STMICROELECTRONICS DTV32D

DTVseries
®
(CRT HORIZONTAL DEFLECTION)
HIGH VOLTAGE DAMPER DIODE
MAIN PRODUCTS CHARACTERISTICS
IF(AV)
5 A to 10 A
VRRM
1500 V
VF
1.3 V to 1.5 V
A
A
K
K
FEATURES AND BENEFITS
HIGH BREAKDOWN VOLTAGE CAPABILITY
VERY FAST RECOVERY DIODE
SPECIFIED TURN ON SWITCHING
CHARACTERISTICS
TO-220AC
ISOWATT220AC
DTVxxxD
DTVxxxF
LOW STATIC AND PEAK FORWARD VOLTAGE
DROP FOR LOW DISSIPATION
SUITED TO 32-110kHz MONITORS AND
16kHz TV DEFLECTION
INSULATED VERSION (ISOWATT220AC):
Insulating voltage = 2000V DC
Capacitance = 12pF
PLANAR TECHNOLOGY ALLOWING HIGH
QUALITY
AND
BEST
ELECTRICAL
CHARACTERISTICS
DESCRIPTION
High voltage diode with high current capability
dedicated to horizontal deflection. DTV16 is
optimized to TV meanwhile DTV32 to DTV110 are
covering the full range of monitors from the low
end to the professional hi-definition SXGA CAD
display units.
These devices are packaged either in TO220-AC
or in ISOWATT220AC.
ABSOLUTE RATINGS
Symbol
Parameter
VRRM
Repetitive peak reverse voltage
IF(RMS)
RMS forward current
IFSM
Surge non repetitive forward current
tp = 10ms half sine wave
Value
1500
V
15
A
DTV16
50
A
DTV32
75
DTV56
80
DTV64
80
DTV82
80
DTV110
Tstg
Tj
Storage temperature range
Maximum operating junction temperature
August 1999 - Ed: 2B
Unit
80
-65 to 150
°C
150
°C
1/10
DTVseries
THERMAL RESISTANCES
Symbol
Rth(j-c)
Value
Parameter
Junction to case thermal
resistance
TO-220AC
ISOWATT220AC
DTV16
3
5.5
DTV32
2.5
4.75
DTV56
2
4
DTV64
1.8
4
DTV82
1.6
3.7
DTV110
1.3
3.5
Unit
°C/W
STATIC ELECTRICAL CHARACTERISTICS
Value
Symbol
Test Conditions
Tj = 25°C
Typ
VF
IR
*
**
Max
Typ
Max
IF = 5 A
DTV16
1.6
1.0
1.5
IF = 6 A
DTV32
1.5
1.1
1.35
IF = 6 A
DTV56
1.8
1.1
1.5
IF = 6 A
DTV64
1.7
1.1
1.4
IF = 6 A
DTV82
1.8
1.0
1.3
IF = 10 A
DTV110
2.3
1.15
1.5
VR = VRRM
DTV16
60
100
500
DTV32
100
100
1000
DTV56
100
100
1000
DTV64
100
100
1000
DTV82
100
100
1000
DTV110
100
100
1000
pulse test : * tp = 380 µs, δ < 2%
** tp = 5 ms, δ < 2%
2/10
Tj = 125°C
Unit
V
µA
DTVseries
RECOVERY CHARACTERISTICS
Symbol
trr
trr
Test Conditions
Tj = 25°C
IF = 100m A
IR = 100mA
IRR = 10mA
Tj = 25°C
IF = 1 A
dIF/dt =-50A/µs
VR =30V
Typ
DTV16
1500
DTV32
850
DTV56
750
DTV64
750
DTV82
675
Max
Unit
ns
DTV110
625
DTV16
200
300
DTV32
130
175
DTV56
110
135
DTV64
110
135
DTV82
105
125
DTV110
95
115
Typ
Max
ns
TURN-ON SWITCHING CHARACTERISTICS
Symbol
tfr
VFP
Test Conditions
IF = 6 A
dIF/dt = 80 A/µs
VFR =3V
IF = 6A
dIF/dt = 80 A/µs
Tj = 100°C
Tj = 100°C
DTV16
350
DTV32
570
DTV56
350
DTV64
350
DTV82
270
DTV110
250
DTV16
25
34
DTV32
21
28
DTV56
19
26
DTV64
18
22
DTV82
14
18
DTV110
11
14
Unit
ns
V
To evaluate the maximum conduction losses use the following equation :
DTV16
P= 1.14 x IF(AV) + 0.072 x IF2(RMS)
DTV32
P= 1.069 x IF(AV) + 0.047 x IF2(RMS)
DTV56
P= 1.15 x IF(AV) + 0.059 x IF2(RMS)
DTV64
P= 1.06 x IF(AV) + 0.053 x IF2(RMS)
DTV82
P= 1.01 x IF(AV) + 0.048 x IF2(RMS)
DTV110
P= 1.12 x IF(AV) + 0.038 x IF2(RMS)
3/10
DTVseries
Fig. 1-1: Power dissipation versus peak forward
current (triangular waveform, δ=0.45).
