STPS140Z POWER SCHOTTKY RECTIFIER MAIN PRODUCT CHARACTERISTICS IF 1A VRRM VF (max) 40 V 0.49 V Tj (max) 150°C FEATURES AND BENEFITS VERY SMALL CONDUCTION LOSSES NEGLIGIBLE SWITCHING LOSSES EXTREMELY FAST SWITCHING SOD123 DESCRIPTION Single Schottky rectifier suited for Switchmode Power Supplies and high frequency DC to DC converters. Packaged in SOD123, this device is intended for use in low voltage, high frequency inverters, free wheeling and polarity protection applications. Due to the small size of the package this device fit GSM and PCMCIA requirements. ABSOLUTE RATINGS (limiting values) Symbol VRRM Repetitive peak reverse voltage Value Unit 40 V IFSM Continuous forward current Surge non repetitive forward current Tamb = 60 °C tp = 10 ms Sinusoidal 1 5.5 A A IRRM Repetitive peak reverse current tp = 2 µs square F = 1kHz 0.5 A IRSM Non repetitive peak reverse current tp = 100µs square Tstg Storage temperature range IF Tj TL dV/dt * Parameter Maximum operating junction temperature * Maximum temperature for soldering during 10s Critical rate of rise of reverse voltage dPtot 1 < dTj Rth(j−a) May 1999 - Ed: 1 1 A - 65 to + 150 °C 150 260 10000 °C V/µs Thermal runaway condition for a diode on its own heatsink. 1/5 STPS140Z THERMAL RESISTANCES Symbol Rth (j-a) Parameter Junction to ambient * Value Unit 175 °C/W 2 * with 50 mm copper area (e=35µm) STATIC ELECTRICAL CHARACTERISTICS Symbol Tests Conditions IR * Reverse leakage current Tests Conditions Min. Forward voltage drop Unit VR = 5V 10 µA Tj = 25°C VR = 40V 40 µA 5 mA 0.55 V Tj = 25°C 1.5 IF = 1 A Tj = 100°C Pulse test : Max. Tj = 25°C Tj = 100°C VF ** Typ. 0.45 0.51 * tp = 5 ms, δ < 2 % ** tp = 380 µs, δ < 2% To evaluate the maximum conduction losses use the following equation : P = 0.2 x IF(AV) + 0.3 x IF2(RMS) at Tj = 150°C Fig. 1: Average forward power dissipation versus average forward current. Fig. 2: Average forward current versus ambient temperature (δ=1). PF(av)(W) 0.6 0.5 0.4 IF(av)(A) δ = 0.1 δ = 0.2 1.2 δ = 0.5 δ = 0.05 1.0 δ=1 0.6 0.3 0.2 0.8 T 0.4 0.1 0.2 IF(av) (A) tp δ=tp/T 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 0.0 2/5 T δ=tp/T 0 25 Tamb(°C) tp 50 75 100 125 150 STPS140Z Fig. 3: Non repetive surge peak forward current versus overloadduration(maximum values). Fig. 4: Relativevariationofthermalimpedancejunction to ambient versus pulse duration (epoxy printed circuit boardFR4with recommendedpad layout). Zth(j-a)/Rth(j-a) IM(A) 1E+0 5 δ = 0.5 4 3 δ = 0.2 Ta=25°C 1E-1 2 δ = 0.1 Ta=60°C T 1 IM Single pulse t t(s) δ=0.5 0 1E-3 δ=tp/T tp(s) 1E-2 1E-1 1E+0 Fig. 5: Reverse leakage current versus reverse voltage applied (typical value). 1E-2 1E-2 1E-1 1E+0 1E+1 tp 5E+1 Fig. 6: Reverse leakage current versus junction temperature (typical value). IR[Tj] / IR[Tj=25°C] IR(mA) 5E+3 5E+1 VR=40V 1E+1 Tj=150°C 1E+0 1E+3 Tj=100°C 1E+2 Tj=70°C 1E-1 1E+1 1E-2 1E-3 1E+0 Tj=25°C VR(V) 1E-4 0 5 10 15 20 Tj(°C) 25 30 35 40 1E-1 0 25 50 75 100 125 150 Fig. 7: Junction capacitance versus reverse voltage applied (typical value). C(pF) 200 F=1MHz Tj=25°C 100 50 20 VR(V) 10 1 2 5 10 20 50 3/5 STPS140Z Fig. 8-1: Forward voltage drop versus forward current (high level, maximum values). Fig. 8-2: Forward voltage drop versus forward current (low level, maximum values). IFM(A) IFM(A) 5E+0 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.0 1E+0 Tj=150°C Tj=25°C 1E-1 Tj=100°C VFM(V) 1E-2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 Tj=25°C Tj=150°C Tj=100°C VFM(V) 0.1 0.2 0.3 0.4 Fig. 9: Thermal resistance junction to ambient versus copper surface (epoxy printed circuit board FR4, copper thickness: 35µm). Rth(j-a) (°C/W) 300 280 260 240 220 200 180 160 140 120 100 4/5 IF=1A S(Cu) (mm ) 0 10 20 30 40 50 60 70 80 90 100 0.5 0.6 0.7 0.8 0.9 1.0 STPS140Z PACKAGE MECHANICAL DATA SOD123 Plastic DIMENSIONS REF. H A2 A E D c G Min. A1 b Millimeters A Max. Inches Min. 1.45 Max. 0.057 A1 0 0.1 0 0.004 A2 0.85 1.35 0.033 0.053 b 0.55 Typ. 0.022 Typ. c 0.15 Typ. 0.039 Typ. D 2.55 2.85 0.1 0.112 E 1.4 1.7 0.055 0.067 G 0.25 H 3.55 0.01 3.95 0.14 0.156 Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 1999 STMicroelectronics - Printed in Italy - All rights reserved. STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 5/5