RENESAS BCR08AS

To all our customers
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR08AS
LOW POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
BCR08AS
OUTLINE DRAWING
Dimensions
in mm
4.4±0.1
1.6±0.2
3
3.9±0.3
2
2.5±0.1
0.8 MIN
1
1.5±0.1
0.5±0.07
0.4 +0.03
–0.05
0.4±0.07
1.5±0.1 1.5±0.1
(Back side)
2
•
•
•
•
IT (RMS) ..................................................................... 0.8A
VDRM ....................................................................... 600V
IFGT !, IRGT !, IRGT # .............................................. 5mA
IFGT # ..................................................................... 10mA
3
1
1 T1 TERMINAL
2 T2 TERMINAL
3 GATE TERMINAL
SOT-89
APPLICATION
Hybrid IC, solid state relay,
control of household equipment such as electric fan · washing machine,
other general purpose control applications
MAXIMUM RATINGS
Symbol
Voltage class
Parameter
Unit
12 (marked “BF”)
VDRM
Repetitive peak off-state voltage ✽1
600
V
VDSM
Non-repetitive peak off-state voltage ✽1
720
V
Symbol
Parameter
Conditions
IT (RMS)
RMS on-state current
Commercial frequency, sine full wave 360° conduction, Ta=40°C ✽3
ITSM
Surge on-state current
60Hz sinewave 1 full cycle, peak value, non-repetitive
I2t
I2t for fusing
Value corresponding to 1 cycle of half wave 60Hz, surge on-state
current
PGM
Peak gate power dissipation
PG (AV)
Average gate power dissipation
VGM
Ratings
Unit
0.8
A
8
A
0.26
A2s
1
W
0.1
W
Peak gate voltage
6
V
IGM
Peak gate current
1
Tj
Junction temperature
Tstg
–40 ~ +125
Storage temperature
—
Weight
–40 ~ +125
Typical value
48
A
°C
°C
mg
✽1. Gate open.
Mar. 2002
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR08AS
LOW POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
ELECTRICAL CHARACTERISTICS
Limits
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
IDRM
Repetitive peak off-state current
Tj=125°C, VDRM applied
—
—
1.0
mA
VTM
On-state voltage
Tc=25°C, ITM=1.2A, Instantaneous measurement
—
—
2.0
V
VFGT !
!
—
—
2.0
V
VRGT !
@
—
—
2.0
V
—
—
2.0
V
VRGT #
Gate trigger voltage ✽2
#
Tj=25°C, VD=6V, RL=6Ω, RG=330Ω
VFGT #
$
—
—
2.0
IFGT !
!
—
—
5
mA
—
—
5
mA
—
—
5
mA
—
—
10
mA
IRGT !
IRGT #
@
Gate trigger current ✽2
#
Tj=25°C, VD=6V, RL=6Ω, RG=330Ω
$
IFGT #
V
VGD
Gate non-trigger voltage
Tj=125°C, VD=1/2VDRM
0.1
—
—
V
Rth (j-a)
Thermal resistance
Junction to case ✽3
—
—
65
°C/ W
(dv/dt)c
Critical-rate of rise of off-state
commutating voltage
Tj=125°C
0.5
—
—
V/µs
✽4
✽2. Measurement using the gate trigger characteristics measurement circuit.
✽3. Mounted on 25mm × 25mm × t0.7mm ceramic plate with solder.
✽4. Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below.
Commutating voltage and current waveforms
(inductive load)
Test conditions
SUPPLY
VOLTAGE
1. Junction temperature
Tj=125°C
MAIN CURRENT
2. Rate of decay of on-state commutating current
(di/dt)c=–0.4A/ms
TIME
(di/dt)c
TIME
MAIN
VOLTAGE
3. Peak off-state voltage
VD=400V
TIME
(dv/dt)c
VD
PERFORMANCE CURVES
Tj = 125°C
100
7
5
4
3
2
10–1
RATED SURGE ON-STATE CURRENT
10
SURGE ON-STATE CURRENT (A)
ON-STATE CURRENT (A)
MAXIMUM ON-STATE CHARACTERISTICS
101
7
5
4
3
2
Tj = 25°C
0
1
2
3
4
ON-STATE VOLTAGE (V)
5
8
6
4
2
0
100
2 3 4 5 7 101
2 3 4 5 7 102
CONDUCTION TIME
(CYCLES AT 60Hz)
Mar. 2002
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR08AS
LOW POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
GATE TRIGGER CURRENT VS.
