MITSUBISHI BCR12PM

MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR12PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
OUTLINE DRAWING
BCR12PM
Dimensions
in mm
10.5 MAX
2.8
8.5
17
5.0
1.2
5.2
TYPE
NAME
φ3.2±0.2
VOLTAGE
CLASS
13.5 MIN
3.6
1.3 MAX
0.8
2.54
IT (RMS) ...................................................................... 12A
VDRM ..............................................................400V/600V
IFGT !, IRGT !, IRGT # ......................... 30mA (20mA) ✽5
Viso ........................................................................ 1500V
UL Recognized: File No. E80276
123
0.5
4.5
•
•
•
•
•
2.54
2.6
∗ Measurement point of
case temperature
2
1
1 T1 TERMINAL
2 T2 TERMINAL
3 3 GATE TERMINAL
TO-220F
APPLICATION
Switching mode power supply, light dimmer, electric flasher unit, hair driver,
control of household equipment such as TV sets · stereo · refrigerator · washing machine · infrared
kotatsu · carpet, solenoid drivers, small motor control,
copying machine, electric tool
MAXIMUM RATINGS
Symbol
Voltage class
Parameter
8
12
Unit
VDRM
Repetitive peak off-state voltage ✽1
400
600
V
VDSM
Non-repetitive peak off-state voltage ✽1
500
720
V
Symbol
Conditions
Parameter
IT (RMS)
RMS on-state current
Commercial frequency, sine full wave 360° conduction, Tc =74°C
ITSM
Surge on-state current
60Hz sinewave 1 full cycle, peak value, non-repetitive
I2t
I2t
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
PGM
Peak gate power dissipation
PG (AV)
Average gate power dissipation
VGM
for fusing
Ratings
Unit
12
A
120
A
60
A2s
5
W
0.5
W
Peak gate voltage
10
V
IGM
Peak gate current
2
Tj
Junction temperature
Storage temperature
Tstg
—
Viso
Weight
Typical value
Isolation voltage
Ta=25°C, AC 1 minute, T 1 · T2 · G terminal to case
A
–40 ~ +125
°C
–40 ~ +125
°C
2.0
g
1500
V
✽1. Gate open.
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR12PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Symbol
Limits
Test conditions
Parameter
Min.
Typ.
Max.
Unit
IDRM
Repetitive peak off-state current
Tj=125°C, V DRM applied
—
—
2.0
mA
VTM
On-state voltage
Tc=25°C, ITM=20A, Instantaneous measurement
—
—
1.6
V
—
—
1.5
V
—
—
1.5
V
1.5
!
VFGT !
VRGT !
Gate trigger voltage ✽2
@
Tj=25°C, VD =6V, RL=6Ω, RG=330Ω
VRGT #
#
—
—
IFGT !
!
—
—
30 ✽5
mA
—
—
30 ✽5
mA
—
—
30 ✽5
mA
0.2
—
—
V
—
—
3.5
°C/ W
✽3
—
—
V/µs
IRGT !
Gate trigger current ✽2
@
Tj=25°C, VD =6V, RL=6Ω, RG=330Ω
#
IRGT #
VGD
Gate non-trigger voltage
Tj=125°C, VD=1/2VDRM
R th (j-c)
Thermal resistance
Junction to case ✽4
(dv/dt) c
Critical-rate of rise of off-state
commutating voltage
V
✽2. Measurement using the gate trigger characteristics measurement circuit.
✽3. The critical-rate of rise of the off-state commutating voltage is shown in the table below.
✽4. The contact thermal resistance R th (c-f) in case of greasing is 0.5°C/W.
✽5. High sensitivity (I GT≤20mA) is also available. (IGT item 1)
Voltage
class
VDRM
(V)
8
400
(dv/dt) c
Symbol
Min.
