LM158W,AW LM258W,AW LM358W,AW LOW POWER DUAL OPERATIONAL AMPLIFIERS ■ INTERNALLY FREQUENCY COMPENSATED ■ LARGE DC VOLTAGE GAIN: 100dB ■ WIDE BANDWIDTH (unity gain): 1.1MHz (temperature compensated) ■ VERY LOW SUPPLY CURRENT/OP (500µA) ■ ■ ■ ■ ■ ■ ■ ESSENTIALLY INDEPENDENT OF SUPPLY VOLTAGE LOW INPUT BIAS CURRENT: 20nA (temperature compensated) LOW INPUT OFFSET VOLTAGE: 2mV LOW INPUT OFFSET CURRENT: 2nA INPUT COMMON-MODE VOLTAGE RANGE INCLUDES GROUND DIFFERENTIAL INPUT VOLTAGE RANGE EQUAL TO THE POWER SUPPLY VOLTAGE LARGE OUTPUT VOLTAGE SWING 0V TO (Vcc - 1.5V) ESD INTERNAL PROTECTION : 2KV N DIP8 (Plastic Package) D&S SO8 & miniSO8 (Plastic Micropackage) DESCRIPTION These circuits consist of two independent, high gain, internally frequency compensated which were designed specifically to operate from a single power supply over a wide range of voltages. The low power supply drain is independent of the magnitude of the power supply voltage. Application areas include transducer amplifiers, dc gain blocks and all the conventional op-amp circuits which now can be more easily implemented in single power supply systems. For example, these circuits can be directly supplied with the standard +5V which is used in logic systems and will easily provide the required interface electronics without requiring any additional power supply. Inthe linear mode the input common-mode voltage range includes ground and the output voltage can also swing to ground, even though operated from only a single power supply voltage. P TSSOP8 (Thin Shrink Small Outline Package) ORDER CODE Package Part Number Temperature Range LM158W,AW -55°C, +125°C • LM258W,AW -40°C, +105°C LM358W,AW 0°C, +70°C Example : LM258AWN • • N S • D P • • • • • • N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) S = Small Outline Package (miniSO) - also available in Tape & Reel (DT) P = Thin Shrink Small Outline Package (TSSOP) - only available in Tape &Reel (PT) PIN CONNECTIONS (top view) 1 2 - 3 + 4 November 2002 8 7 - 6 + 5 1 - Output 1 2 - Inverting input 3 - Non-inverting input 4 - VCC5 - Non-inverting input 2 6 - Inverting input 2 7 - Output 2 8 - VCC+ 1/12 LM158W-AW, LM258W-AW, LM358W-AW SCHEMATIC DIAGRAM (1/2 LM158W) ABSOLUTE MAXIMUM RATINGS Symbol VCC Parameter LM158W,AW LM258W,AW LM358W,AW Unit +32 V -0.3 to +32 V Supply voltage Vi Input Voltage Vid Differential Input Voltage +32 V Ptot Power Dissipation 500 mW Iin Output Short-circuit Duration 1) Infinite 2) 50 Input Current Toper Opearting Free-air Temperature Range Tstg Storage Temperature Range 1. 2. on -55 to +125 -40 to +105 -65 to +150 mA 0 to +70 °C °C Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is approximately 40mA independent of the magnitude of V CC. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this diode action, there is also NPN parasitic action the IC chip. this transistor action can cause the output voltages of the Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V. 2/12 LM158W-AW, LM258W-AW, LM358W-AW ELECTRICAL CHARACTERISTICS VCC+ = +5V, VCC-= Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified) Symbol Parameter LM158AW-LM258AW LM358AW Min. Vio Input Offset Voltage - note 1) Tamb = +25°C LM158, LM258 LM158A Tmin ≤ Tamb ≤ Tmax LM158, LM258 Typ. Max. 1 3 LM158W-LM258W LM358W Min. Typ. Max. 2 7 5 2 4 Unit mV 9 7 Iio Input Offset Current Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 2 10 30 2 30 40 nA Iib Input Bias Current - note 2) Tamb = +25°C Tmin ≤ T amb ≤ Tmax 20 50 100 20 150 200 nA Avd Large Signal Voltage Gain VCC = +15V, R L = 2kΩ, Vo = 1.4V to 11.4V Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 50 25 100 50 25 100 65 65 100 65 65 100 V/mV Supply Voltage Rejection Ratio (Rs ≤ 10kΩ) SVR ICC VCC+ = 5V to 30V Tamb = +25°C Tmin ≤ T amb ≤ Tmax Supply Current, all Amp, no load Tmin ≤ Tamb ≤ Tmax VCC = +5V VCC = +30V Tmin ≤ Tamb ≤ Tmax 0.7 Input Common Mode Voltage Range VCC = +30V - note 3) Tamb = +25°C Tmin ≤ Tamb ≤ Tmax 0 0 CMR Common Mode Rejection Ratio (Rs ≤ 10kΩ) Tamb = +25°C T min ≤ Tamb ≤ Tmax 70 60 85 Isource Output Current Source V CC = +15V, Vo = +2V, V id = +1V 20 40 I sink Output Sink Current (Vid = -1V) V CC = +15V, Vo = +2V V CC = +15V, Vo = +0.2V 10 12 20 50 VOPP Output Voltage Swing ( R L = 2kΩ) Tamb = +25°C T min ≤ Tamb ≤ Tmax 0 0 Vicm 1.2 1 0.7 VCC+ -1.5 VCC+ -2 60 VCC+ -1.5 VCC+ -2 0 0 1.2 2 mA VCC+ -1.5 V VCC+ 70 60 85 20 40 10 12 20 50 0 0 dB -2 dB 60 mA mA µA VCC+ -1.5 VCC+ -2 3/12 LM158W-AW, LM258W-AW, LM358W-AW Symbol LM158AW-LM258AW LM358AW Parameter High Level Output Voltage (VCC+ = 30V) R L = 2kΩ Tamb = +25°C Tmin ≤ T amb ≤ Tmax Tamb = +25°C R L = 10kΩ Tmin ≤ T amb ≤ Tmax V OH Min. Typ. 26 26 27 27 27 LM158W-LM258W LM358W Max. 28 Min. Typ. 26 26 27 27 27 Low Level Output Voltage (RL = 10kΩ) Tamb = +25°C T min ≤ Tamb ≤ Tmax SR Slew Rate VCC = 15V, Vi = 0.5 to 3V, R L = 2kΩ, C L = 100pF, unity Gain 0.3 0.6 0.3 0.6 Gain Bandwidth Product VCC = 30V, f =100kHz,V in = 10mV, R L = 2kΩ, C L = 100pF 0.7 1.1 0.7 1.1 GBP Total Harmonic Distortion f = 1kHz, Av = 20dB, RL = 2kΩ, Vo = 2V pp, C L = 100pF, VO = 2Vpp THD 20 20 V 28 VOL 5 Unit Max. 5 20 20 mV V/µs MHz % 0.02 0.02 Equivalent Input Noise Voltage f = 1kHz, Rs = 100Ω, VCC = 30V 55 55 DVio Input Offset Voltage Drift 7 15 7 30 µV/°C DIIio Input Offset Current Drift 10 200 10 300 pA/°C en 4) Vo1/Vo2 Channel Separation - note 1kHz ≤ f ≤ 20kHZ 1. 2. 3. 4. 120 dB 120 V o = 1.4V, R s = 0Ω, 5V < VCC + < 30V, 0 < Vic < V CC+ - 1.5V The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output so no loading change exists on the input lines. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V. The upper end of the common-mode voltage range is VCC + - 1.5V, but either or both inputs can go to +32V without damage. Due to the proximity of external components insure that coupling is not originating via stray capacitance between these external parts. This typically can be detected as this type of capacitance increases at higher frequences. OP EN LOOP FREQUENCY RESPONSE (NOTE 3) LARGE SIGNAL FREQUENCY RESPONS E 20 140 VO VI VCC /2 + 80 VCC = 30 V & -55 C Ta mb +1 25 C 60 40 20 OUTPUT SWING (Vpp) VOLTAGE GAIN (dB) VCC - 100 100k Ω 10M Ω 0.1µF 120 1k Ω 15 - +15V VO VI +7V + 2k Ω 10 5 VCC = +1 0 to + 15V& -55 C Ta mb +1 25 C 0 0 1. 