DTVseries ® (CRT HORIZONTAL DEFLECTION) HIGH VOLTAGE DAMPER DIODE MAIN PRODUCTS CHARACTERISTICS IF(AV) 5 A to 10 A VRRM 1500 V VF 1.3 V to 1.5 V A A K K FEATURES AND BENEFITS HIGH BREAKDOWN VOLTAGE CAPABILITY VERY FAST RECOVERY DIODE SPECIFIED TURN ON SWITCHING CHARACTERISTICS TO-220AC ISOWATT220AC DTVxxxD DTVxxxF LOW STATIC AND PEAK FORWARD VOLTAGE DROP FOR LOW DISSIPATION SUITED TO 32-110kHz MONITORS AND 16kHz TV DEFLECTION INSULATED VERSION (ISOWATT220AC): Insulating voltage = 2000V DC Capacitance = 12pF PLANAR TECHNOLOGY ALLOWING HIGH QUALITY AND BEST ELECTRICAL CHARACTERISTICS DESCRIPTION High voltage diode with high current capability dedicated to horizontal deflection. DTV16 is optimized to TV meanwhile DTV32 to DTV110 are covering the full range of monitors from the low end to the professional hi-definition SXGA CAD display units. These devices are packaged either in TO220-AC or in ISOWATT220AC. ABSOLUTE RATINGS Symbol Parameter VRRM Repetitive peak reverse voltage IF(RMS) RMS forward current IFSM Surge non repetitive forward current tp = 10ms half sine wave Value 1500 V 15 A DTV16 50 A DTV32 75 DTV56 80 DTV64 80 DTV82 80 DTV110 Tstg Tj Storage temperature range Maximum operating junction temperature August 1999 - Ed: 2B Unit 80 -65 to 150 °C 150 °C 1/10 DTVseries THERMAL RESISTANCES Symbol Rth(j-c) Value Parameter Junction to case thermal resistance TO-220AC ISOWATT220AC DTV16 3 5.5 DTV32 2.5 4.75 DTV56 2 4 DTV64 1.8 4 DTV82 1.6 3.7 DTV110 1.3 3.5 Unit °C/W STATIC ELECTRICAL CHARACTERISTICS Value Symbol Test Conditions Tj = 25°C Typ VF IR * ** Max Typ Max IF = 5 A DTV16 1.6 1.0 1.5 IF = 6 A DTV32 1.5 1.1 1.35 IF = 6 A DTV56 1.8 1.1 1.5 IF = 6 A DTV64 1.7 1.1 1.4 IF = 6 A DTV82 1.8 1.0 1.3 IF = 10 A DTV110 2.3 1.15 1.5 VR = VRRM DTV16 60 100 500 DTV32 100 100 1000 DTV56 100 100 1000 DTV64 100 100 1000 DTV82 100 100 1000 DTV110 100 100 1000 pulse test : * tp = 380 µs, δ < 2% ** tp = 5 ms, δ < 2% 2/10 Tj = 125°C Unit V µA DTVseries RECOVERY CHARACTERISTICS Symbol trr trr Test Conditions Tj = 25°C IF = 100m A IR = 100mA IRR = 10mA Tj = 25°C IF = 1 A dIF/dt =-50A/µs VR =30V Typ DTV16 1500 DTV32 850 DTV56 750 DTV64 750 DTV82 675 Max Unit ns DTV110 625 DTV16 200 300 DTV32 130 175 DTV56 110 135 DTV64 110 135 DTV82 105 125 DTV110 95 115 Typ Max ns TURN-ON SWITCHING CHARACTERISTICS Symbol tfr VFP Test Conditions IF = 6 A dIF/dt = 80 A/µs VFR =3V IF = 6A dIF/dt = 80 A/µs Tj = 100°C Tj = 100°C DTV16 350 DTV32 570 DTV56 350 DTV64 350 DTV82 270 DTV110 250 DTV16 25 34 DTV32 21 