R
—
SUPPLY
VOLTAGE
1. Junction temperature
Tj =125°C
L
10
V/µs
R
12
Commutating voltage and current waveforms
(inductive load)
Test conditions
Unit
—
2. Rate of decay of on-state commutating current
(di/dt)c=–6.0A/ms
3. Peak off-state voltage
VD =400V
600
L
TIME
MAIN CURRENT
(di/dt)c
TIME
MAIN
VOLTAGE
TIME
(dv/dt)c
10
VD
PERFORMANCE CURVES
RATED SURGE ON-STATE CURRENT
101
7
5
3
2
200
Tj = 125°C
Tj = 25°C
100
7
5
3
2
10–1
0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ON-STATE VOLTAGE (V)
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
MAXIMUM ON-STATE CHARACTERISTICS
102
7
5
3
2
180
160
140
120
100
80
60
40
20
0
100
2 3 4 5 7 101
2 3 4 5 7 102
CONDUCTION TIME
(CYCLES AT 60Hz)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR12PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
100 (%)
102
7
5
3
2 VGM = 10V
101
7
5
3
2
PGM = 5W
PG(AV) =
0.5W
IGM = 2A
VGT = 1.5V
100
7
5
3
2
VGD = 0.2V
IRGT I IFGT I, IRGT III
10–1
101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104
GATE TRIGGER CURRENT (Tj = t°C)
GATE TRIGGER CURRENT (Tj = 25°C)
GATE VOLTAGE (V)
GATE CHARACTERISTICS
103
7
5
4
3
2
TYPICAL EXAMPLE
IRGT I, IRGT III
102
7
5
4
3
2
IFGT I
101
–60 –40 –20 0 20 40 60 80 100 120 140
GATE CURRENT (mA)
JUNCTION TEMPERATURE (°C)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO CASE)
103
7
5
4
3
2
TYPICAL EXAMPLE
102
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
TRANSIENT THERMAL IMPEDANCE (°C/W)
GATE TRIGGER VOLTAGE (Tj = t°C)
GATE TRIGGER VOLTAGE (Tj = 25°C)
100 (%)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
102 2 3 5 7 103 2 3 5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
CONDUCTION TIME
(CYCLES AT 60Hz)
JUNCTION TEMPERATURE (°C)
103
7
5
3
2
NO FINS
102
7
5
3
2
101
7
5
3
2
100
7
5
3
2
10–1
101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105
CONDUCTION TIME
(CYCLES AT 60Hz)
MAXIMUM ON-STATE POWER
DISSIPATION
ON-STATE POWER DISSIPATION (W)
TRANSIENT THERMAL IMPEDANCE (°C/W)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
(JUNCTION TO AMBIENT)
16
14
12 360°
CONDUCTION
10 RESISTIVE,
INDUCTIVE
8 LOADS
6
4
2
0
0
2
4
6
8
10
12
14
16
RMS ON-STATE CURRENT (A)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR12PM
MEDIUM POWER USE
INSULATED TYPE, PLANAR PASSIVATION TYPE
CASE TEMPERATURE (°C)
160
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
140
120
100
80
60
360°
40 CONDUCTION
RESISTIVE,
20 INDUCTIVE
LOADS
0
0
2
4
6
8
10
12
14
AMBIENT TEMPERATURE (°C)
ALLOWABLE CASE TEMPERATURE
VS. RMS ON-STATE CURRENT
16
ALLOWABLE AMBIENT TEMPERATURE
VS. RMS ON-STATE CURRENT
160
ALL FINS ARE BLACK PAINTED
ALUMINUM AND GREASED
140
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
120
120 120 t2.3
100
100 100 t2.3
80
60 60 t2.3
60 NO FINS
RESISTIVE,
40 INDUCTIVE
LOADS
20 NATURAL
CONVECTION
0
0
2
4
6
40
20
HOLDING CURRENT (Tj = t°C)
HOLDING CURRENT (Tj = 25°C)
100 (%)
0
103
7
5
4
3
2
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
12
105
7 TYPICAL EXAMPLE
5
3
2
104
7
5
3
2
103
7
5
3
2
102
–60 –40 –20 0 20 40 60 80 100 120 140
RMS ON-STATE CURRENT (A)
JUNCTION TEMPERATURE (°C)
HOLDING CURRENT VS.
