V
16 V
18
Encode Boost (dB)
15
–40 dB
8 V, 9 V
12
–30 dB
9
6
3
–20 dB
0
–10 dB
–3
0 dB
–6
100
300
1k
3k
10 k 15 k
Frequency (Hz)
Encode Boost vs. Frequency (2)
10.8
HA12174
9.6
Vin = –40 dB
NR-B
VCC = 8 V, 9 V, 16 V
8.4
–30 dB
Encode Boost (dB)
7.2
6.0
16 V
4.8
3.6
8 V, 9 V
–20 dB
2.4
–10 dB
1.2
0
–1.2
100
0 dB
300
1k
3k
Frequency (Hz)
Rev.1, Nov. 1992, page 44 of 66
10 k
20 k
HA12173 Series
Decode Cut vs. Frequency (1)
6
HA12174
3
Vin = 0 dB
NR-C
VCC = 8 V, 9 V, 16 V
–10 dB
0
–20 dB
Decode Cut (dB)
–3
–6
–30 dB
8 V, 9 V
–9
–12
–40 dB
16 V
–15
–18
–60 dB
–21
–24
100
300
1k
3k
10 k 15 k
Frequency (Hz)
Decode Cut vs. Frequency (2)
1.2
HA12174
Vin = 0 dB
0
–10 dB
–1.2
Decode Cut (dB)
–2.4
–20 dB
8 V, 9 V
–3.6
–4.8
16 V
–6.0
–30 dB
–7.2
–8.4
–9.6
–10.8
100
NR-B
VCC = 8 V, 9 V, 16 V
300
–40 dB
1k
3k
10 k
20 k
Frequency (Hz)
Rev.1, Nov. 1992, page 45 of 66
HA12173 Series
Maximum Output Level vs.
Supply Voltage (1)
Maximum Output Level vs.
Supply Voltage (2)
25
HA12174
T.H.D. = 1 %
0 dB = 450 mVrms
f = 1 kHz
RAIin
PBmode
PBout
Maximum Output Level Vo max (dB)
Maximum Output Level Vo max (dB)
25
20
NR-B,NB-OFF
NR-C
15
10
T.H.D. = 1 %
0 dB = 300 mVrms
f = 1 kHz
RAIin
RECmode
RECout
20
NR-B,NB-OFF
NR-C
15
10
6
8
10
12
14
16
6
8
10
12
14
16
Supply Voltage VCC (V)
Supply Voltage VCC (V)
Signal to Noise Ratio vs. Supply Voltage (1)
Signal to Noise Ratio vs. Supply Voltage (2)
100
90
HA12174
f = 1 kHz
CCIR/ARM
PBmode
PBout
HA12174
NR-OFF
Signal to Noise Ratio S/N (dB)
Signal to Noise Ratio S/N (dB)
HA12174
NR-C
NR-B
90
NR-OFF
80
f = 1 kHz
CCIR/ARM
RECmode
RECout
80
NR-B
70
NR-C
70
60
6
8
10
12
14
Supply Voltage VCC (V)
Rev.1, Nov. 1992, page 46 of 66
16
6
8
10
12
14
Supply Voltage VCC (V)
16
HA12173 Series
Total Harmonic Distortion vs. Output Level (1)
5
Total Harmonic Distortion T.H.D. (%)
HA12174
VCC = 9 V
0 dB = 450 mVrms
RAIin
PBmode
PBout
NR-OFF
2
1.0
0.5
0.2
f = 100 Hz
10 kHz
1 kHz
0.1
0.05
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (2)
Total Harmonic Distortion T.H.D. (%)
5
2
1.0
HA12174
V CC = 9 V
0 dB = 450 mVrms
RAIin
PBmode
PBout
NR-B
0.5
0.2
0.1
f = 100 Hz
1 kHz
10 kHz
0.05
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Rev.1, Nov. 1992, page 47 of 66
HA12173 Series
Total Harmonic Distortion vs. Output Level (3)
5
Total Harmonic Distortion T.H.D. (%)
HA12174
VCC = 9 V
0 dB = 450 dB
RAIin
PBmode
PBout
NR-C
2
1.0
0.5
f = 100 Hz
0.2
0.1
10 kHz
0.05
1 kHz
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (4)
Total Harmonic Distortion T.H.D. (%)
5
2
1.0
HA12174
VCC = 9 V
0 dB = 300 mVrms
RAIin
RECmode
RECout
NR-OFF
0.5
0.2
0.1
f = 100 Hz
10 kHz
0.05
0.02
0.01
–15