28 DTV56 19 26 DTV64 18 22 DTV82 14 18 DTV110 11 14 Unit ns V To evaluate the maximum conduction losses use the following equation : DTV16 P= 1.14 x IF(AV) + 0.072 x IF2(RMS) DTV32 P= 1.069 x IF(AV) + 0.047 x IF2(RMS) DTV56 P= 1.15 x IF(AV) + 0.059 x IF2(RMS) DTV64 P= 1.06 x IF(AV) + 0.053 x IF2(RMS) DTV82 P= 1.01 x IF(AV) + 0.048 x IF2(RMS) DTV110 P= 1.12 x IF(AV) + 0.038 x IF2(RMS) 3/10 DTVseries Fig. 1-1: Power dissipation versus peak forward current (triangular waveform, δ=0.45). PF(av)(W) Fig. 1-2: Power dissipation versus peak forward current (triangular waveform, δ=0.45). PF(av)(W) 2.0 3.5 3.0 1.5 2.5 DTV110 2.0 DTV32 1.0 DTV16 1.5 1.0 0.5 0.5 0.0 DTV56 Ip(A) Ip(A) 0 2 4 6 8 10 0.0 0 1 2 3 4 5 6 Fig. 1-3: Power dissipation versus peak forward current (triangular waveform, δ=0.45). PF(av)(W) 2.0 1.5 DTV82 1.0 DTV64 0.5 Ip(A) 0.0 0 1 2 3 4 5 6 Fig. 2-1: Average current versus case temperature (δ=0.5) (TO-220AC). 12 Fig. 2-2: Average current versus case temperature (δ=0.5) (ISOWATT220AC). IF(av)(A) IF(av)(A) 12 10 DTV110 DTV64 8 10 DTV64 DTV32 6 6 DTV16 4 DTV16 4 T T 2 2 δ=tp/T 0 DTV82 DTV56 8 DTV56 DTV110 DTV32 DTV82 0 4/10 tp 25 Tcase(°C) 50 75 100 125 150 0 δ=tp/T 0 tp 25 Tcase(°C) 50 75 100 125 150 DTVseries Fig. 3-1: Forward voltage drop versus forward current (DTV16D/F). Fig. 3-2: Forward voltage drop versus forward current (DTV32D/F). IFM(A) IFM(A) 20.0 20.0 10.0 10.0 Typical Tj=125°C Typical Tj=125°C Maximum Tj=125°C Maximum Tj=125°C Maximum Tj=25°C Maximum Tj=25°C 1.0 1.0 VFM(V) 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 0.1 0.0 Fig. 3-3: Forward voltage drop versus forward current (DTV56D/F). VFM(V) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Fig. 3-4: Forward voltage drop versus forward current (DTV64D/F). IFM(A) IFM(A) 20.0 20.0 10.0 10.0 Typical Tj=125°C Maximum Tj=125°C Typical Tj=125°C Maximum Tj=125°C Maximum Tj=25°C Maximum Tj=25°C 1.0 1.0 VFM(V) 0.1 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 VFM(A) 0.1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 Fig. 3-5: Forward voltage drop versus forward current (DTV82D/F). Fig. 3-6: Forward voltage drop versus forward current (DTV110D/F). IFM(A) IFM(A) 20.0 20.0 10.0 Typical Tj=125°C 10.0 Typical Tj=125°C Maximum Tj=125°C Maximum Tj=125°C Maximum Tj=25°C Maximum Tj=25°C 1.0 1.0 VFM(V) 0.1 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 0.1 VFM(V) 0 0.5 1 1.5 2 2.5 3 5/10 DTVseries Fig. 4-1: Non repetitive surge peak forward current versus overload duration (TO-220AC) (DTV16D / DTV32D / DTV56D). IM(A) 60 55 50 45 40 35 30 25 20 15 IM 10 5 0 1E-3 Fig. 4-2: Non repetitive surge peak forward current versus overload duration (ISOWATT220AC) (DTV16F / DTV32F / DTV56F). 