JUNCTION TEMPERATURE
LACHING CURRENT VS.
JUNCTION TEMPERATURE
TYPICAL EXAMPLE
102
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
JUNCTION TEMPERATURE (°C)
16
14
REPETITIVE PEAK OFF-STATE
CURRENT VS. JUNCTION
TEMPERATURE
100 (%)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
60
LACHING CURRENT (mA)
AMBIENT TEMPERATURE (°C)
80
10
RMS ON-STATE CURRENT (A)
RMS ON-STATE CURRENT (A)
ALLOWABLE AMBIENT TEMPERATURE
VS. RMS ON-STATE CURRENT
160
NATURAL CONVECTION
NO FINS
140
CURVES APPLY REGARDLESS
OF CONDUCTION ANGLE
120
RESISTIVE, INDUCTIVE LOADS
100
8
103
7
5
3
2
T2+, G–
TYPICAL
EXAMPLE
DISTRIBUTION
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
,,,,,,,,,,,
102
7
5
3
2
101
7
5
3
2
T2+, G+  TYPICAL

T2– , G–  EXAMPLE
100
–40
0
40
80
120
160
JUNCTION TEMPERATURE (°C)
Feb.1999
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR12PM
MEDIUM POWER USE
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
100 (%)
160
TYPICAL EXAMPLE
100 (%)
INSULATED TYPE, PLANAR PASSIVATION TYPE
160
TYPICAL EXAMPLE
Tj = 125°C
120
100
80
60
40
20
0
–60 –40 –20 0 20 40 60 80 100120 140
BREAKOVER VOLTAGE (dv/dt = xV/µs )
BREAKOVER VOLTAGE (dv/dt = 1V/µs )
140
120
#2
100
III QUADRANT
80
60
#1
40
20
I QUADRANT
0
101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104
RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
COMMUTATION CHARACTERISTICS
GATE TRIGGER CURRENT VS.
GATE CURRENT PULSE WIDTH
VOLTAGE WAVEFORM
3 TYPICAL
2 EXAMPLE
102 Tj = 125°C
7 IT = 4A
5 τ = 500µs
3 VD = 200V
2 f = 3Hz
t
(dv/dt)C
VD
CURRENT WAVEFORM
(di/dt)C
IT
τ
t
101
I QUADRANT
7
5
3 MINIMUM
2 CHARACIII QUADRANT
100 TERISTICS
7 VALUE
5
100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103
RATE OF DECAY OF ON-STATE
COMMUTATING CURRENT (A /ms)
100 (%)
JUNCTION TEMPERATURE (°C)
GATE TRIGGER CURRENT (tw)
GATE TRIGGER CURRENT (DC)
CRITICAL RATE OF RISE OF OFF-STATE
COMMUTATING VOLTAGE (V/µs)
BREAKOVER VOLTAGE (Tj = t°C)
BREAKOVER VOLTAGE (Tj = 25°C)
140
BREAKOVER VOLTAGE VS.
RATE OF RISE OF
OFF-STATE VOLTAGE
103
7
5
4
3
2
TYPICAL EXAMPLE
IFGT I
IRGT I
IRGT III
102
7
5
4
3
2
101 0
10
2 3 4 5 7 101
2 3 4 5 7 102
GATE CURRENT PULSE WIDTH (µs)
GATE TRIGGER CHARACTERISTICS TEST CIRCUITS
6Ω
6Ω
A
6V
A
6V
RG
V
TEST PROCEDURE 1
V
RG
TEST PROCEDURE 2
6Ω
A
6V
V
RG
TEST PROCEDURE 3
Feb.1999