SN54/74LS155 SN54/74LS156 DUAL 1-OF-4 DECODER/ DEMULTIPLEXER The SN54 / 74LS155 and SN54 / 74LS156 are high speed Dual 1-of-4 Decoder/Demultiplexers. These devices have two decoders with common 2-bit Address inputs and separate gated Enable inputs. Decoder “a” has an Enable gate with one active HIGH and one active LOW input. Decoder “b” has two active LOW Enable inputs. If the Enable functions are satisfied, one output of each decoder will be LOW as selected by the address inputs. The LS156 has open collector outputs for wired-OR (DOT-AND) decoding and function generator applications. The LS155 and LS156 are fabricated with the Schottky barrier diode process for high speed and are completely compatible with all Motorola TTL families. • • • • • • Schottky Process for High Speed Multifunction Capability Common Address Inputs True or Complement Data Demultiplexing Input Clamp Diodes Limit High Speed Termination Effects ESD > 3500 Volts DUAL 1-OF-4 DECODER/ DEMULTIPLEXER LS156-OPEN-COLLECTOR LOW POWER SCHOTTKY J SUFFIX CERAMIC CASE 620-09 16 1 N SUFFIX PLASTIC CASE 648-08 16 CONNECTION DIAGRAM DIP (TOP VIEW) 1 NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package. D SUFFIX SOIC CASE 751B-03 16 1 ORDERING INFORMATION SN54LSXXXJ SN74LSXXXN SN74LSXXXD Ceramic Plastic SOIC LOGIC SYMBOL PIN NAMES A0, A1 Ea, Eb Ea O0 – O3 LOADING (Note a) Address Inputs Enable (Active LOW) Inputs Enable (Active HIGH) Input Active LOW Outputs (Note b) HIGH LOW 0.5 U.L. 0.5 U.L. 0.5 U.L. 10 U.L. 0.25 U.L. 0.25 U.L. 0.25 U.L. 5 (2.5) U.L. NOTES: a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW. b) The Output LOW drive factor is 2.5 U.L. for Military (54) and 5 U.L. for Commercial (74) Temperature Ranges. The HIGH level drive for the LS156 must be established by an external resistor. FAST AND LS TTL DATA 5-262 SN54/74LS155 • SN54/74LS156 LOGIC DIAGRAM FUNCTIONAL DESCRIPTION The LS155 and LS156 are Dual 1-of-4 Decoder/Demultiplexers with common Address inputs and separate gated Enable inputs. When enabled, each decoder section accepts the binary weighted Address inputs (A0, A1) and provides four mutually exclusive active LOW outputs (O0 – O3). If the Enable requirements of each decoder are not met, all outputs of that decoder are HIGH. Each decoder section has a 2-input enable gate. The enable gate for Decoder “a” requires one active HIGH input and one active LOW input (Ea•Ea). In demultiplexing applications, Decoder “a” can accept either true or complemented data by using the Ea or Ea inputs respectively. The enable gate for Decoder “b” requires two active LOW inputs (Eb•Eb). The LS155 or LS156 can be used as a 1-of-8 Decoder/Demultiplexer by tying Ea to Eb and relabeling the common connection as (A2). The other Eb and Ea are connected together to form the common enable. The LS155 and LS156 can be used to generate all four minterms of two variables. These four minterms are useful in some applications replacing multiple gate functions as shown in Fig. a. The LS156 has the further advantage of being able to AND the minterm functions by tying outputs together. Any number of terms can be wired-AND as shown below. f = (E + A0 + A1) ⋅ (E + A0 + A1) ⋅ (E + A0 + A1) ⋅ (E + A0 + A1) where E = Ea + Ea; E = Eb + Eb Figure a TRUTH TABLE ADDRESS ENABLE “a” OUTPUT “a” ENABLE “b” OUTPUT “b” A0 A1 Ea Ea O0 O1 O2 O3 Eb Eb O0 O1 O2 O3 X X L H L H X X L L H H L X H H H H X H L L L L H H L H H H H H H L H H H H H H L H H H H H H L H X L L L L X H L L L L H H L H H H H H H L H H H H H H L H H H H H H L H = HIGH Voltage Level L = LOW Voltage Level X = Don’t Care FAST AND LS TTL DATA 5-263 SN54/74LS155 