PD- 91809B IRFB11N50A SMPS MOSFET HEXFET® Power MOSFET Applications l Switch Mode Power Supply ( SMPS ) l Uninterruptable Power Supply l High speed power switching Benefits l Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current VDSS Rds(on) max ID 0.52Ω 11A 500V TO-220AB G D S Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw Max. 11 7.0 44 170 1.3 ± 30 6.9 -55 to + 150 Units A W W/°C V V/ns °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Applicable Off Line SMPS Topologies: l l l Two Transistor Forward Half & Full Bridge Power Factor Correction Boost Notes through www.irf.com are on page 8 1 3/30/99 IRFB11N5OA Static @ TJ = 25°C (unless otherwise specified) V(BR)DSS RDS(on) VGS(th) Parameter Drain-to-Source Breakdown Voltage Static Drain-to-Source On-Resistance Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 500 ––– 2.0 ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA 0.52 Ω VGS = 10V, ID = 6.6A 4.0 V VDS = VGS, ID = 250µA 25 VDS = 500V, VGS = 0V µA 250 VDS = 400V, VGS = 0V, TJ = 150°C 100 VGS = 30V nA -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 6.1 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 14 35 32 28 1423 208 8.1 2000 55 97 Max. Units Conditions ––– S VDS = 50V, ID = 6.6A 52 ID = 11A 13 nC VDS = 400V 18 VGS = 10V, See Fig. 6 and 13 ––– VDD = 250V ––– ID = 11A ns ––– RG = 9.1Ω ––– RD = 22Ω,See Fig. 10 ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 400V Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 275 11 17 mJ A mJ Typ. Max. Units ––– 0.50 ––– 0.75 ––– 62 °C/W Thermal Resistance Parameter RθJC RθCS RθJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Diode Characteristics IS ISM VSD trr Qrr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol 11 ––– ––– showing the A G integral reverse ––– ––– 44 S p-n junction diode. ––– ––– 1.5 V TJ = 25°C, IS = 11A, VGS = 0V ––– 510 770 ns TJ = 25°C, IF = 11A ––– 3.4 5.1 µC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFB11N50A 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 10 1 10 4.5V 20µs PULSE WIDTH 0.1 0.1 1 10 1 1 100 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 100 10 TJ = 150 ° C TJ = 25 ° C 1 V DS = 50V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 Fig 3. Typical Transfer Characteristics www.irf.com 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics VGS , Gate-to-Source Voltage (V) 10 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 0.1 4.0 20µs PULSE WIDTH TJ = 150 °C 4.5V TJ = 25 °C 9.0 ID = 11A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFB11N5OA V GS C is s C rss C oss 2000 = = = = 20 0V, f = 1M Hz C g s + C g d , Cd s S H O R T E D C gd C ds + C gd VGS , Gate-to-Source Voltage (V) 2400 C , C a pa c itan c e (p F ) C is s 1600 C oss 1200 800 C rs s 400 0 10 100 VDS = 400V VDS = 250V VDS = 100V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 A 1 ID = 11A 6.6A 0 1000 10 20 30 40 50 Q G , Total Gate Charge (nC) V D S , D rain-to-S ource V oltage (V ) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100 1000 100 ID , Drain Current (A) ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 10 TJ = 150 ° C 1 TJ = 25 ° C 0.1 0.0 0.8 1.2 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10 100us 1ms 1 V GS = 0 V 0.4 10us 1.6 0.1 10ms TC = 25 ° C TJ = 150 ° C Single Pulse 10 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFB11N50A 12 RD VDS VGS 10 D.U.T. I D , Drain Current (A) RG + -VDD 8 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 6 4 Fig 10a. Switching Time Test Circuit VDS 2 90% 0 25 50 75 100 TC , Case Temperature 125 150 ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 P DM 0.05 t1 0.02 0.01 0.01 0.00001 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFB11N5OA 600 D R IV E R L VDS D .U .T RG + V - DD IA S 20V 0 .0 1 Ω tp Fig 12a. Unclamped Inductive Test Circuit V (B R )D SS tp A EAS , Single Pulse Avalanche Energy (mJ) 1 5V TOP 500 BOTTOM ID 4.9A 7.0A 11A 400 300 200 100 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) IAS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V 660 QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF V D S a v , Avalanche V oltage (V) QGS 640 620 600 .3µF D.U.T. + V - DS A 1.0 2.0 3.0 4.0 5.0 6.0 7.0 I av , A valanche C urrent (A ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 580 0.0 VGS Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current www.irf.com IRFB11N50A Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + • • • • RG dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. D= Period + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS www.irf.com 7 IRFB11N5OA Package Outline TO-220AB Outline Dimensions are shown in millimeters (inches) 2 .8 7 (.1 1 3 ) 2 .6 2 (.1 0 3 ) 1 0 .5 4 (.4 1 5 ) 1 0 .2 9 (.4 0 5 ) - B - 3 .7 8 ( .1 4 9 ) 3 .5 4 ( .1 3 9 ) 4 .6 9 ( .1 8 5 ) 4 .2 0 ( .1 6 5 ) -A - 1 .3 2 (. 0 5 2 ) 1 .2 2 (. 0 4 8 ) 6 .4 7 (.2 5 5 ) 6 .1 0 (.2 4 0 ) 4 1 5 .2 4 ( .6 0 0 ) 1 4 .8 4 ( .5 8 4 ) 1 .1 5 (.0 4 5 ) M IN 1 2 1 4 .0 9 ( .5 5 5 ) 1 3 .4 7 ( .5 3 0 ) 4 .0 6 (.1 6 0 ) 3 .5 5 (.1 4 0 ) 3X 3X L E A D A S S IG N M E N T S 1 - G ATE 2 - D R A IN 3 - S OU RC E 4 - D R A IN 3 1 .4 0 ( .0 5 5 ) 1 .1 5 ( .0 4 5 ) 0 .9 3 (.0 3 7 ) 0 .6 9 (.0 2 7 ) 0 .3 6 (.0 1 4 ) 3X M B A M 0 .5 5 (.0 2 2 ) 0 .4 6 (.0 1 8 ) 2 .9 2 (.1 1 5 ) 2 .6 4 (.1 0 4 ) 2 .5 4 (.1 0 0 ) 2X N OTE S : 1 D IM E N S IO N IN G & T O L E R A N C IN G P E R A N S I Y 1 4 .5 M , 1 9 8 2 . 3 O U T L IN E C O N F O R M S T O J E D E C O U T L IN E T O -2 2 0 A B . 2 C O N T R O L L IN G D IM E N S IO N : IN C H 4 H E A T S IN K & L E A D M E A S U R E M E N T S D O N O T IN C L U D E B U R R S . Part Marking Information TO-220AB E XA M P LE : TH IS IS A N IR F 1 0 1 0 W ITH A S S E M B L Y L OT C O D E 9 B 1 M A IN T E R N A T IO N A L R E C TIFIE R LOGO P A RT NU M B ER IR F 1 0 10 9246 9B 1M A SS E MB LY LOT COD E D A TE C O D E (Y Y W W ) YY = YE A R W W = W E EK Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 4.5mH RG = 25Ω, IAS = 11A. (See Figure 12) Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS ISD ≤ 11A, di/dt ≤ 140A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 221 8371 IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936 http://www.irf.com/ Data and specifications subject to change without notice 3/99 8 www.irf.com