To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR08AS LOW POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE BCR08AS OUTLINE DRAWING Dimensions in mm 4.4±0.1 1.6±0.2 3 3.9±0.3 2 2.5±0.1 0.8 MIN 1 1.5±0.1 0.5±0.07 0.4 +0.03 –0.05 0.4±0.07 1.5±0.1 1.5±0.1 (Back side) 2 • • • • IT (RMS) ..................................................................... 0.8A VDRM ....................................................................... 600V IFGT !, IRGT !, IRGT # .............................................. 5mA IFGT # ..................................................................... 10mA 3 1 1 T1 TERMINAL 2 T2 TERMINAL 3 GATE TERMINAL SOT-89 APPLICATION Hybrid IC, solid state relay, control of household equipment such as electric fan · washing machine, other general purpose control applications MAXIMUM RATINGS Symbol Voltage class Parameter Unit 12 (marked “BF”) VDRM Repetitive peak off-state voltage ✽1 600 V VDSM Non-repetitive peak off-state voltage ✽1 720 V Symbol Parameter Conditions IT (RMS) RMS on-state current Commercial frequency, sine full wave 360° conduction, Ta=40°C ✽3 ITSM Surge on-state current 60Hz sinewave 1 full cycle, peak value, non-repetitive I2t I2t for fusing Value corresponding to 1 cycle of half wave 60Hz, surge on-state current PGM Peak gate power dissipation PG (AV) Average gate power dissipation VGM Ratings Unit 0.8 A 8 A 0.26 A2s 1 W 0.1 W Peak gate voltage 6 V IGM Peak gate current 1 Tj Junction temperature Tstg –40 ~ +125 Storage temperature — Weight –40 ~ +125 Typical value 48 A °C °C mg ✽1. Gate open. Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR08AS LOW POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE ELECTRICAL CHARACTERISTICS Limits Symbol Parameter Test conditions Min. Typ. Max. Unit IDRM Repetitive peak off-state current Tj=125°C, VDRM applied — — 1.0 mA VTM On-state voltage Tc=25°C, ITM=1.2A, Instantaneous measurement — — 2.0 V VFGT ! ! — — 2.0 V VRGT ! @ — — 2.0 V — — 2.0 V VRGT # Gate trigger voltage ✽2 # Tj=25°C, VD=6V, RL=6Ω, RG=330Ω VFGT # $ — — 2.0 IFGT ! ! — — 5 mA — — 5 mA — — 5 mA — — 10 mA IRGT ! IRGT # @ Gate trigger current ✽2 # Tj=25°C, VD=6V, RL=6Ω, RG=330Ω $ IFGT # V VGD Gate non-trigger voltage Tj=125°C, VD=1/2VDRM 0.1 — — V Rth (j-a) Thermal resistance Junction to case ✽3 — — 65 °C/ W (dv/dt)c Critical-rate of rise of off-state commutating voltage Tj=125°C 0.5 — — V/µs ✽4 ✽2. Measurement using the gate trigger characteristics measurement circuit. ✽3. Mounted on 25mm × 25mm × t0.7mm ceramic plate with solder. ✽4. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below. Commutating voltage and current waveforms (inductive load) Test conditions SUPPLY VOLTAGE 1. Junction temperature Tj=125°C MAIN CURRENT 2. Rate of decay of on-state commutating current (di/dt)c=–0.4A/ms TIME (di/dt)c TIME MAIN VOLTAGE 3. Peak off-state voltage VD=400V TIME (dv/dt)c VD PERFORMANCE CURVES Tj = 125°C 100 7 5 4 3 2 10–1 RATED SURGE ON-STATE CURRENT 10 SURGE ON-STATE CURRENT (A) ON-STATE CURRENT (A) MAXIMUM ON-STATE CHARACTERISTICS 101 7 5 4 3 2 Tj = 25°C 0 1 2 3 4 ON-STATE VOLTAGE (V) 5 8 6 4 2 0 100 2 3 4 5 7 101 2 3 4 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR08AS LOW POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 100 (%) 102 7 5 3 2 VGM = 10V PGM = 1W 101 7 5 3 2 PG(AV) = 0.1W VGT 100 7 5 3 2 IGM = 1A IFGT I, IRGT I, IRGT III IFGT III VGD = 0.2V 10–1 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 GATE TRIGGER