PF(av)(W)
Fig. 1-2: Power dissipation versus peak forward
current (triangular waveform, δ=0.45).
PF(av)(W)
2.0
3.5
3.0
1.5
2.5
DTV110
2.0
DTV32
1.0
DTV16
1.5
1.0
0.5
0.5
0.0
DTV56
Ip(A)
Ip(A)
0
2
4
6
8
10
0.0
0
1
2
3
4
5
6
Fig. 1-3: Power dissipation versus peak forward
current (triangular waveform, δ=0.45).
PF(av)(W)
2.0
1.5
DTV82
1.0
DTV64
0.5
Ip(A)
0.0
0
1
2
3
4
5
6
Fig. 2-1: Average current versus case temperature
(δ=0.5) (TO-220AC).
12
Fig. 2-2: Average current versus case temperature
(δ=0.5) (ISOWATT220AC).
IF(av)(A)
IF(av)(A)
12
10
DTV110
DTV64
8
10
DTV64
DTV32
6
6
DTV16
4
DTV16
4
T
T
2
2
δ=tp/T
0
DTV82
DTV56
8
DTV56
DTV110
DTV32
DTV82
0
4/10
tp
25
Tcase(°C)
50
75
100
125
150
0
δ=tp/T
0
tp
25
Tcase(°C)
50
75
100
125
150
DTVseries
Fig. 3-1: Forward voltage drop versus forward
current (DTV16D/F).
Fig. 3-2: Forward voltage drop versus forward
current (DTV32D/F).
IFM(A)
IFM(A)
20.0
20.0
10.0
10.0
Typical
Tj=125°C
Typical
Tj=125°C
Maximum
Tj=125°C
Maximum
Tj=125°C
Maximum
Tj=25°C
Maximum
Tj=25°C
1.0
1.0
VFM(V)
0.1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
0.1
0.0
Fig. 3-3: Forward voltage drop versus forward
current (DTV56D/F).
VFM(V)
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
Fig. 3-4: Forward voltage drop versus forward
current (DTV64D/F).
IFM(A)
IFM(A)
20.0
20.0
10.0
10.0
Typical
Tj=125°C
Maximum
Tj=125°C
Typical
Tj=125°C
Maximum
Tj=125°C
Maximum
Tj=25°C
Maximum
Tj=25°C
1.0
1.0
VFM(V)
0.1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
VFM(A)
0.1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Fig. 3-5: Forward voltage drop versus forward
current (DTV82D/F).
Fig. 3-6: Forward voltage drop versus forward
current (DTV110D/F).
IFM(A)
IFM(A)
20.0
20.0
10.0
Typical
Tj=125°C
10.0
Typical
Tj=125°C
Maximum
Tj=125°C
Maximum
Tj=125°C
Maximum
Tj=25°C
Maximum
Tj=25°C
1.0
1.0
VFM(V)
0.1
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
0.1
VFM(V)
0
0.5
1
1.5
2
2.5
3
5/10
DTVseries
Fig. 4-1: Non repetitive surge peak forward current
versus overload duration (TO-220AC)
(DTV16D / DTV32D / DTV56D).
IM(A)
60
55
50
45
40
35
30
25
20
15
IM
10
5
0
1E-3
Fig. 4-2: Non repetitive surge peak forward current
versus overload duration (ISOWATT220AC)
(DTV16F / DTV32F / DTV56F).