45 Tc=100°C IM(A) 40 Tc=100°C 35 DTV32D & DTV56D DTV32F & DTV56F 30 25 DTV16D DTV16F 20 15 10 t δ=0.5 5 t(s) 1E-2 IM 1E-1 1E+0 t δ=0.5 0 1E-3 t(s) 1E-2 1E-1 1E+0 Fig. 4-3: Non repetitive surge peak forward current versus overload duration (TO-220AC) (DTV64D / DTV82D / DTV110D). Fig. 4-4: Non repetitive surge peak forward current versus overload duration (ISOWATT220AC) (DTV64F / DTV82F / DTV110F). IM(A) 100 90 80 70 60 50 40 30 IM 20 10 0 1E-3 IM(A) 60 55 50 45 40 35 30 25 20 15 IM 10 5 0 1E-3 Tc=100°C DTV110D DTV82D DTV64D t δ=0.5 t(s) 1E-2 1E-1 1E+0 Fig. 5.1: Reverse recovery charges versus dIF/dt (DTV16D/F). Qrr(µC) 2.4 2.2 IF=Ip 90% confidence 2.0 Tj=125°C 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.1 0.2 6/10 Tc=100°C DTV110F DTV82F DTV64F t δ=0.5 t(s) 1E-2 1E-1 1E+0 Fig. 5.2: Reverse recovery charges versus dIF/dt. Qrr(nc) 1200 1000 DTV32 IF=Ip 90% confidence Tj=125°C 800 DTV64 DTV82 600 400 200 dIF/dt(A/µs) dIF/dt(A/µs) 0.5 1.0 2.0 5.0 0 0.1 0.2 0.5 1 2 5 DTVseries Fig. 5.3: Reverse recovery charges versus dIF/dt. Qrr(nc) 1200 IF=Ip 90% confidence Tj=125°C 1000 DTV56 800 DTV110 600 400 200 dIF/dt(A/µs) 0 0.1 0.2 0.5 1 2 5 Fig. 6.1: Reverse recovery current versus dIF/dt. IRM(A) 3.0 2.7 IF=Ip 90% confidence 2.4 Tj=125°C 2.1 1.8 1.5 1.2 0.9 0.6 0.3 0.0 0.1 0.2 DTV16 DTV32 dIF/dt(A/µs) 0.5 1 2 5 Fig. 6.2: Reverse recovery current versus dIF/dt. Fig. 6.3: Reverse recovery current versus dIF/dt. IRM(A) 2.2 2.0 IF=Ip confidence 1.8 90% Tj=125°C 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.1 0.2 IRM(A) 2.2 2.0 IF=Ip 90% confidence 1.8 Tj=125°C 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.1 0.2 DTV64 DTV110 dIF/dt(A/µs) 0.5 1 2 5 Fig. 7-1: Transient peak forward voltage versus dIF/dt. DTV82 dIF/dt(A/µs) 0.5 1 2 5 Fig. 7.2: Transient peak forward voltage versus dIF/dt. VFP(V) VFP(V) 45 30 IF=Ip 90% confidence Tj=125°C 40 35 DTV16 25 IF=Ip 90% confidence Tj=125°C 25 DTV32 30 DTV64 20 DTV56 DTV82 15 20 15 DTV110 10 10 5 5 0 DTV56 dIF/dt(A/µs) dIF/dt(A/µs) 0 20 40 60 80 100 120 140 0 0 20 40 60 80 100 120 140 7/10 DTVseries Fig. 8.1: Forward recovery time versus dIF/dt. Fig. 8-2: Forward recovery time versus dIF/dt. tfr(ns) 700 800 IF=Ip 90% confidence Tj=125°C 750 IF=Ip 90% confidence Tj=125°C 650 600 700 650 550 DTV32 600 500 550 450 DTV64 500 20 40 DTV82 DTV110 350 dIF/dt(A/µs) 0 DTV56 400 DTV16 450 400 tfr(ns) 60 80 100 120 140 Fig. 9: Dynamic parameters versus junction temperature. 