GUARANTEED OPERATING RANGES Symbol Parameter Min Typ Max Unit VCC Supply Voltage 54 74 4.5 4.75 5.0 5.0 5.5 5.25 V TA Operating Ambient Temperature Range 54 74 – 55 0 25 25 125 70 °C IOH Output Current — High 54, 74 – 0.4 mA IOL Output Current — Low 54 74 4.0 8.0 mA DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) Limits Symbol Parameter VIH Input HIGH Voltage VIL Input LOW Voltage VIK Input Clamp Diode Voltage VOH Output HIGH Voltage VOL Output LOW Voltage IIH Input HIGH Current IIL Input LOW Current IOS Short Circuit Current (Note 1) ICC Power Supply Current Min Typ Max Unit 2.0 54 0.7 74 0.8 – 0.65 – 1.5 Test Conditions V Guaranteed Input HIGH Voltage for All Inputs V Guaranteed Input LOW Voltage for All Inputs V VCC = MIN, IIN = – 18 mA 54 2.5 3.5 V 74 2.7 3.5 V VCC = MIN, IOH = MAX, VIN = VIH or VIL per Truth Table VCC = VCC MIN, VIN = VIL or VIH per Truth Table 54, 74 0.25 0.4 V IOL = 4.0 mA 74 0.35 0.5 V IOL = 8.0 mA 20 µA VCC = MAX, VIN = 2.7 V 0.1 mA VCC = MAX, VIN = 7.0 V – 20 – 0.4 mA VCC = MAX, VIN = 0.4 V – 100 mA VCC = MAX 10 mA VCC = MAX Note 1: Not more than one output should be shorted at a time, nor for more than 1 second. AC CHARACTERISTICS (TA = 25°C) Limits Symbol Parameter Min Typ Max Unit Test Conditions tPLH tPHL Propagation Delay Address, Ea or Eb to Output 10 19 15 30 ns Figure 1 tPLH tPHL Propagation Delay Address to Output 17 19 26 30 ns Figure 2 tPLH tPHL Propagation Delay Ea to Output 18 18 27 27 ns Figure 1 VCC = 5.0 V CL = 15 pF AC WAVEFORMS Figure 1 Figure 2 FAST AND LS TTL DATA 5-264 SN54/74LS156 GUARANTEED OPERATING RANGES Symbol Parameter Min Typ Max Unit VCC Supply Voltage 54 74 4.5 4.75 5.0 5.0 5.5 5.25 V TA Operating Ambient Temperature Range 54 74 – 55 0 25 25 125 70 °C VOH Output Voltage — High 54, 74 5.5 V IOL Output Current — Low 54 74 4.0 8.0 mA DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified) Limits Symbol Parameter VIH Input HIGH Voltage VIL Input LOW Voltage VIK Input Clamp Diode Voltage IOH Output HIGH Current VOL Output LOW Voltage IIH Input HIGH Current IIL Input LOW Current ICC Power Supply Current Min Typ Max Unit V Guaranteed Input HIGH Voltage for All Inputs V Guaranteed Input LOW Voltage for All Inputs – 1.5 V VCC = MIN, IIN = – 18 mA 100 µA VCC = MIN, VOH = MAX 2.0 54 0.7 74 0.8 – 0.65 54, 74 Test Conditions VCC = VCC MIN, VIN = VIL or VIH per Truth Table 54, 74 0.25 0.4 V IOL = 4.0 mA 74 0.35 0.5 V IOL = 8.0 mA 20 µA VCC = MAX, VIN = 2.7 V 0.1 mA VCC = MAX, VIN = 7.0 V – 0.4 mA VCC = MAX, VIN = 0.4 V 10 mA VCC = MAX Typ Max Unit AC CHARACTERISTICS (TA = 25°C) Limits Symbol Parameter Min Test Conditions tPLH tPHL Propagation Delay Address, Ea or Eb to Output 25 34 40 51 ns Figure 1 tPLH tPHL Propagation Delay Address to Output 31 34 46 51 ns Figure 2 tPLH tPHL Propagation Delay Ea to Output 32 32 48 48 ns Figure 1 VCC = 5.0 V CL = 15 pF RL = 2.0 kΩ AC WAVEFORMS Figure 1 Figure 2 FAST AND LS TTL DATA 5-265 Case 751B-03 D Suffix 16-Pin Plastic SO-16 -A- "! ! " " ! " # 1 %# ) ! !" $ !" 8 C -T- D M K " ! #! J F ! Case 648-08 N Suffix 16-Pin Plastic R X 45° G " ! ) #! P ! " " 9 -B- ! 16 & ! ! ° ° ° ° ( ( ( ( "! ! " " ! ! ' " " ! ' ! " # & -A- 16 9 1 8 ! ! $ ! B # ) " ! " # ) !" $ !" ) F L C S -T- K H G M J D " Case 620-09 J Suffix 16-Pin Ceramic Dual In-Line -A- ! ! ! ! ° ° ° ° "! ! " 16 " ) " L K M N J G D " $ " $ ! " " ! ! FAST AND LS TTL DATA 5-266 & # ) !" $ !" ) -T $ " " C F & 8 E ! ! ! " " -B1 & 9 * * ! ! ! ! * * ! ° ° ! ° ° Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Literature Distribution Centers: USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. ◊ FAST AND LS TTL DATA 5-267