45
Tc=100°C
IM(A)
40
Tc=100°C
35
DTV32D & DTV56D
DTV32F & DTV56F
30
25
DTV16D
DTV16F
20
15
10
t
δ=0.5
5
t(s)
1E-2
IM
1E-1
1E+0
t
δ=0.5
0
1E-3
t(s)
1E-2
1E-1
1E+0
Fig. 4-3: Non repetitive surge peak forward current
versus overload duration (TO-220AC)
(DTV64D / DTV82D / DTV110D).
Fig. 4-4: Non repetitive surge peak forward current
versus overload duration (ISOWATT220AC)
(DTV64F / DTV82F / DTV110F).
IM(A)
100
90
80
70
60
50
40
30
IM
20
10
0
1E-3
IM(A)
60
55
50
45
40
35
30
25
20
15
IM
10
5
0
1E-3
Tc=100°C
DTV110D
DTV82D
DTV64D
t
δ=0.5
t(s)
1E-2
1E-1
1E+0
Fig. 5.1: Reverse recovery charges versus dIF/dt
(DTV16D/F).
Qrr(µC)
2.4
2.2 IF=Ip
90% confidence
2.0 Tj=125°C
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.1
0.2
6/10
Tc=100°C
DTV110F
DTV82F
DTV64F
t
δ=0.5
t(s)
1E-2
1E-1
1E+0
Fig. 5.2: Reverse recovery charges versus dIF/dt.
Qrr(nc)
1200
1000
DTV32
IF=Ip
90% confidence
Tj=125°C
800
DTV64
DTV82
600
400
200
dIF/dt(A/µs)
dIF/dt(A/µs)
0.5
1.0
2.0
5.0
0
0.1
0.2
0.5
1
2
5
DTVseries
Fig. 5.3: Reverse recovery charges versus dIF/dt.
Qrr(nc)
1200
IF=Ip
90% confidence
Tj=125°C
1000
DTV56
800
DTV110
600
400
200
dIF/dt(A/µs)
0
0.1
0.2
0.5
1
2
5
Fig. 6.1: Reverse recovery current versus dIF/dt.
IRM(A)
3.0
2.7 IF=Ip
90% confidence
2.4 Tj=125°C
2.1
1.8
1.5
1.2
0.9
0.6
0.3
0.0
0.1
0.2
DTV16
DTV32
dIF/dt(A/µs)
0.5
1
2
5
Fig. 6.2: Reverse recovery current versus dIF/dt.
Fig. 6.3: Reverse recovery current versus dIF/dt.
IRM(A)
2.2
2.0 IF=Ip
confidence
1.8 90%
Tj=125°C
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.1
0.2
IRM(A)
2.2
2.0 IF=Ip
90% confidence
1.8 Tj=125°C
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.1
0.2
DTV64
DTV110
dIF/dt(A/µs)
0.5
1
2
5
Fig. 7-1: Transient peak forward voltage versus
dIF/dt.
DTV82
dIF/dt(A/µs)
0.5
1
2
5
Fig. 7.2: Transient peak forward voltage versus
dIF/dt.
VFP(V)
VFP(V)
45
30
IF=Ip
90% confidence
Tj=125°C
40
35
DTV16
25
IF=Ip
90% confidence
Tj=125°C
25
DTV32
30
DTV64
20
DTV56
DTV82
15
20
15
DTV110
10
10
5
5
0
DTV56
dIF/dt(A/µs)
dIF/dt(A/µs)
0
20
40
60
80
100
120
140
0
0
20
40
60
80
100
120
140
7/10
DTVseries
Fig. 8.1: Forward recovery time versus dIF/dt.
Fig. 8-2: Forward recovery time versus dIF/dt.
tfr(ns)
700
800
IF=Ip
90% confidence
Tj=125°C
750
IF=Ip
90% confidence
Tj=125°C
650
600
700
650
550
DTV32
600
500
550
450
DTV64
500
20
40
DTV82
DTV110
350
dIF/dt(A/µs)
0
DTV56
400
DTV16
450
400
tfr(ns)
60
80
100
120
140
Fig. 9: Dynamic parameters versus junction
temperature.
