DMV1500L ® DAMPER + MODULATION DIODE FOR VIDEO DAMPER MODULATION MAIN PRODUCT CHARACTERISTICS MODUL DAMPER IF(AV) 3A 4A VRRM 600 V 1500 V trr (max) 50 ns 170 ns VF (max) 1.4 V 1.5 V 1 2 3 1 ■ ■ ■ ■ ■ ■ ■ 3 Insulated TO-220AB (Bending option F5 available) FEATURES AND BENEFITS ■ 2 Full kit in one package High breakdown voltage capability Very fast recovery diode Specified turn on switching characteristics Low static and peak forward voltage drop for low dissipation Insulated version: Insulated voltage = 2500 VRMS Capacitance = 7 pF Planar technology allowing high quality and best electrical characteristics Outstanding performance of well proven DTV as damper and new faster Turbo 2 600V technology as modulation DESCRIPTION High voltage semiconductor especially designed for horizontal deflection stage in standard and high resolution video display with E/W correction. The insulated TO-220AB package includes both the DAMPER diode and the MODULATION diode. Assembled on automated line, it offers excellent insulating and dissipating characteristics, thanks to the internal ceramic insulation layer. ABSOLUTE RATINGS (limiting values, per diode) Value Symbol Parameter Unit MODUL DAMPER VRRM Repetitive peak reverse voltage IFSM Surge non repetitive forward current Tstg Storage temperature range Tj tp = 10 ms sinusoidal Maximum operating junction temperature July 2001 - Ed: 3A 600 1500 V 35 50 A - 40 to + 150 °C 150 1/9 DMV1500L THERMAL RESISTANCES Symbol Parameter Rth(j-c) Damper junction to case Rth(j-c) Modulation junction to case Value Unit 5.5 °C/W 6 STATIC ELECTRICAL CHARACTERISTICS OF THE DAMPER DIODES Value Symbol Parameter Test conditions VF * Forward voltage drop IF = 4 A IR ** Reverse leakage current VR = 1500V Pulse test : Tj = 25°C Tj = 125°C Unit Typ. Max. Typ. Max. 1.2 1.7 1.1 1.5 V 100 100 1000 µA * tp = 380 µs, δ < 2% **tp = 5 ms, δ < 2% To evaluate the maximum conduction losses of the DAMPER diode use the following equations : 2 P = 1.2 x IF(AV) + 0.075 x IF (RMS) STATIC ELECTRICAL CHARACTERISTICS OF THE MODULATION DIODE Value Symbol Parameter Test conditions Tj = 25°C Typ. Tj = 125°C Unit Max. Typ. Max. VF * Forward voltage drop IF = 3A 1.8 1.1 1.4 V IR ** Reverse leakage current VR = 600V 20 3 50 µA Pulse test : * tp = 380 µs, δ < 2% ** tp = 5 ms, δ < 2% To evaluate the maximum conduction losses of the MODULATION diode use the following equations : 2 P = 1.12 x IF(AV) + 0.092 x IF (RMS) RECOVERY CHARACTERISTICS OF THE DAMPER DIODE Symbol 2/9 Parameter Test conditions Value Typ. trr Reverse recovery time IF = 100mA IR = 100mA IRR = 10mA Tj = 25°C 850 trr Reverse recovery time IF = 1A dIF/dt = -50A/µs VR = 30V Tj = 25°C 130 Max. Unit ns 170 ns ® DMV1500L RECOVERY CHARACTERISTICS OF THE MODULATION DIODE Symbol Parameter Test conditions trr Reverse recovery time IF = 100mA IR = 100mA IRR = 10mA Tj = 25°C trr Reverse recovery time IF = 1A dIF/dt = -50A/µs VR = 30V Tj = 25°C Value Unit Typ. Max. 110 350 ns 50 ns TURN-ON SWITCHING CHARACTERISTICS