1 kHz
–10
–5
0
5
10
Output Level Vout (dB)
Rev.1, Nov. 1992, page 48 of 66
15
20
HA12173 Series
Total Harmonic Distortion vs. Output Level (5)
Total Harmonic Distortion T.H.D. (%)
5
2
1.0
HA12174
VCC = 9 V
0 dB = 300 mVrms
RAIin
RECmode
RECout
NR-B
0.5
0.2
f = 100 Hz
1 kHz
10 kHz
0.1
0.05
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (6)
Total Harmonic Distortion T.H.D. (%)
5
2
1.0
0.5
HA12174
VCC = 9 V
0 dB = 300 mVrms
RAIin
RECmode
RECout
NR-C
f = 100 Hz
0.2
10 kHz
0.1
1 kHz
0.05
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Rev.1, Nov. 1992, page 49 of 66
HA12173 Series
Ripple Rejection Ratio vs. Frequency
0
Ripple Rejection Ratio R.R.R. (dB)
HA12174
PBmode
PBout
–20
NR-C
–40
NR-OFF
NR-B
–60
–80
–100
20
50
100
200
500
1k
2k
5k
Frequency (Hz)
HA12175
TAlin Input Amp. Gain vs. Frequency
28
HA12175
PBout-OFF
Gain (dB)
24
RECout-OFF/B/C
20
16
V CC = 12 V
PBmode
12
8
20
100
1k
Frequency (Hz)
Rev.1, Nov. 1992, page 50 of 66
10 k
100 k
10 k
20 k
HA12173 Series
RAlin Input Amp. Gain vs. Frequency
28
HA12175
Gain (dB)
24
PBout-OFF/B/C
20
RECout-OFF
16
VCC = 12 V
RECmode
12
8
20
100
1k
10 k
100 k
Frequency (Hz)
Encode Boost vs. Frequency (1)
24
HA12175
21
Vin = –60 dB
NR-C
VCC = 9.5 V, 12 V, 16V
16 V
18
Encode Boost (dB)
15
–40 dB
9.5 V, 12 V
12
–30 dB
9
6
3
–20 dB
0
–10 dB
–3
0 dB
–6
100
300
1k
3k
10k 15k
Frequency (Hz)
Rev.1, Nov. 1992, page 51 of 66
HA12173 Series
Encode Boost vs. Frequency (2)
10.8
HA12175
9.6
Vin = –40 dB
NR-B
VCC = 9.5 V, 12 V, 16 V
8.4
–30 dB
Encode Boost (dB)
7.2
6.0
16 V
4.8
3.6
–20 dB
9.5 V, 12 V
2.4
–10 dB
1.2
0
0 dB
–1.2
100
300
1k
3k
10k
20k
Frequency (Hz)
Decode Cut vs. Frequency (1)
6
HA12175
3
Vin = 0 dB
NR-C
VCC = 9.5 V, 12 V, 16 V
–10 dB
0
–20 dB
Decode Cut (dB)
–3
–6
–30 dB
16 V
–9
–12
–40 dB
9.5 V, 12V
–15
–18
–60 dB
–21
–24
100
300
1k
Frequency (Hz)
Rev.1, Nov. 1992, page 52 of 66
3k
10 k 15 k
HA12173 Series
Decode Cut vs. Frequency (2)
1.2
HA12175
Vin = 0 dB
0
–10 dB
–1.2
Decode Cut (dB)
–2.4
–20 dB
9.5 V, 12 V
–3.6
–4.8
16 V
–6.0
–30 dB
–7.2
–8.4
NR-B
VCC = 9.5 V, 12 V, 16 V
–9.6
–10.8
100
–40 dB
300
1k
3k
10 k
20 k
Frequency (Hz)
Maximum Output Level vs.
Supply Voltage (1)
Maximum Output Level vs.
Supply Voltage (2)
25
25
HA12175
T.H.D. = 1 %
0 dB = 580 mVrms
f = 1 kHz
RAIin
PBmode
PBout
20
Maximum Output Level Vo max (dB)
Maximum Output Level Vo max (dB)
HA12175
FF
-O
R
,N
-B
R
-C
N
NR
15
10
T.H.D. = 1 %
0 dB = 300 mVrms
f = 1 kHz
RAIin
RECmode
RECout
20
F
OF
,
-B
NR
NR
-C
NR
15
10
8
10
12
14
Supply Voltage VCC (V)
16
8
10
12
14
16
Supply Voltage VCC (V)
Rev.1, Nov. 1992, page 53 of 66
HA12173 Series
Signal to Noise Ratio vs.