CURRENT (Tj = t°C) GATE TRIGGER CURRENT (Tj = 25°C) GATE VOLTAGE (V) GATE CHARACTERISTICS 103 7 5 4 3 2 TYPICAL EXAMPLE IFGT III IFGT I IRGT III IRGT I 102 7 5 4 3 2 101 –60 –40 –20 0 20 40 60 80 100 120 140 GATE CURRENT (mA) JUNCTION TEMPERATURE (°C) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS TYPICAL EXAMPLE VFGT I VFGT III 102 7 5 4 3 2 VRGT I VRGT III 101 –60 –40 –20 0 20 40 60 80 100 120 140 TRANSIENT THERMAL IMPEDANCE (°C/W) 103 7 5 4 3 2 102 7 5 3 2 JUNCTION TO AMBIENT JUNCTION TO CASE 101 7 5 3 2 100 10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) MAXIMUM ON-STATE POWER DISSIPATION ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 2.0 160 1.6 1.2 360° CONDUCTION RESISTIVE, INDUCTIVE LOADS 0.8 0.4 0 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 103 7 5 3 2 JUNCTION TEMPERATURE (°C) 0 0.4 0.8 1.2 1.6 RMS ON-STATE CURRENT (A) 2.0 CASE TEMPERATURE (°C) ON-STATE POWER DISSIPATION (W) GATE TRIGGER VOLTAGE (Tj = t°C) GATE TRIGGER VOLTAGE (Tj = 25°C) 100 (%) GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE CURVES APPLY REGARDLESS 140 OF CONDUCTION ANGLE NATURAL CONVECTION RESISTIVE, 120 INDUCTIVE 100 LOADS 80 60 40 20 0 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 RMS ON-STATE CURRENT (A) Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR08AS LOW POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE HOLDING CURRENT VS. JUNCTION TEMPERATURE HOLDING CURRENT (Tj = t°C) HOLDING CURRENT (Tj = 25°C) 100 (%) 105 7 TYPICAL EXAMPLE 5 3 2 104 7 5 3 2 103 7 5 3 2 102 –60 –40 –20 0 20 40 60 80 100 120 140 TYPICAL EXAMPLE 3 2 102 7 5 3 2 JUNCTION TEMPERATURE (°C) JUNCTION TEMPERATURE (°C) LACHING CURRENT VS. JUNCTION TEMPERATURE BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE DISTRIBUTION T2+, G– TYPICAL EXAMPLE 101 7 5 3 2 100 7 5 3 2 T2+, G+ TYPICAL T2– , G– EXAMPLE T2– , G+ 10–1 –40 0 40 80 120 100 (%) 102 7 5 3 2 103 7 5 101 –60 –40 –20 0 20 40 60 80 100 120 140 BREAKOVER VOLTAGE (Tj = t°C) BREAKOVER VOLTAGE (Tj = 25°C) LACHING CURRENT (mA) REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C) 100 (%) REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 160 160 TYPICAL EXAMPLE 140 120 100 80 60 40 20 0 –60 –40 –20 0 20 40 60 80 100120 140 JUNCTION TEMPERATURE (°C) BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 TYPICAL EXAMPLE BREAKOVER VOLTAGE (dv/dt = xV/µs ) BREAKOVER VOLTAGE (dv/dt = 1V/µs ) 140 Tj = 125°C 120 I QUADRANT 100 80 60 III QUADRANT 40 20 0 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF RISE OF OFF-STATE VOLTAGE (V/µs) CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/µs) 100 (%) JUNCTION TEMPERATURE (°C) COMMUTATION CHARACTERISTICS 101 7 5 TYPICAL EXAMPLE Tj = 125°C IT = 1A τ = 500µs VD = 200V f = 3Hz 3 2 100 7 5 3 2 III QUADRANT MINIMUM CHARACTERISTICS VALUE 10–1 10–1 2 3 I QUADRANT 5 7 100 2 3 5 7 101 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A/ms) Mar. 2002 MITSUBISHI SEMICONDUCTOR 〈TRIAC〉 BCR08AS LOW POWER USE NON-INSULATED TYPE, PLANAR PASSIVATION TYPE GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC) 100 (%) GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH 103 7 5 4 3 2 TYPICAL EXAMPLE GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6Ω 6Ω A 6V V 102 7 IRGT I IRGT III IFGT I 5 IFGT III 4 3 2 101 0 10 2 3 4 5 7 101 TEST PROCEDURE 1 6Ω 2 3 4 5 7 102 A 6V RG RG V TEST PROCEDURE 2 6Ω A 6V V RG A 6V V RG GATE CURRENT PULSE WIDTH (µs) TEST PROCEDURE 3 TEST PROCEDURE 4 Mar. 2002