OF THE DAMPER DIODE Symbol Parameter tfr Forward recovery time VFP Peak forward voltage Test conditions Value Typ. Max. IF = 4A dIF/dt = 80A/µs VFR = 3V Tj = 100°C 450 IF = 6.5A dIF/dt = 50A/µs VFR = 3V Tj = 25°C 450 IF = 4A dIF/dt = 80A/µs Tj = 100°C 28 36 IF = 6.5A dIF/dt = 50A/µs Tj = 25°C 13 17 Unit ns V TURN-ON SWITCHING CHARACTERISTICS OF THE MODULATION DIODE Parameter tfr Forward recovery time IF = 3A dIF/dt = 80A/µs VFR = 2V Tj = 100°C 240 ns VFP Peak forward voltage IF = 3A dIF/dt = 80A/µs Tj = 100°C 8 V ® Test conditions Value Symbol Typ. Max. Unit 3/9 DMV1500L Fig. 1-1: Power dissipation versus peak forward current (triangular waveform, δ = 0.45) (damper diode). Fig. 1-2: Power dissipation versus peak forward current (triangular waveform, δ = 0.45) (modulation diode). PF(av)(W) PF(av)(W) 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 Ip(A) 0 1 2 3 4 5 6 Fig. 2-1: Average forward current versus ambient temperature (damper diode). 0 1 2 3 5 6 IF(av)(A) 3.5 Rth(j-a)=Rth(j-c) 3.0 Rth(j-a)=Rth(j-c) 2.5 2.0 1.5 1.0 T δ=tp/T 0 25 0.0 50 75 T 0.5 Tamb(°C) tp 100 125 150 Fig. 3-1: Forward voltage drop versus forward current (damper diode). δ=tp/T 0 Tamb(°C) tp 25 50 75 125 150 IFM(A) 30 Typical Tj=125°C 25 Typical Tj=125°C 25 20 20 Maximum Tj=125°C 15 Maximum Tj=125°C 15 Maximum Tj=25°C Maximum Tj=25°C 10 10 5 5 VFM(V) 0 0.0 100 Fig. 3-2: Forward voltage drop versus forward current (modulation diode). IFM(A) 30 4/9 4 Fig. 2-2: Average forward current versus ambient temperature (modulation diode). IF(av)(A) 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 Ip(A) 0.5 1.0 1.5 2.0 VFM(V) 2.5 3.0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 ® DMV1500L Fig. 4: Relative variation of thermal impedance junction to case versus pulse duration. Fig. 5-1: Non repetitive surge peak forward current versus overload duration (damper diode). IM(A) K=[Zth(j-c)/Rth(j-c)] 30 1.0 25 δ = 0.5 0.5 20 δ = 0.2 15 δ = 0.1 0.2 Single pulse 5 tp(s) 0.1 1E-3 δ=tp/T 1E-2 1E-1 IM t tp 1E+0 Fig. 5-2: Non repetitive surge peak forward current versus overload duration (modulation diode). t(s) δ=0.5 0 1E-3 1E-2 1E-1 1E+0 Fig. 6-1: Reverse recovery charges versus diF/dt (damper diode). IM(A) Qrr(nC) 30 25 20 15 Tc=100°C 10 IM 5 Tc=100°C 10 T t t(s) δ=0.5 0 1E-3 1E-2 1E-1 1E+0 Fig. 6-2: Reverse recovery charges versus diF/dt (modulation diode). 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.1 IF=IF(av) 90% confidence Tj=125°C dIF/dt(A/µs) 0.2 0.5 1.0 5.0 Fig. 7-1: Reverse recovery current versus diF/dt (damper diode). IRM(A) Qrr(nC) 200 3.0 IF=IF(av) 90% confidence Tj=125°C 2.5 IF=IF(av) 90% confidence Tj=125°C 150 2.0 100 1.5 1.0 50 0.5 dIF/dt(A/µs) 0 0.1 ® 1.0 10.0 100.0 0.0 0.1 dIF/dt(A/µs) 0.2 0.5 1.0 5.0 5/9 DMV1500L Fig. 7-2: Reverse recovery current versus diF/dt (modulation diode). Fig. 8-1: Transient peak forward voltage versus dIF/dt (damper diode). IRM(A) VFP(V) 6 IF=IF(av) 90% confidence Tj=125°C 5 4 3 2 1 dIF/dt(A/µs) 0 1 10 100 200 Fig. 8-2: Transient peak forward voltage versus dIF/dt (modulation diode). 