Supply Voltage (2)
Signal to Noise Ratio vs.
Supply Voltage (1)
90
HA12175
HA12175
f = 1 kHz
CCIR/ARM
PBmode
PBout
NR-OFF
Signal to Noise Ratio S/N (dB)
Signal to Noise Ratio S/N (dB)
100
NR-C
NR-B
90
NR-OFF
80
f = 1 kHz
CCIR/ARM
RECmode
RECout
80
NR-B
70
NR-C
70
60
8
10
12
14
16
8
Supply Voltage VCC (V)
10
12
Total Harmonic Distortion vs. Output Level (1)
5
Total Harmonic Distortion T.H.D. (%)
HA12175
2
1.0
VCC = 12 V
0 dB = 580 mVrms
RAIin
PBmode
PBout
NR-OFF
0.5
0.2
f = 10 kHz
0.1
100 Hz
0.05
1 kHz
0.02
0.01
–15
–10
–5
0
5
10
Output Level Vout (dB)
Rev.1, Nov. 1992, page 54 of 66
14
Supply Voltage VCC (V)
15
20
16
HA12173 Series
Total Harmonic Distortion vs. Output Level (2)
Total Harmonic Distortion T.H.D. (%)
5
2
1.0
HA12175
VCC = 12 V
0 dB = 580 mVrms
RAIin
PBmode
PBout
NR-B
0.5
0.2
0.1
0.05
f = 100 Hz
10 kHz
0.02
1 kHz
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (3)
Total Harmonic Distortion T.H.D. (%)
5
HA12175
VCC = 12 V
0 dB = 580 mVrms
2 RAIin
PBmode
1.0 PBout
NR-C
0.5
f = 100 Hz
0.2
0.1
10 kHz
1 kHz
0.05
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Rev.1, Nov. 1992, page 55 of 66
HA12173 Series
Total Harmonic Distortion vs. Output Level (4)
Total Harmonic Distortion T.H.D. (%)
5
HA12175
VCC = 12 V
0 dB = 300 mVrms
2 RAIin
RECmode
1.0 RECout
NR-OFF
0.5
0.2
0.1
f = 100 Hz
0.05
10 kHz
0.02
1 kHz
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (5)
5
Total Harmonic Distortion T.H.D. (%)
HA12175
2
1.0
VCC = 12 V
0 dB = 300 mVrms
RAIin
RECmode
RECout
NR-B
0.5
0.2
f = 100 Hz
1 kHz
10 kHz
0.1
0.05
0.02
0.01
–15
–10
–5
0
5
10
Output Level Vout (dB)
Rev.1, Nov. 1992, page 56 of 66
15
20
HA12173 Series
Total Harmonic Distortion vs. Output Level (6)
Total Harmonic Distortion T.H.D. (%)
5
2
1.0
HA12175
VCC = 12 V
0 dB = 300 mVrms
RAIin
RECmode
RECout
NR-C
f = 100 Hz
0.5
10 kHz
0.2
0.1
1 kHz
0.05
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Ripple Rejection Ratio vs. Frequency
0
Ripple Rejection Ratio R.R.R. (dB)
HA12175
PBmode
PBout
–20
NR-C
–40
NR-OFF
NR-B
–60
–80
–100
20
50
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Rev.1, Nov. 1992, page 57 of 66
HA12173 Series
HA12177
TAlin Input Amp. Gain vs. Frequency
30
HA12177
PBout-OFF
Gain (dB)
26
22
RECout-OFF/B/C
18
14
V CC = 14 V
PBmode
10
20
100
1k
10 k
100 k
Frequency (Hz)
RAlin Input Amp. Gain vs. Frequency
30
HA12177
Gain (dB)
26
PBout-OFF/B/C
22
18
RECout-OFF
14
V CC = 14 V
RECmode
10
20
100
1k
Frequency (Hz)
Rev.1, Nov. 1992, page 58 of 66
10 k
100 k
HA12173 Series
Encode Boost vs. Frequency (1)
24
HA12177
21
Vin = –60 dB
NR-C
VCC = 12 V, 14 V, 16 V
18
Encode Boost (dB)
15
–40 dB
12
16 V
–30 dB
9
12 V, 14 V
6
3
–20 dB
0
–10 dB
–3
0 dB
–6
100
300
1k
3k
10 k 15 k
Frequency (Hz)
Encode Boost vs. Frequency (2)
10.8
HA12177
9.6
Vin = –40 dB
NR-B
VCC = 12 V, 14 V, 16 V
8.4
–30 dB
Encode Boost (dB)
7.2
6.0
16 V
4.8
3.6
12 V, 14 V
–20 dB
2.4
–10 dB
1.2
0
–1.2
100
0 dB
300
1k
3k
10 k
20 k
Frequency (Hz)
Rev.1, Nov. 1992, page 59 of 66
HA12173 Series
Decode Cut vs. Frequency (1)