JUNCTION TEMPERATURE
100 (%)
102
7
5
3
2
VGM = 10V
PGM = 1W
101
7
5
3
2
PG(AV)
= 0.1W
VGT
100
7
5
3
2
IGM = 1A
IFGT I,
IRGT I, IRGT III
IFGT III
VGD = 0.2V
10–1
100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103
GATE TRIGGER CURRENT (Tj = t°C)
GATE TRIGGER CURRENT (Tj = 25°C)
GATE VOLTAGE (V)
GATE CHARACTERISTICS
103
7
5
4
3
2
TYPICAL EXAMPLE
IFGT III
IFGT I IRGT III IRGT I
102
7
5
4
3
2
101
–60 –40 –20 0 20 40 60 80 100 120 140
GATE CURRENT (mA)
JUNCTION TEMPERATURE (°C)
MAXIMUM TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
TYPICAL EXAMPLE
VFGT I VFGT III
102
7
5
4
3
2
VRGT I VRGT III
101
–60 –40 –20 0 20 40 60 80 100 120 140
TRANSIENT THERMAL IMPEDANCE (°C/W)
103
7
5
4
3
2
102
7
5
3
2
JUNCTION TO AMBIENT
JUNCTION TO CASE
101
7
5
3
2
100
10–1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102
CONDUCTION TIME
(CYCLES AT 60Hz)
MAXIMUM ON-STATE POWER
DISSIPATION
ALLOWABLE CASE TEMPERATURE
VS. RMS ON-STATE CURRENT
2.0
160
1.6
1.2
360°
CONDUCTION
RESISTIVE,
INDUCTIVE
LOADS
0.8
0.4
0
102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105
103
7
5
3
2
JUNCTION TEMPERATURE (°C)
0
0.4
0.8
1.2
1.6
RMS ON-STATE CURRENT (A)
2.0
CASE TEMPERATURE (°C)
ON-STATE POWER DISSIPATION (W)
GATE TRIGGER VOLTAGE (Tj = t°C)
GATE TRIGGER VOLTAGE (Tj = 25°C)
100 (%)
GATE TRIGGER VOLTAGE VS.
JUNCTION TEMPERATURE
CURVES APPLY REGARDLESS
140 OF CONDUCTION ANGLE
NATURAL CONVECTION
RESISTIVE,
120
INDUCTIVE
100
LOADS
80
60
40
20
0
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
RMS ON-STATE CURRENT (A)
Mar. 2002
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR08AS
LOW POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
HOLDING CURRENT VS.
JUNCTION TEMPERATURE
HOLDING CURRENT (Tj = t°C)
HOLDING CURRENT (Tj = 25°C)
100 (%)
105
7 TYPICAL EXAMPLE
5
3
2
104
7
5
3
2
103
7
5
3
2
102
–60 –40 –20 0 20 40 60 80 100 120 140
TYPICAL EXAMPLE
3
2
102
7
5
3
2
JUNCTION TEMPERATURE (°C)
JUNCTION TEMPERATURE (°C)
LACHING CURRENT VS.
JUNCTION TEMPERATURE
BREAKOVER VOLTAGE VS.
JUNCTION TEMPERATURE
DISTRIBUTION
T2+, G–
TYPICAL EXAMPLE
101
7
5
3
2
100
7
5
3
2
T2+, G+ 
 TYPICAL
T2– , G– 
EXAMPLE
T2– , G+ 
10–1
–40
0
40
80
120
100 (%)
102
7
5
3
2
103
7
5
101
–60 –40 –20 0 20 40 60 80 100 120 140
BREAKOVER VOLTAGE (Tj = t°C)
BREAKOVER VOLTAGE (Tj = 25°C)
LACHING CURRENT (mA)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = t°C)
REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25°C)
100 (%)
REPETITIVE PEAK OFF-STATE
CURRENT VS. JUNCTION
TEMPERATURE
160
160
TYPICAL EXAMPLE
140
120
100
80
60
40
20
0
–60 –40 –20 0 20 40 60 80 100120 140
JUNCTION TEMPERATURE (°C)
BREAKOVER VOLTAGE VS.
RATE OF RISE OF
OFF-STATE VOLTAGE
160
TYPICAL EXAMPLE
BREAKOVER VOLTAGE (dv/dt = xV/µs )
BREAKOVER VOLTAGE (dv/dt = 1V/µs )
140
Tj = 125°C
120
I QUADRANT
100
80
60
III QUADRANT
40
20
0
100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103
RATE OF RISE OF OFF-STATE VOLTAGE (V/µs)
CRITICAL RATE OF RISE OF OFF-STATE
COMMUTATING VOLTAGE (V/µs)
100 (%)
JUNCTION TEMPERATURE (°C)
COMMUTATION CHARACTERISTICS
101
7
5
TYPICAL
EXAMPLE
Tj = 125°C
IT = 1A
τ = 500µs
VD = 200V
f = 3Hz
3
2
100
7
5
3
2
III QUADRANT
MINIMUM
CHARACTERISTICS
VALUE
10–1
10–1
2
3
I QUADRANT
5 7 100
2
3
5 7 101
RATE OF DECAY OF ON-STATE
COMMUTATING CURRENT (A/ms)
Mar. 2002
MITSUBISHI SEMICONDUCTOR 〈TRIAC〉
BCR08AS
LOW POWER USE
NON-INSULATED TYPE, PLANAR PASSIVATION TYPE
GATE TRIGGER CURRENT (tw)
GATE TRIGGER CURRENT (DC)
100 (%)
GATE TRIGGER CURRENT VS.
GATE CURRENT PULSE WIDTH
103
7
5
4
3
2
TYPICAL EXAMPLE
GATE TRIGGER CHARACTERISTICS
TEST CIRCUITS
6Ω
6Ω
A
6V
V
102
7
IRGT I IRGT III IFGT I
5
IFGT III
4
3
2
101 0
10
2 3 4 5 7 101
TEST PROCEDURE 1
6Ω
2 3 4 5 7 102
A
6V
RG
RG
V
TEST PROCEDURE 2
6Ω
A
6V
V
RG
A
6V
V
RG
GATE CURRENT PULSE WIDTH (µs)
TEST PROCEDURE 3
TEST PROCEDURE 4
Mar. 2002