STK13003 ® HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR ■ ■ ■ ■ ■ STK13003 IS REVERSE PINS OUT Vs STANDARD SOT-82 PACKAGE MEDIUM VOLTAGE CAPABILITY LOW SPREAD OF DYNAMIC PARAMETERS MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION VERY HIGH SWITCHING SPEED APPLICATIONS: ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING ■ SWITCH MODE POWER SUPPLIES ■ DESCRIPTION The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA. The device is designed for use in lighting applications and low cost switch-mode power supplies. SOT-82 INTERNAL SCHEMATIC DIAGRAM ABSOLUTE MAXIMUM RATINGS Symbol V CES V CEO V EBO IC I CM IB I BM P tot T stg Tj Parameter Collector-Emitter Voltage (V BE = 0) Collector-Emitter Voltage (I B = 0) Emitter-Base Voltage (I C = 0, I B = 0.75 A, tp < 10µs, T j < 150 o C) Collector Current Collector Peak Current (t p < 5 ms) Base Current Base Peak Current (t p < 5 ms) Total Dissipation at T c = 25 o C Storage Temperature Max. Operating Junction Temperature September 2001 Value 700 400 BV EBO Unit V V V 1.5 3 0.75 1.5 40 -65 to 150 150 A A A A W o C o C 1/7 STK13003 THERMAL DATA R thj-case R thj-amb Thermal Resistance Junction-case Thermal Resistance Junction-ambient Max Max o 3.12 89 o C/W C/W ELECTRICAL CHARACTERISTICS (Tcase = 25 oC unless otherwise specified) Symbol I CEV BV EBO Parameter Test Conditions Min. Collector Cut-off Current (V BE = -1.5V) V CE = 700V V CE = 700V Emitter-Base Breakdown Voltage (I C = 0) I E = 10 mA 9 I C = 10 mA L = 25mH 400 V CEO(sus) ∗ Collector-Emitter Sustaining Voltage (I B = 0) Typ. T j = 125 o C Max. Unit 1 5 mA mA 18 V V V CE(sat) ∗ Collector-Emitter Saturation Voltage I C = 0.5 A IC = 1 A I C = 1.5 A I B = 0.1 A I B = 0.25 A I B = 0.5 A 0.5 1 3 V V V V BE(sat) ∗ Base-Emitter Saturation Voltage I C = 0.5 A IC = 1 A I B = 0.1 A I B = 0.25 A 1 1.2 V V DC Current Gain I C = 0.5 A Group A Group B IC = 1 A V CE = 2 V IC = 1 A I B1 = 0.2 A T p = 25 µs V CC = 125 V I B2 = -0.2 A h FE ∗ tr ts tf RESISTIVE LOAD Rise Time Storage Time Fall Time ts INDUCTIVE LOAD Storage Time IC = 1 A V BE = -5 V V clamp = 300 V V CE = 2 V I B1 = 0.2 A L = 50 mH 20 35 25 8 15 5 1 4 0.7 0.8 µs µs µs µs ∗ Pulsed: Pulse duration = 300µs, duty cycle = 1.5 % Note : Product is pre-selected in DC current gain (GROUP A and GROUP B). STMicroelectronics reserves the right to ship either groups according to production availability. Please contact your nearest STMicroelectronics sales office for delivery details. 2/7 STK13003 Safe Operating Areas Derating Curve DC Current Gain DC Current Gain Collector Emitter Saturation Voltage Base Emitter Saturation Voltage 3/7 STK13003 Inductive Load Fall Time Reverse Biased SOA 4/7 Inductive Load Storage Time STK13003 Figure 1: Inductive Load Switching Test Circuits. 1) Fast electronic switch 2) Non-inductive Resistor 3) Fast recovery rectifier Figure 2: Resistive Load Switching Test Circuits. 1) Fast electronic switch 2) Non-inductive Resistor 5/7 STK13003 SOT-82 MECHANICAL DATA mm DIM. MIN. inch TYP. MAX. MIN. TYP. MAX. A 7.4 7.8 0.291 0.307 B 10.5 10.8 0.413 0.444 b 0.7 0.9 0.028 0.035 b1 0.49 0.75 0.019 0.030 C 2.4 2.7 0.04 0.106 c1 1.0 1.3 0.039 0.05 D 15.4 16 0.606 0.629 e e3 2.2 0.087 4.15 4.65 F 0.163 0.183 3.8 0.150 H 2.54 H2 0.100 2.15 0.084 C B F A D H H2 c1 b e b1 e3 6/7 P032A STK13003 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics © 2001 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 7/7