6
HA12177
3
Vin = 0 dB
NR-C
VCC = 12 V, 14 V, 16 V
–10 dB
0
–20 dB
Decode Cut (dB)
–3
–6
–30 dB
12 V, 14 V
–9
–12
–40 dB
16 V
–15
–18
–60 dB
–21
–24
100
300
1k
3k
10 k 15 k
Frequency (Hz)
Decode Cut vs. Frequency (2)
1.2
HA12177
Vin = 0 dB
0
–10 dB
–1.2
Decode Cut (dB)
–2.4
–20 dB
12 V, 14 V
–3.6
–4.8
16 V
–6.0
–30 dB
–7.2
–8.4
–9.6
NR-B
VCC = 12 V, 14 V, 16 V
–10.8
100
300
–40 dB
1k
3k
Frequency (Hz)
Rev.1, Nov. 1992, page 60 of 66
10 k
20 k
HA12173 Series
Maximum Output Level vs.
Supply Voltage (2)
Maximum Output Level vs.
Supply Voltage (1)
20
20
HA12177
T.H.D. = 1%
0 dB = 775 mVrms
f = 1 kHz
RAIin
PBmode
PBout
Maximum Output Level Vo max (dB)
Maximum Output Level Vo max (dB)
HA12177
F
OF
B,
15
NR
NR
NR-C
10
10
12
14
T.H.D. = 1%
0 dB = 300 mVrms
f = 1 kHz
RAIin
RECmode
RECout
,
-B
Supply Voltage VCC (V)
Signal to Noise Ratio vs. Supply Voltage (1)
Signal to Noise Ratio vs. Supply Voltage (2)
NR-OFF
NR-C
Signal to Noise Ratio S/N (dB)
Signal to Noise Ratio S/N (dB)
16
HA12177
NR-B
NR-OFF
80
12
14
90
90
70
10
12
-C
NR
Supply Voltage VCC (V)
100
HA12177
f = 1 kHz
CCIR/ARM
PBmode
PBout
NR
NR
10
10
16
F
OF
15
14
Supply Voltage VCC (V)
16
80
f = 1 kHz
CCIR/ARM
RECmode
RECout
NR-B
70
NR-C
60
10
12
14
16
Supply Voltage VCC (V)
Rev.1, Nov. 1992, page 61 of 66
HA12173 Series
Total Harmonic Distortion vs. Output Level (1)
5
HA12177
VCC = 14 V
0 dB = 775 mVrms
RAIin
PBmode
PBout
NR-OFF
Total Harmonic Distortion T.H.D. (%)
2
1.0
0.5
0.2
f = 10 kHz
0.1
1 kHz, 100 Hz
0.05
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (2)
5
Total Harmonic Distortion T.H.D. (%)
HA12177
2
1.0
VCC = 14 V
0 dB = 775 mVrms
RAIin
PBmode
PBout
NR-B
0.5
f = 100 Hz
0.2
1 kHz
10 kHz
0.1
0.05
0.02
0.01
–15
–10
–5
0
5
10
Output Level Vout (dB)
Rev.1, Nov. 1992, page 62 of 66
15
20
HA12173 Series
Total Harmonic Distortion vs. Output Level (3)
Total Harmonic Distortion T.H.D. (%)
5
HA12177
VCC = 14 V
0 dB = 775 mVrms
2
RAIin
PBmode
1.0 PBout
NR-C
0.5
f = 100 Hz
0.2
0.1
1 kHz
0.05
10 kHz
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (4)
5
HA12177
Total Harmonic Distortion T.H.D. (%)
2
1.0
VCC = 14 V
0 dB = 300 mVrms
RAIin
RECmode
RECout
NR-OFF
0.5
0.2
0.1
0.05
f = 100 Hz
10 kHz
0.02
1 kHz
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Rev.1, Nov. 1992, page 63 of 66
HA12173 Series
Total Harmonic Distortion vs. Output Level (5)
5
HA12177
Total Harmonic Distortion T.H.D. (%)
2
1.0
VCC = 14 V
0 dB = 300 mVrms
RAIin
RECmode
RECout
NR-B
0.5
0.2
0.1
f = 1 kHz
100 Hz
0.05
10 kHz
0.02
0.01
–15
–10
–5
0
5
10
15
20
Output Level Vout (dB)
Total Harmonic Distortion vs. Output Level (6)
Total Harmonic Distortion T.H.D. (%)
5
HA12177
VCC = 14 V
2 0 dB = 300 mVrms
RAIin
RECmode
1.0 RECout
NR-C
0.5
f = 100 Hz
0.2
1 kHz
0.1
10 kHz
0.05
0.02
0.01
–15
–10
–5
0
5
10
Output Level Vout (dB)
Rev.1, Nov. 1992, page 64 of 66
15
20
HA12173 Series
Ripple Rejection Ratio vs. Frequency
0
Ripple Rejection Ratio R.R.R. (dB)
HA12177
PBmode
PBout
–20
NR-C
–40
NR-OFF
NR-B
–60
–80
–100
20
50
100
200
500
1k
2k
5k
10 k