300 dIF/dt(A/µs) 0 20 40 60 80 100 120 140 Fig. 10: Junction capacitance versus reverse voltage applied (typical values). C(pF) VFP,IRM,Qrr[Tj]/VFP,IRM,Qrr[Tj=125°C] 200 1.2 DTV110 100 DTV82 1.0 Tj=25°C F=1MHz 0.8 VFP DTV16 0.6 10 IRM DTV32 DTV56 0.4 DTV64 Qrr 0.2 Tj(°C) 0.0 0 20 40 60 80 100 120 140 Fig. 11-1: Relative variation of thermal impedance junction to case versus pulse duration (ISOWATT220AC). K=[Zth(j-c)/Rth(j-c)] VR(V) 1 1 10 100 200 Fig. 12-2: Relative variation of thermal impedance junction to case versus pulse duration (TO-220AC). K=[Zth(j-c)/Rth(j-c)] 1.0 1.0 δ = 0.5 0.5 0.5 δ = 0.5 δ = 0.2 δ = 0.2 δ = 0.1 δ = 0.1 0.2 Single pulse δ=tp/T tp(s) 0.1 1E-2 8/10 T 0.2 T Single pulse 1E-1 1E+0 δ=tp/T tp(s) tp 1E+1 0.1 1E-3 1E-2 1E-1 tp 1E+0 DTVseries PACKAGE DATA TO-220AC (plastic) (JEDEC outline) DIMENSIONS REF. A H2 C L5 L7 ØI L6 L2 D L9 F1 L4 E G Inches Min. Max. Min. Max. A 4.40 4.60 0.173 0.181 C 1.23 1.32 0.048 0.051 D 2.40 2.72 0.094 0.107 E 0.49 0.70 0.019 0.027 F 0.61 0.88 0.024 0.034 F1 1.14 1.70 0.044 0.066 G 4.95 5.15 0.194 0.202 H2 10.00 10.40 0.393 0.409 L2 M F Millimeters 16.40 typ. 0.645 typ. L4 13.00 14.00 0.511 0.551 L5 2.65 2.95 0.104 0.116 L6 15.25 15.75 0.600 0.620 L7 6.20 6.60 0.244 0.259 L9 3.50 3.93 0.137 0.154 M Diam. I 2.6 typ. 3.75 3.85 0.102 typ. 0.147 0.151 Cooling method : c. Torque value : 0.55 m.N typ (0.70 m.N max). 9/10 DTVseries PACKAGE DATA ISOWATT220AC (plastic) A H DIMENSIONS B REF. Millimeters Diam Min. L6 L7 L2 L3 F1 D E G Max. Min. Typ. Max. A 4.40 4.60 0.173 0.181 B 2.50 2.70 0.098 0.106 D 2.40 2.75 0.094 0.108 E 0.40 0.70 0.016 0.028 F 0.75 1.00 0.030 0.039 F1 1.15 1.70 0.045 0.067 G 4.95 5.20 0.195 0.205 H 10.00 10.40 0.394 0.409 L2 F Typ. Inches 16.00 0.630 L3 28.60 30.60 1.125 1.205 L6 15.90 16.40 0.626 0.646 L7 9.00 9.30 0.354 0.366 Diam 3.00 3.20 0.118 0.126 Cooling method : C. Electrical isolation : 2000V DC Torque value : 0.55 m.N typ (0.70 m.N max). Capacitance : 12 pF Ordering code Marking Package Weight Base qty Delivery mode DTV16D DTV32D DTV56D DTV64D DTV82D DTV110D DTV16D DTV32D DTV56D DTV64D DTV82D DTV110D TO-220AC 1.86g 50 Tube DTV16F DTV32F DTV56F DTV64F DTV82F DTV110F DTV16F DTV32F DTV56F DTV64F DTV82F DTV110F ISOWATT220AC 2g 50 Tube Epoxy meets UL94, V0 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 1999 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 10/10