STMICROELECTRONICS STPS140Z

STPS140Z

POWER SCHOTTKY RECTIFIER
MAIN PRODUCT CHARACTERISTICS
IF
1A
VRRM
VF (max)
40 V
0.49 V
Tj (max)
150°C
FEATURES AND BENEFITS
VERY SMALL CONDUCTION LOSSES
NEGLIGIBLE SWITCHING LOSSES
EXTREMELY FAST SWITCHING
SOD123
DESCRIPTION
Single Schottky rectifier suited for Switchmode
Power Supplies and high frequency DC to DC converters.
Packaged in SOD123, this device is intended for
use in low voltage, high frequency inverters, free
wheeling and polarity protection applications. Due
to the small size of the package this device fit GSM
and PCMCIA requirements.
ABSOLUTE RATINGS (limiting values)
Symbol
VRRM
Repetitive peak reverse voltage
Value
Unit
40
V
IFSM
Continuous forward current
Surge non repetitive forward current
Tamb = 60 °C
tp = 10 ms
Sinusoidal
1
5.5
A
A
IRRM
Repetitive peak reverse current
tp = 2 µs square
F = 1kHz
0.5
A
IRSM
Non repetitive peak reverse current
tp = 100µs square
Tstg
Storage temperature range
IF
Tj
TL
dV/dt
*
Parameter
Maximum operating junction temperature *
Maximum temperature for soldering during 10s
Critical rate of rise of reverse voltage
dPtot
1
<
dTj
Rth(j−a)
May 1999 - Ed: 1
1
A
- 65 to + 150
°C
150
260
10000
°C
V/µs
Thermal runaway condition for a diode on its own heatsink.
1/5
STPS140Z
THERMAL RESISTANCES
Symbol
Rth (j-a)
Parameter
Junction to ambient *
Value
Unit
175
°C/W
2
* with 50 mm copper area (e=35µm)
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Tests Conditions
IR *
Reverse leakage current
Tests Conditions
Min.
Forward voltage drop
Unit
VR = 5V
10
µA
Tj = 25°C
VR = 40V
40
µA
5
mA
0.55
V
Tj = 25°C
1.5
IF = 1 A
Tj = 100°C
Pulse test :
Max.
Tj = 25°C
Tj = 100°C
VF **
Typ.
0.45
0.51
* tp = 5 ms, δ < 2 %
** tp = 380 µs, δ < 2%
To evaluate the maximum conduction losses use the following equation :
P = 0.2 x IF(AV) + 0.3 x IF2(RMS) at Tj = 150°C
Fig. 1: Average forward power dissipation versus
average forward current.
Fig. 2: Average forward current versus ambient
temperature (δ=1).
PF(av)(W)
0.6
0.5
0.4
IF(av)(A)
δ = 0.1
δ = 0.2
1.2
δ = 0.5
δ = 0.05
1.0
δ=1
0.6
0.3
0.2
0.8
T
0.4
0.1
0.2
IF(av) (A)
tp
δ=tp/T
0.0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
0.0
2/5
T
δ=tp/T
0
25
Tamb(°C)
tp
50
75
100
125
150
STPS140Z
Fig. 3: Non repetive surge peak forward current
versus overloadduration(maximum values).
Fig. 4: Relativevariationofthermalimpedancejunction
to ambient versus pulse duration (epoxy printed circuit
boardFR4with recommendedpad layout).
Zth(j-a)/Rth(j-a)
IM(A)
1E+0
5
δ = 0.5
4
3
δ = 0.2
Ta=25°C
1E-1
2
δ = 0.1
Ta=60°C
T
1
IM
Single pulse
t
t(s)
δ=0.5
0
1E-3
δ=tp/T
tp(s)
1E-2
1E-1
1E+0
Fig. 5: Reverse leakage current versus reverse
voltage applied (typical value).
1E-2
1E-2
1E-1
1E+0
1E+1
tp
5E+1
Fig. 6: Reverse leakage current versus junction
temperature (typical value).
IR[Tj] / IR[Tj=25°C]
IR(mA)
5E+3
5E+1
VR=40V
1E+1
Tj=150°C
1E+0
1E+3
Tj=100°C
1E+2
Tj=70°C
1E-1
1E+1
1E-2
1E-3
1E+0
Tj=25°C
VR(V)
1E-4
0
5
10
15
20
Tj(°C)
25
30
35
40
1E-1
0
25
50
75
100
125
150
Fig. 7: Junction capacitance versus reverse
voltage applied (typical value).
C(pF)
200
F=1MHz
Tj=25°C
100
50
20
VR(V)
10
1
2
5
10
20
50
3/5
STPS140Z
Fig. 8-1: Forward voltage drop versus forward
current (high level, maximum values).
Fig. 8-2: Forward voltage drop versus forward
current (low level, maximum values).
IFM(A)
IFM(A)
5E+0
2.0
1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0.0
1E+0
Tj=150°C
Tj=25°C
1E-1
Tj=100°C
VFM(V)
1E-2
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
Tj=25°C
Tj=150°C
Tj=100°C
VFM(V)
0.1
0.2
0.3
0.4
Fig. 9: Thermal resistance junction to ambient
versus copper surface (epoxy printed circuit board
FR4, copper thickness: 35µm).
Rth(j-a) (°C/W)
300
280
260
240
220
200
180
160
140
120
100
4/5
IF=1A
S(Cu) (mm )
0
10
20
30
40
50
60
70
80
90
100
0.5
0.6
0.7
0.8
0.9
1.0
STPS140Z
PACKAGE MECHANICAL DATA
SOD123 Plastic
DIMENSIONS
REF.
H
A2
A
E
D
c
G
Min.
A1
b
Millimeters
A
Max.
Inches
Min.
1.45
Max.
0.057
A1
0
0.1
0
0.004
A2
0.85
1.35
0.033
0.053
b
0.55 Typ.
0.022 Typ.
c
0.15 Typ.
0.039 Typ.
D
2.55
2.85
0.1
0.112
E
1.4
1.7
0.055
0.067
G
0.25
H
3.55
0.01
3.95
0.14
0.156
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
 1999 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
5/5