20 k
Frequency (Hz)
Rev.1, Nov. 1992, page 65 of 66
HA12173 Series
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s patent,
copyright, trademark, or other intellectual property rights for information contained in this document.
Hitachi bears no responsibility for problems that may arise with third party’s rights, including
intellectual property rights, in connection with use of the information contained in this document.
2. Products and product specifications may be subject to change without notice. Confirm that you have
received the latest product standards or specifications before final design, purchase or use.
3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However,
contact Hitachi’s sales office before using the product in an application that demands especially high
quality and reliability or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation,
traffic, safety equipment or medical equipment for life support.
4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly
for maximum rating, operating supply voltage range, heat radiation characteristics, installation
conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used
beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable
failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other
consequential damage due to operation of the Hitachi product.
5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without
written approval from Hitachi.
7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi semiconductor
products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits.
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109
URL
NorthAmerica
: http://semiconductor.hitachi.com/
Europe
: http://www.hitachi-eu.com/hel/ecg
Asia
: http://sicapac.hitachi-asia.com
Japan
: http://www.hitachi.co.jp/Sicd/indx.htm
For further information write to:
Hitachi Semiconductor
(America) Inc.
179 East Tasman Drive,
San Jose,CA 95134
Tel: <1> (408) 433-1990
Fax: <1>(408) 433-0223
Hitachi Europe GmbH
Electronic Components Group
Dornacher Straße 3
D-85622 Feldkirchen, Munich
Germany
Tel: <49> (89) 9 9180-0
Fax: <49> (89) 9 29 30 00
Hitachi Europe Ltd.
Electronic Components Group.
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: <44> (1628) 585000
Fax: <44> (1628) 585160
Hitachi Asia Ltd.
Hitachi Tower
16 Collyer Quay #20-00,
Singapore 049318
Tel : <65>-538-6533/538-8577
Fax : <65>-538-6933/538-3877
URL : http://www.hitachi.com.sg
Hitachi Asia Ltd.
(Taipei Branch Office)
4/F, No. 167, Tun Hwa North Road,
Hung-Kuo Building,
Taipei (105), Taiwan
Tel : <886>-(2)-2718-3666
Fax : <886>-(2)-2718-8180
Telex : 23222 HAS-TP
URL : http://www.hitachi.com.tw
Hitachi Asia (Hong Kong) Ltd.
Group III (Electronic Components)
7/F., North Tower,
World Finance Centre,
Harbour City, Canton Road
Tsim Sha Tsui, Kowloon,
Hong Kong
Tel : <852>-(2)-735-9218
Fax : <852>-(2)-730-0281
URL : http://www.hitachi.com.hk
Copyright  Hitachi, Ltd., 2000. All rights reserved. Printed in Japan.
Colophon 2.0
Rev.1, Nov. 1992, page 66 of 66