300
dIF/dt(A/µs)
0
20
40
60
80
100
120
140
Fig. 10: Junction capacitance versus reverse
voltage applied (typical values).
C(pF)
VFP,IRM,Qrr[Tj]/VFP,IRM,Qrr[Tj=125°C]
200
1.2
DTV110
100
DTV82
1.0
Tj=25°C
F=1MHz
0.8
VFP
DTV16
0.6
10
IRM
DTV32
DTV56
0.4
DTV64
Qrr
0.2
Tj(°C)
0.0
0
20
40
60
80
100
120
140
Fig. 11-1: Relative variation of thermal impedance
junction to case versus pulse duration
(ISOWATT220AC).
K=[Zth(j-c)/Rth(j-c)]
VR(V)
1
1
10
100
200
Fig. 12-2: Relative variation of thermal impedance
junction to case versus pulse duration
(TO-220AC).
K=[Zth(j-c)/Rth(j-c)]
1.0
1.0
δ = 0.5
0.5
0.5
δ = 0.5
δ = 0.2
δ = 0.2
δ = 0.1
δ = 0.1
0.2
Single pulse
δ=tp/T
tp(s)
0.1
1E-2
8/10
T
0.2
T
Single pulse
1E-1
1E+0
δ=tp/T
tp(s)
tp
1E+1
0.1
1E-3
1E-2
1E-1
tp
1E+0
DTVseries
PACKAGE DATA
TO-220AC (plastic) (JEDEC outline)
DIMENSIONS
REF.
A
H2
C
L5
L7
ØI
L6
L2
D
L9
F1
L4
E
G
Inches
Min.
Max.
Min.
Max.
A
4.40
4.60
0.173
0.181
C
1.23
1.32
0.048
0.051
D
2.40
2.72
0.094
0.107
E
0.49
0.70
0.019
0.027
F
0.61
0.88
0.024
0.034
F1
1.14
1.70
0.044
0.066
G
4.95
5.15
0.194
0.202
H2
10.00
10.40
0.393
0.409
L2
M
F
Millimeters
16.40 typ.
0.645 typ.
L4
13.00
14.00
0.511
0.551
L5
2.65
2.95
0.104
0.116
L6
15.25
15.75
0.600
0.620
L7
6.20
6.60
0.244
0.259
L9
3.50
3.93
0.137
0.154
M
Diam. I
2.6 typ.
3.75
3.85
0.102 typ.
0.147
0.151
Cooling method : c.
Torque value : 0.55 m.N typ (0.70 m.N max).
9/10
DTVseries
PACKAGE DATA
ISOWATT220AC (plastic)
A
H
DIMENSIONS
B
REF.
Millimeters
Diam
Min.
L6
L7
L2
L3
F1
D
E
G
Max.
Min.
Typ.
Max.
A
4.40
4.60 0.173
0.181
B
2.50
2.70 0.098
0.106
D
2.40
2.75 0.094
0.108
E
0.40
0.70 0.016
0.028
F
0.75
1.00 0.030
0.039
F1
1.15
1.70 0.045
0.067
G
4.95
5.20 0.195
0.205
H
10.00
10.40 0.394
0.409
L2
F
Typ.
Inches
16.00
0.630
L3
28.60
30.60 1.125
1.205
L6
15.90
16.40 0.626
0.646
L7
9.00
9.30 0.354
0.366
Diam
3.00
3.20 0.118
0.126
Cooling method : C.
Electrical isolation : 2000V DC
Torque value : 0.55 m.N typ (0.70 m.N max).
Capacitance : 12 pF
Ordering code
Marking
Package
Weight
Base qty
Delivery mode
DTV16D
DTV32D
DTV56D
DTV64D
DTV82D
DTV110D
DTV16D
DTV32D
DTV56D
DTV64D
DTV82D
DTV110D
TO-220AC
1.86g
50
Tube
DTV16F
DTV32F
DTV56F
DTV64F
DTV82F
DTV110F
DTV16F
DTV32F
DTV56F
DTV64F
DTV82F
DTV110F
ISOWATT220AC
2g
50
Tube
Epoxy meets UL94, V0
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
10/10