0 10 100 1k 10 k 100k FREQUENCY (Hz) 4/12 nV -----------Hz 1M 10M 1k 10k 100k FREQUENCY (Hz) 1M LM158W-AW, LM258W-AW, LM358W-AW VOLAGE FOLLOWER PULSE RESPONSE OUTPUT CHARACTERISTICS 10 RL 2 k Ω VCC = +1 5V 3 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 4 2 1 INPUT VOLTAGE (V) 0 3 2 VCC = +5V VCC = +15V VCC = +30V 1 vcc v cc /2 0.1 IO 1 T amb = +25 C 0.01 0 10 20 30 40 0,001 eO 5 0 pF 400 Input 350 Output 300 Ta mb = +25 C VCC = 30 V 250 0 1 2 3 4 5 10 100 6 7 V CC 7 6 + V CC /2 5 VO IO - 4 Inde pendent of VCC 3 T am b = +25 C 2 1 0,001 0,01 8 TIME (µs) 0,1 1 10 100 OUTPUT SOURCE CURRENT (mA) CURRENT LIMITING (Note 1) INPUT CURRENT (Note 1) 90 80 OUTPUT CURRENT (mA) 90 VI = 0 V 70 VCC = +30 V 60 50 VCC = +15 V 40 30 VCC = +5 V 20 - 80 IO 70 60 + 50 40 30 20 10 10 0 0 -55 -35 1 8 TO VCC+ (V) + - 0,1 OUTPUT CHARACTERISTICS OUTPUT VOLTAGE REFERENCED OUTPUT VOLTAGE (mV) 500 el 0,01 O UTPUT SINK CURRENT (mA) VOLTAGE FO LLOWER PULS SE RES PONSE (S MALL SIGNAL) 450 VO + TIME (µs ) INPUT CURRENT (mA) - -15 5 25 45 65 85 105 TEMPERATURE ( C) 125 -55 -35 -15 5 25 45 65 85 105 125 TEMPERATURE ( C) 5/12 LM158W-AW, LM258W-AW, LM358W-AW INPUT VOLTAGE RANGE SUP PLY CURRENT 4 15 SUPPLY CURRENT (mA) INPUT VOLTAGE (V) VCC 10 NØga tive Pos itive 5 ID mA 3 - 2 + T amb = 0 C to +125 C 1 Tamb = -55 C 0 5 10 0 15 R L = 20k Ω INPUT CURRENT (nA) VOLTAGE GAIN (dB) 30 100 160 120 R L = 2k Ω 80 40 0 10 20 30 40 R L = 20k Ω 120 R L = 2k Ω 80 40 0 10 20 30 P OS ITIVE S UP P LY VOLTAGE (V) GAIN BANDWIDTH PRODUCT (MHz) 160 75 50 25 Ta mb = +25 C 0 10 20 30 P OS ITIVE S UPP LY VOLTAGE (V) P OS ITIVE S UPP LY VOLTAGE (V) VOLTAGE GAIN (dB) 20 POSITIVE S UP PLY VOLTAGE (V) POWER SUPPLY VOLTAGE (–V) 6/12 10 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 VCC = 15V 0.3 0.15 0 -55-35-15 5 25 45 65 85 105 125 TEMPERATURE ( C) COMMON MODE REJECTION RATIO (dB) POWER SUPPLY REJECTION RATIO (dB) LM158W-AW, LM258W-AW, LM358W-AW 115 110 S VR 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TE MPERATURE ( C) 115 110 105 100 95 90 85 80 75 70 65 60-55-35-15 5 25 45 65 85 105 125 TEMPERATURE ( C) TYPICAL APPLICATIONS (single supply voltage) Vcc = +5Vdc AC COUPLED INVERTING AMPLIFIER Rf 100kΩ CI R1 10kΩ 1/2 LM158 eI ~ R2 VCC 100kΩ AC COUPLED NON-INVERTING AMPLIFIER R1 100kΩ Rf R1 (as shown A V = -10) AV= - Co RB 6.2kΩ R3 100kΩ Co 1/2 LM158 CI RL 10k Ω eI ~ 2VPP e o0 RB 6.2kΩ R3 1MΩ RL 10k Ω R4 100kΩ VCC C1 10µF C2 10µF NON-INVERTING DC AMPLIFIER R5 100kΩ DC SUMMING AMPLIFIER e1 100kΩ A V = 1 + R2 R1 (As shown A V = 101) 10k Ω 100kΩ +5V 100k Ω e3 100kΩ 1/2 LM158 eO (V) e2 100kΩ O R2 1MΩ eO e 1/2 LM158 R1 10k Ω AV= 1 + R2 R1 (as shown A V = 11) C1 0.1µF 2VPP e o0 R2 1MΩ e4 0 e I (mV) 100kΩ eo = e1 + e2 - e3 - e4 where (e1 + e2 ) ≥ (e3 + e4 ) to keep eo ≥ 0V 7/12 LM158W-AW, LM258W-AW, LM358W-AW HIGH INPUT Z, DC DIFFERENTIAL AMPLIFIER R4 100kΩ R2 100kΩ R1 100kΩ 1/2 LM158 USING SYMMETRICAL AMPLIFIERS TO REDUCE INPUT CURRENT 1/2 II eI R3 100kΩ 1/2 LM158 +V1 +V2 eo I B LM158 IB 2N 929 Vo 0.001µF IB IB if R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2 R 1 ] ( (e2 + e1) ----------R2 3MΩ As shown eo = 101 (e2 + e1) HIGH INPUT Z ADJUSTABLE GAIN