50 45 40 35 30 25 20 15 10 5 0 IF=IF(av) 90% confidence Tj=125°C dIF/dt(A/µs) 0 dIF/dt(A/µs) 20 40 60 80 100 120 140 160 180 200 Fig. 9-2: Forward recovery time versus dIF/dt (modulation diode). 100 120 140 IF=IF(av) 90% confidence Tj=125°C Vfr=3V dIF/dt(A/µs) 0 20 40 60 80 100 120 140 VFP,IRM,Qrr[Tj] / VFP,IRM,Qrr[Tj=125°C] 1.2 IF=IF(av) 90% confidence Tj=125°C Vfr=2V 175 150 1.0 0.8 125 VFP 100 0.6 75 0.4 IRM Qrr 50 0.2 25 6/9 80 Fig. 10-1: Dynamic parameters versus junction temperature (damper diode). tfr(ns) 200 0 60 tfr(ns) 700 650 600 550 500 450 400 350 300 250 200 IF=IF(av) 90% confidence Tj=125°C 0 40 Fig. 9-1: Forward recovery time versus dIF/dt (damper diode). VFP(V) 12 11 10 9 8 7 6 5 4 3 2 1 0 20 Tj(°C) dIF/dt(A/µs) 0.0 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 ® DMV1500L Fig. 10-2: Dynamic parameters versus junction temperature (modulation diode). Fig. 11: Junction capacitance versus reverse voltage applied (typical values). C(pF) VFP,IRM,Qrr[Tj] / VFP,IRM,Qrr[Tj=125°C] 100 1.2 Tj=25°C F=1MHz 1.0 Modulation 0.8 VFP Damper 10 0.6 IRM 0.4 Qrr 0.2 0.0 VR(V) Tj(°C) 0 20 40 60 80 100 120 140 1 1 10 100 200 ORDERING INFORMATION DMV1500L / F5 Lead bending (option) Damper and modulation diodes for video ® 7/9 DMV1500L PACKAGE MECHANICAL DATA TO-220AB F5 OPTION REF. B A a1 a3 B b1 b2 C c1 c2 e F I L I2 l3 l4 C b2 L F ØI A l4 a1 c2 R2 a3 l3 R1 l2 c2 b1 c1 M1 e M1 R1 R2 PRINTED CIRCUIT LAYOUT FOR F5 LAYOUT ■ ■ ■ DIMENSIONS Millimeters Inches Min. Max. Min. Max. 15.20 15.90 0.598 0.625 24.16 26.90 0.951 1.059 1.65 2.41 0.064 0.094 10.00 10.40 0.393 0.409 0.61 0.88 0.024 0.034 1.23 1.32 0.048 0.051 4.40 4.60 0.173 0.181 0.49 0.70 0.019 0.027 2.40 2.72 0.094 0.107 2.40 2.70 0.094 0.106 6.20 6.60 0.244 0.259 3.75 3.85 0.147 0.151 2.65 2.95 0.104 0.116 1.14 1.70 0.044 0.066 1.14 1.70 0.044 0.066 15.80 16.80 0.622 0.661 16.40 typ. 0.645 typ. 2.92 3.30 0.114 0.129 1.40 typ. 0.055 typ. 1.40 typ. 0.055 typ. Cooling method: by conduction (c) Recommended torque value: 0.8 m.N. Maximum torque value: 1 m.N. 3.1mm 1mm 2.2mm 2.54mm 8/9 ® DMV1500L PACKAGE MECHANICAL DATA TO-220AB DIMENSIONS REF. B C b2 A Millimeters Min. Typ. Max. Min. Typ. Max. 15.20 15.90 0.598 0.625 a1 L F I A Inches 3.75 0.147 a2 13.00 14.00 0.511 0.551 B 10.00 10.40 0.393 0.409 b1 0.61 0.88 0.024 0.034 b2 1.23 1.32 0.048 0.051 C 4.40 4.60 0.173 0.181 c1 0.49 0.70 0.019 0.027 c2 2.40 2.72 0.094 0.107 e 2.40 2.70 0.094 0.106 F 6.20 6.60 0.244 0.259 I 3.75 3.85 0.147 0.151 I4 15.80 16.40 16.80 0.622 0.646 0.661 L 2.65 2.95 0.104 0.116 l2 1.14 1.70 0.044 0.066 l3 1.14 1.70 0.044 0.066 l4 c2 a1 l3 l2 a2 b1 M c1 e M ■ ■ ■ ■ 2.60 0.102 Cooling method: by conduction (c) Recommended torque value: 0.8 m.N. Maximum torque value: 1 m.N. Type Marking Package Weight Base qty Delivery mode DMV1500L DMV1500LF5 DMV1500L TO-220AB 2.2 g. 50 Tube Epoxy meets UL94, V0 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com ® 9/9