DC INSTRUMENTATION AMPLIFIER Input current compensation IB 1.5MΩ 1/2 LM158 LOW DRIFT PEAK DETECTOR R1 100k Ω e1 R2 2k Ω R3 100k Ω 1/2 LM158 R4 100k Ω 1/2 LM158 Gain adjust IB eO eI 1/2 LM158 IB 1/2 LM158 R5 100k Ω R6 100k Ω R7 100k Ω C 1µF ZI 2N 929 0.001µF IB 2IB R 1MΩ 3R 3MΩ IB As shown eo = 101 (e2 + e1 ) ACTIVE BAND-PASS FILTER R1 100kΩ C1 330pF R2 100kΩ +V1 1/2 LM158 R5 470kΩ R4 10M Ω R3 100kΩ C2 330 pF 1/2 LM158 R6 470kΩ Vo 1/2 LM158 R7 100kΩ VCC R8 100kΩ 8/12 C3 10µ F eo Zo 2I B e2 if R1 = R5 and R3 = R4 = R6 = R7 eo = [ 1 + 2 R 1 ] ( (e2 + e1) ----------R2 1/2 LM158 1/2 LM158 Input current compensation LM158W-AW, LM258W-AW, LM358W-AW PACKAGE MECHANICAL DATA 8 PINS - PLASTIC DIP Millimeters Inches Dim. Min. A a1 B b b1 D E e e3 e4 F i L Z Typ. Max. Min. 3.32 0.51 1.15 0.356 0.204 0.020 0.045 0.014 0.008 0.065 0.022 0.012 0.430 0.384 0.313 2.54 7.62 7.62 3.18 Max. 0.131 1.65 0.55 0.304 10.92 9.75 7.95 Typ. 0.100 0.300 0.300 6.6 0260 5.08 3.81 1.52 0.200 0.150 0.060 0.125 9/12 LM158W-AW, LM258W-AW, LM358W-AW PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE ( miniSO ) D E1 c C 0,25 mm .010 inch GAGE PLANE SEATING PLANE 5 8 PIN 1 IDENTIFICATION ccc A A2 A1 b C E k L 4 1 L1 e Dim. A A1 A2 b c D E E1 e L L1 k ccc 10/12 Millimeters Min. Typ. 0.050 0.780 0.250 0.130 2.900 4.750 2.900 0.100 0.860 0.330 0.180 3.000 4.900 3.000 0.650 0.550 0.950 3d 0.400 0d Inches Max. Min. Typ. 1.100 0.150 0.940 0.400 0.230 3.100 5.050 3.100 0.002 0.031 0.010 0.005 0.114 0.187 0.114 0.700 0.016 6d 0.100 0d 0.004 0.034 0.013 0.007 0.118 0.193 0.118 0.026 0.022 0.037 3d Max. 0.043 0.006 0.037 0.016 0.009 0.122 0.199 0.122 0.028 6d 0.004 LM158W-AW, LM258W-AW, LM358W-AW PACKAGE MECHANICAL DATA 8 PINS - PLASTIC MICROPACKAGE (SO) s b1 b a1 A a2 C c1 a3 L E e3 D M 5 1 4 F 8 Millimeters Inches Dim. Min. A a1 a2 a3 b b1 C c1 D E e e3 F L M S Typ. Max. 0.65 0.35 0.19 0.25 1.75 0.25 1.65 0.85 0.48 0.25 0.5 4.8 5.8 5.0 6.2 0.1 Min. Typ. Max. 0.026 0.014 0.007 0.010 0.069 0.010 0.065 0.033 0.019 0.010 0.020 0.189 0.228 0.197 0.244 0.004 45° (typ.) 1.27 0.050 3.81 3.8 0.4 0.150 4.0 1.27 0.6 0.150 0.016 0.157 0.050 0.024 8° (max.) 11/12 LM158W-AW, LM258W-AW, LM358W-AW PACKAGE MECHANICAL DATA 8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP) k c 0.25mm .010 inch GAGE PLANE L1 L L L1 C SEATING PLANE E1 A E A2 4 A1 5 4 5 D b e 8 1 8 1 PIN 1 IDENTIFICATION Millimeters Inches Dim. Min. A A1 A2 b c D E E1 e k l L L1 0.05 0.80 0.19 0.09 2.90 4.30 0° 0.50 0.45 Typ. 1.00 3.00 6.40 4.40 0.65 0.60 0.600 1.000 Max. Min. 1.20 0.15 1.05 0.30 0.20 3.10 0.01 0.031 0.007 0.003 0.114 4.50 0.169 8° 0.75 0.75 0° 0.09 0.018 Typ. 0.039 0.118 0.252 0.173 0.025 0.0236 0.024 0.039 Max. 0.05 0.006 0.041 0.15 0.012 0.122 0.177 8° 0.030 0.030 Informatio n furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such infor mation nor for any infring ement of patents or other right s of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publ ication supersedes and replaces all information previously suppl ied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 2002 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://ww w.st.com 12/12